

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0473 of 4 September 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Berner High-Performance Anchor BHA, BHA-I

Mechanical fasteners for use in concrete

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6
Berner manufacturing plant 6

23 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-10/0473

Page 2 of 23 | 4 September 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0473 English translation prepared by DIBt

Page 3 of 23 | 4 September 2018

Specific Part

1 Technical description of the product

The Berner High-Performance Anchor BHA, BHA-I is an anchor made of galvanised steel (sizes with external diameter 10, 12, 15, 18, 24, 28 and 32, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) or stainless steel (sizes with external diameter 10, 12, 15, 18 and 24, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex C 1 and C 2
(static and quasi-static loading)	
Characteristic resistance to shear load	See Annex C 3 and C 4
(static and quasi-static loading)	
Displacements (static and quasi-static loading)	See Annex C 9 and C 10
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 7, C 8 and C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristics	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5 and C 6

European Technical Assessment ETA-10/0473

Page 4 of 23 | 4 September 2018

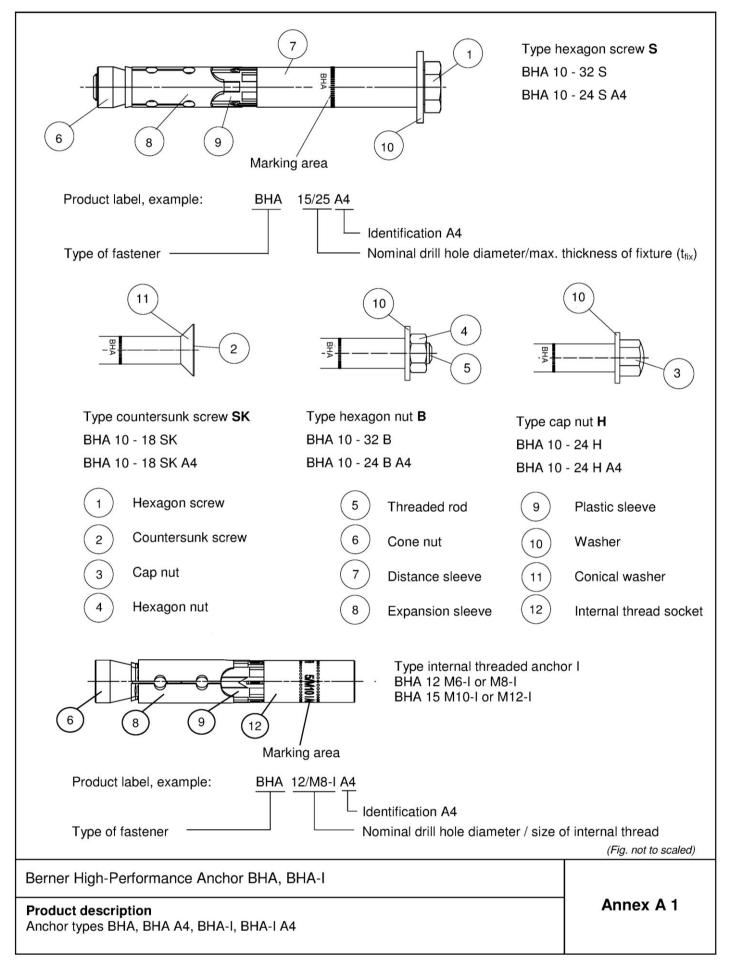
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 4 September 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

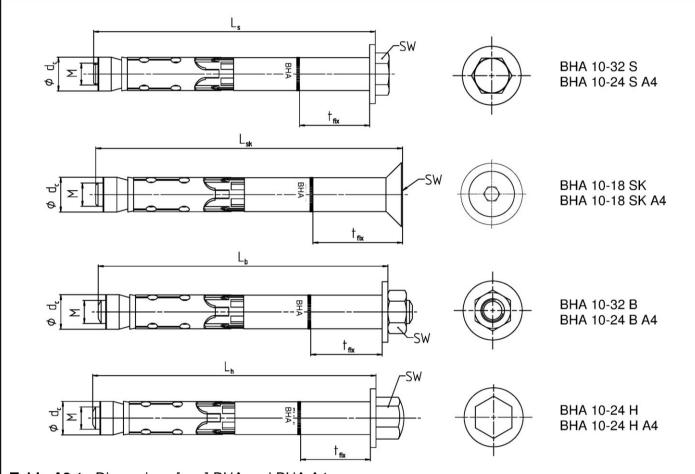


Table A2.1: Dimensions [mm] BHA and BHA A4

Anchor type		BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	32	
Thread		М	6	8	10	12	16	20	24
Diameter cone nut		d _c	10	12	14,8	17,8	23,7	27,5	31,5
	BHA-S, -B		10	13	17	19	24	30	36
	BHA-SK ¹⁾		4	5	6	8		-	
Wrench size SW	BHA-S, -B		13	17	17	19	24	-	
	BHA-S A4, -B A4, -	H A4	10	13	17	19	24	12	
	BHA-SK A4 ¹⁾		4	5	6	8		-	
t _{fix} BHA-S, -B, -H + BHA-S A4,	-B A4, -H A4	min	0	0	0	0	0	0	0
t _{fix} BHA-SK + BHA-SK A4 2)		min	5	6	6	8	-	-	- 1
Length of screw / bolt	L _{s,} L _{h,} L _b (- t _f	_{ix}) ≥	49	74	89	99	124	149	174
Length of countersunk screw	L _{sk} (- t _{fix})	≥	54	79	95	107		=	

¹⁾ Internal hexagon

(Fig. not to scaled)

Berner High-Performance Anchor BHA, BHA-I	
Product description Anchor types and dimensions BHA, BHA A4	Annex A 2

The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is taken into account, see tables C3.1, C7.1 and C7.2

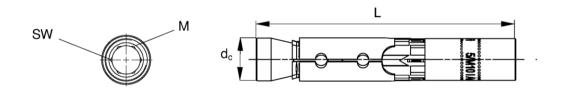


Table A3.1: Anchor Dimensions [mm] BHA-I and BHA-I A4

Anchor type BHA-I, BHA-I A4		BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Thread	М	6	8	10	12
Diameter cone nut	d_{c}	12	12	14,8	14,8
Wrench size internal hexagon	SW	6	8	6	8
Anchor length	L	77,5	77,5	90	90

Table A3.2: Material BHA and BHA A4

No.	Designation	ВНА	BHA A4
1	Hexagon screw	Steel class 8.8; EN ISO 898-1:2013 1)	
2	Countersunk screw	Steel class 8.8; EN ISO 898-1:2013 1)	Class 80
3	Cap nut	Steel class 8 1)	EN ISO 3506:2010
4	Hexagon nut	Steel class 8 1)	
5	Threaded rod	Steel f _{uk} ≥ 800 N/mm²; f _{yk} ≥ 640 N/mm² ¹⁾	Steel f _{uk} ≥ 800 N/mm²; f _{yk} ≥ 640 N/mm²
6	Cone nut	Steel EN 10277:2008 1)	Class 80, EN ISO 3506:2010
7	Distance sleeve	Steel EN 10305:2016 1)	EN 10088:2014
8	Expansion sleeve	Steel EN 10139:2016/ EN 10277:2008 1)	EN 10088:2014
9	Plastic sleeve	ABS (plastic)	
10	Washer	Steel EN 10139:2016 1)	EN 10088:2014
11	Conical washer	Steel EN 10277:2008 1)	EN 10088:2014

 $^{^{1)}}$ Galvanised according to EN ISO 4042:2001, $\geq 5~\mu m$

Table A3.3: Material BHA-I and BHA-I A4

No. Designation		BHA-I	BHA-I A4	
6	Cone nut	Steel EN 10277:2008 1)	Strength class ≥ 70 EN ISO 3506:2010	
8	Expansion sleeve	Steel EN 10139:2016 / EN 10277:2008 1)	EN 10088:2014	
9	Plastic sleeve	ABS (plastic)		
12 Internal thread bolt Requirements for fixing elements		Steel EN 10277:2008 $^{1)}$ $f_{uk} \ge 750 \text{ N/mm}^2$, $f_{yk} \ge 600 \text{ N/mm}^2$	EN 10088:2014 $f_{uk} \ge 750 \text{ N/mm}^2, \\ f_{yk} \ge 600 \text{ N/mm}^2$	
		Steel strength class 5.8, 6.8 or 8.8 EN ISO 898-1:2013 1)	Steel strength class A50, A70 or A80 EN ISO 3506:2010 1.4362, 1.4401, 1.4404, 1.4571, 1.4529	

 $^{^{1)}}$ Galvanised according to EN ISO 4042:2001, $\geq 5~\mu\text{m}$

Berner High-Performance Anchor BHA, BHA-I	
Product description Anchor types and dimensions BHA-I, BHA I-A4 Materials	Annex A 3

electronic copy of the eta by dibt: eta-10/0473

English translation prepared by DIBt

Specifications of intended use								
Anchorages subject to:								
Size		10	12	15	18	24	28	32
High Performance	BHA			,				
Anchor	BHA A4					-		
High Performance Anche	-	-						
Static and quasi-static lo	ads							
Cracked and uncracked	concrete	✓						
Fire exposure			1631					
	C1 BHA	/						
Seismic performance	C1 BHA A4		-		/		-	0
category	C2 BHA	-				/		
	C2 BHA A4				/		-	

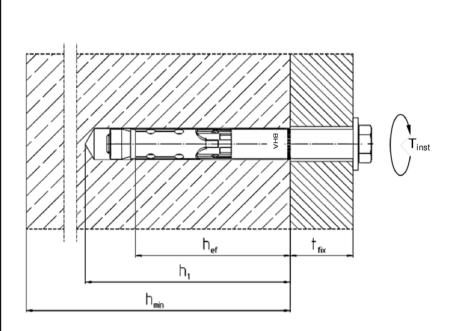
Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres (cracked or uncracked) according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (BHA, BHA A4, BHA-I, BHA-I A4)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal conditions, if no particular aggressive conditions exist (BHA A4, BHA-I A4)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater,
 chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants
 or road tunnels where de-icing materials are used)

Design:


- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hammer or hollow drilling according to Annex B5 and B6
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load

Berner High-Performance Anchor BHA, BHA-I	
Intended use Specifications	Annex B 1

h_{ef} = Effective embedment depth

 t_{fix} = Thickness of the fixture

 h_1 = Depth of drill hole to deepest point h_{min} = Minimum thickness of concrete member

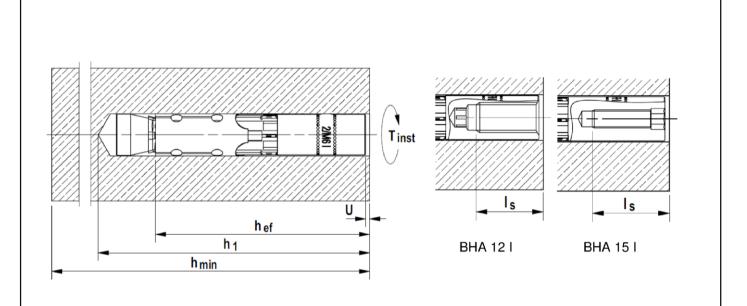

T_{inst} = Required setting torque

Table B2.1: Installation parameters BHA and BHA A4

Anchor type BHA-S,-SK,-B,-H and BHA-S A4, BHA-SK A4, BHA-B A4, BHA H A4	BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Nominal drill hole diameter d ₀	10	12	15	18	24	28	32
Maximum diameter of drill bit d _{cut} ≤	10,45	12,50	15,50	18,50	24,55	28,55	32,70
Depth of drill hole to deepest $h_1 \ge [mm]$	55	80	90	105	125	155	180
Diameter of clearance hole $d_f \leq$	12	14	17	20	26	31	35
Diameter of counter sunk BHA-SK	18	22	25	32			
Depth of counter sunk, 90° BHA-SK A4 [mm]	5,0	5,8	5,8	8,0			
BHA-S		22,5	40		160	180	200
BHA-B	10	17,5	38	90	120	180	200
Required BHA-H	10	22,5	40	80	90		-
torque BHA-SK T _{inst} [Nm]	_{st} [Nm]		40			-	
BHA-S A4, BHA-B A4 BHA-H A4	15	25	40	100	160		
BHA-SK A4	10		-70	.50		-	

Berner High-Performance Anchor BHA, BHA-I	
Intended use Installation parameters BHA, BHA A4	Annex B 2

h_{ef} = Effective embedment depth

 $egin{array}{lll} h_1 &=& & \mbox{Depth of drill hole to deepest point} \\ h_{\mbox{\scriptsize min}} &=& & \mbox{Minimum thickness of conrete member} \end{array}$

 T_{inst} = Required setting torque U = Required gap after torqueing

I_s = Screw-in depth

Table 3.1: Installation parameters BHA-I and BHA-I A4

Anchor type BHA-I and BHA-I A4				BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I	
Nominal drill hole diameter	d ₀				12	15		
Maximum bit diameter	d_{cut}	≤		12	2,50	15,50		
Depth of drill hole	h ₁	\geq	[mm]		85	98		
Diameter of clearance hole	d_f	<u> </u>		7	9	12	14	
Required gap after torquing ¹⁾	U			3 - 5				
Required setting torque ¹⁾	T_{inst}		[Nm]	,	15	25		
Minimum screw-in depth	ls	≥	- [mm]	11 + U	13 + U	10 + U	12 + U	
Maximum screw-in depth	l _s	≤	- [mm]		20 +	U		
Maximum torque on fixture in combination with screws and threaded rods strength class ≥ 5.8 resp. \geq A50	max	T_{fix}	[Nm]	3	8	15	20	

¹⁾ At least one of the requirements concerning the gap U or the required setting torque T_{inst} have to be fulfilled

Berner High-Performance Anchor BHA, BHA-I	
Intended use Installation parameters BHA-I, BHA-I A4	Annex B 3

Table B4.1: Minimum thickness of	concrete member,	minimum spacing	and minimum	edge distances
BHA, BHA A4				

Anchor type BHA-S,-SK,-B,-H and BHA-S A4,-SK A4,-B A4,-H A4		BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Minimum thickness of concrete member	h _{min} [mm]	80	120	140	160	200	250	300
Minimum spacing,	S _{min}	40	50	60	70	80	100	120
cracked concrete	for c ≥	40	80	120	140	180	200	260
Minimum edge distance,	C _{min} [mm]	40	50	60	70	80	100	120
cracked concrete	for s ≥	40	80	120	160	200	220	280
Minimum spacing,	S _{min}	40	60	70	80	100	120	160
uncracked concrete	for c ≥ [mm]	70	100	100	160	200	220	360
Minimum edge distance,	C _{min} [mm]	40	60	70	80	100	120	180
uncracked concrete	for s ≥	70	100	140	200	220	240	380

Intermediate values may be calculated by linear interpolation

Table B4.2: Minimum thickness of concrete member, minimum spacing and minimum edge distances BHA-I, BHA-I A4

Anchor type BHA-I and BHA-I A4			BHA 12/M6 I BHA 12/M8 I	BHA 15/M10 I BHA 15/M12 I
Minimum thickness of concrete member	h _{min}	[mm]	125	150
Minimum spacing,	S _{min}		50	60
cracked concrete	for c ≥	[mm]	80	120
Minimum edge distance,	C _{min}	[mm]	50	60
cracked concrete	for s ≥		80	120
Minimum spacing,	S _{min}		60	70
uncracked concrete	for c ≥	[mm]	100	100
Minimum edge distance,	C _{min}	[mm]	60	70
uncracked concrete	for s ≥		100	140

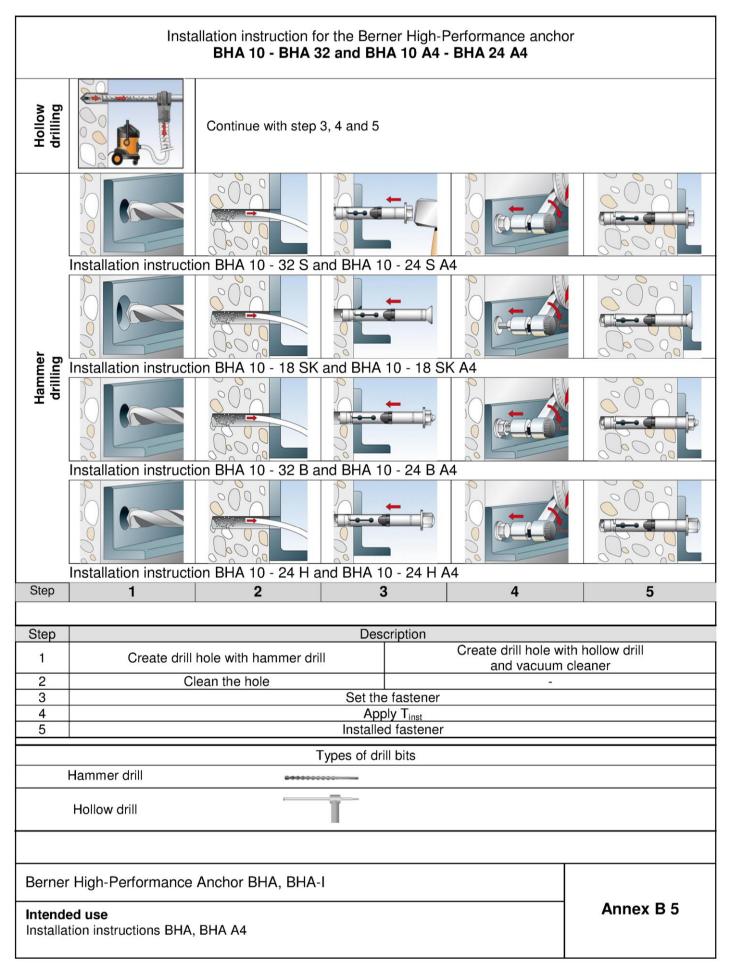

Intermediate values may be calculated by linear interpolation.

Table B4.3: Minimum spacings and minimum edge distances of anchors under **fire exposure** for tension and shear loads

Anchor type		BHA 10	BHA 12 BHA 12-I	BHA 15 BHA 15-I	BHA 18	BHA 24	BHA 28	BHA 32	
Spacing	S _{cr,N}				4x h _{ef}				
Spacing	S _{cr,N} S _{min}	40	50	60	70	80	100	120	
	C _{cr,N} [m	ml	2 x h _{ef}						
Edge distance	C _{min}	""	$c_{\text{min}} = 2 \ x \ h_{\text{ef}} \ ,$ for fire exposure from more than one side $c_{\text{min}} \geq 300 \ \text{mm}$						

Berner High-Performance Anchor BHA, BHA-I	
Intended use Minimum thickness of concrete member, minimum spacings and min. edge distances Minimum spacings and minimum edge distances of anchors under fire exposure	Annex B 4

Installation instruction for the Berner High-Performance anchor internal thread BHA-I and BHA-I A4 Continue with step 2, 3, and 4 Hammer Step Description Step Create Create drill hole with hammer drill, drill hole with hollow drill 1 clean drill hole and vacuum cleaner Hammering in the anchor flushed with the surface of the concrete 2 3 Tighten the anchor. The included hexagon bit in the package should be used. Other tightening methods are allowed. Tighten the anchor in the concrete until the gap U is 3 - 5 mm or the required setting torque T_{inst} is reached. Only one of the above requirements has to be fulfilled. Attach the fixture and use a suitable screw or anchor rod. The length of the screw or anchor rod should be 4 determined depending on the thickness of fixture tfix, admissible tolerances, and available thread length ls.max and $I_{s,min}$ including the gap U. Tighten the screw with the torque ≤ max T_{fix} (max T_{fix} see table B3.1) Types of drill bits Hammer drill Hollow drill Berner High-Performance Anchor BHA, BHA-I Annex B 6 Intended use Installation instructions BHA-I, BHA-I A4

English translation prepared by DIBt

Table C1.1: Performance char- for BHA and BHA		s of tensic	on resis	tance u	nder sta	tic and c	quasi-sta	itic loads	;
Anchor type BHA-S,-SK,-B,-H and BHA-S A4,-SK A4,-B A4,-H A4			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28 ³⁾	BHA 32 ³⁾
Steel failure									
ВНА	$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4	125,3	195,8	282,0
BHA A4-B, -H	$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4	125,3		-
Partial factor for steel failure	$\gamma_{Ms}^{}1)}$	[-]				1,5			
BHA A4-S,-SK	$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4	125,3		-
Partial factor for steel failure	$\gamma_{\sf Ms}$ 1)	[-]				1,6			
Pullout failure									
Characteristic resistance in cracked concrete C20/25 BHA and BHA A4			7,5	12	16	25		2)	
Characteristic resistance in uncracked concrete C20/25 BHA	$N_{Rk,p}$	[kN]				2)			
Characteristic resistance in uncracked concrete C20/25 BHA A4			2)	20		2)		-	-
		C25/30				1,12			
		C30/37				1,22			
Increasing factors for N _{Rk,p} for		C35/45				1,32			
cracked and uncracked concrete	Ψ_{c}	C40/50				1,41			
		C45/55				1,50			
		C50/60				1,58			
Installation factor	γ_{inst}	[-]				1,0			
Concrete cone failure and splitti	ng failure								
Effective embedment depth	h_{ef}	[mm]	40	60	70	80	100	125	150
Factor for cracked concrete	$k_{cr,N}$	— [- <u>]</u>				7,74)			
Factor for uncracked concrete	$k_{ucr,N}$	[-]				11,0 ⁴⁾			
Spacing	$s_{\text{cr,N}}$		120	180	210	240	300	375	450
Edge distance	$C_{cr,N}$	— — [mm]	60	90	105	120	150	187,5	225
Spacing (splitting)	S _{cr,sp}	finni	190	300	320	340	380	480	570

Edge distance (splitting)

 $C_{cr,sp}$

Berner High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension resistance for BHA and BHA A4	Annex C 1

150

160

170

190

240

285

In absence of other national regulations
 Pullout failure not relevant
 Only valid for zinc-plated version
 Based on concrete strength as cylinder strength

Table C2.1: Performance characteristics of tension resistance under static and	quasi-static loads
for BHA-I and BHA-I A4	•

for BHA-I and BH	A-I A4							
Anchor type BHA-I and BHA-I A4			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I		
Steel failure								
Anchor in combination with scre	w / threa	ded rod	of galvanised s	teel complying	with DIN EN IS	SO 898		
Strength class 5.8			10	19	29	43		
Strength class 6.8	$N_{Rk,s}$	[kN]	12	23	35	44		
Strength class 8.8			16	27	44	44		
Partial factor for steel failure	γ _{Ms} 1)	[-]		1	,5			
Anchor in combination with scre	w / threa	ded rod	of stainless ste	el complying v	ith DIN EN ISC	3506		
Screw/thread strength class A50	$N_{Rk,s}$	[kN]	10	19	29	43		
Partial factor for steel failure	γ _{Ms} 1)	[-]		2,	86			
Screw/thread strength class A70	$N_{Rk,s}$	[kN]	14	26	41	54		
Partial factor for steel failure	γ _{Ms} 1)	[-]		1,	87			
Screw/thread strength class A80	$N_{Rk,s}$	[kN]	16	29	46	46		
Partial factor for steel failure	γ _{Ms} 1)	[-]		1,	60			
Pullout failure								
Characteristic resistance in				<u> </u>		12		
cracked concrete C20/25	N _{Rk,p}	[kN]	9			12		
Characteristic resistance in		[]	20	0		2)		
uncracked concrete C20/25		005/00			1.2			
		C25/30			12			
		C30/37			22			
Increasing factors for N _{Rk,p} for cracked and uncracked concrete	Ψς	C35/45			32			
cracked and uncracked concrete	, ,	C40/50		1,4				
		C45/55			50			
Installation factor		C50/60			58			
	γinst	[-]		1,	0			
Concrete cone failure and splitting Effective embedment depth		[mm]	60	<u> </u>	· -	70		
Factor for cracked concrete k_{cr}	h _{ef}		O	7,		U		
Factor for uncracked concrete k _{uc}		- [-]			,0 ³⁾			
Spacing S _{cr}			18			10		
Edge distance c _{cr}		-	90			05		
Spacing (splitting) s _{cr}		- [mm]	30	00	3	20		
Edge distance (splitting) c _{cr}		-	15	50	1	60		

Berner High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension resistance for BHA-I and BHA-I A4	Annex C 2

In absence of other national regulations
 Pullout failure is not decisive
 Based on concrete strength as cylinder strength

Anchor type BHA-S, -SK, -B, -H a BHA-S A4, -SK A4, -B A4, -H A4	nd		ВНА 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28 ³⁾	BHA 32 ³⁾
Steel failure without lever arm							•		
BHA-S,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FLAND.	18,0	33,0	59,0	76,0	146,0	176,4	217,0
ВНА-В,-Н	- V ⁰ _{Rk,s}	[kN]	16,0	27,2	42,8	61,9	119,0	148,8	169,0
	t _{fix} 2)	[mm]	2	10	≥	15			
	V ⁰ _{Rk,s}	[kN]	18,0	33,0	59,0	76,0	1		
BHA-SK ————	t _{fix} ²⁾	[mm]		10	,	15	1	-	
	V ⁰ _{Rk,s}	[kN]	8,0	14,0	23,0	34,0	1		
Partial factor for steel failure	γ HK,S 1) γMs		0,0	14,0	20,0	1,25			
Factor for ductility	<u>, мs</u> k ₇	[-]				1,0			
BHA-S A4	V ⁰ _{Rk,s}	[kN]	18,0	33,0	59,0	76,0	146,0		
Partial factor for steel failure	γ _{Ms} 1)	[-]	10,0	00,0	00,0	1,33	140,0		
BHA-B A4,-H A4	V ⁰ _{Rk,s}	[kN]	16,0	27,2	42,8	61,9	119,0		
Partial factor for steel failure	γ _{Ms} 1)	[-]	10,0		12,0	1,25	110,0		
	t _{fix} 2)	[mm]	≥	10	≥	15			
	V ⁰ _{Rk,s}	[kN]	18,0	33,0	59,0	76,0			
BHA-SK A4	t _{fix} ²⁾	[mm]		10		15	1	-	
	V ⁰ _{Rk,s}	[kN]	8,0	14,0	23,0	34,0			
Partial factor for steel failure	γ _{Ms} 1)	[-]	-,-	,.		1,33			
Factor for ductility	k ₇					1,0			
Steel failure with lever arm and	concrete	e pryou	t failure			·			
Characteristic bending resistance BHA	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	518	896
Partial factor for steel failure	γ _{Ms} 1)	[-]				1,25			
Characteristic bending resistance BHA A4	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	266	-	
Partial factor for steel failure -B,-H	γ _{Ms} 1)	[-]				1,25			
Partial factor for steel failure -S,-SK	γ _{Ms} 1)	[-]				1,33			
Factor for pryout failure	k ₈	[-]	1,0				,0		
Concrete edge failure									
Effective embedment depth for calculation	$I_f =$	[mm]				h _{ef}			
Outside diameter of a fastener	d_{nom}	[mm]	10	12	15	18	24	28	32
1) In absence of other national regula 2) The thickness of the fixture has infl 3) Only valid for zinc-plated version	tions uence to t	the chara	cteristic re	sistance fo	r shear loa	ids, steel fa	ailure withou	ut lever arn	1
Berner High-Performance And	hor BH	4, BHA	 -I						

Performances

Anchor type BHA-I and BHA-I A4			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Steel failure without lever arm						
Anchor in combination with scre	w / threade	ed rod o	of galvanised s	steel complyin	g with DIN EN IS	O 898:2013
Strength class 5.8			5	9	15	21
Strength class 6.8	V ⁰ _{Rk,s}	[kN]	6	11	18	24
Strength class 8.8			8	14	23	24
Partial factor for steel failure	γ _{Ms} 1)	[-]		1	,25	
Factor for ductility	k_7				1,0	
Anchor in combination with scre	w / threade	ed rod o	of stainless ste	el complying	with DIN EN ISC	3506:2010
Strength class A50	V ⁰ _{Rk,s}	[kN]	5	9	15	21
Partial factor for steel failure	γ _{Ms} ¹⁾	[-]			2,38	
Strength class A70	V ⁰ _{Rk,s}	[kN]	7	13	20	30
Partial factor for steel failure	γMs ¹⁾	[-]		1	,56	
Strength class A80	${\sf V^0}_{\sf Rk,s}$	[kN]	8	15	23	32
Partial factor for steel failure	γ _{Ms} 1)	[-]		1	,33	
Factor for ductility	k_7	[-]			1,0	
Steel failure with lever arm and c	oncrete pr	yout fa	ilure			
Anchor in combination with screw	/ threaded	rod of g	galvanised stee	l complying wi	th DIN EN ISO 89	8:2013
Strength class 5.8			8	19	37	65
Strength class 6.8	$M^0_{Rk,s}$	[Nm]	9	23	44	78
Strength class 8.8			12	30	60	105
Partial factor for steel failure	γ _{Ms} 1)	-,			1,25	
Factor for ductility	k ₇	· [-]			1,0	
Anchor in combination with screw	/ threaded	rod of	stainless steel o	complying with	DIN EN ISO 350	6:2010
Strength class A50	M ⁰ _{Rk,s}	[Nm]	8	19	37	65
Partial factor for steel failure	γ _{Ms}	[-]			2,38	•
Strength class A70	$M^0_{Rk,s}$	[Nm]	11	26	52	92
Partial factor for steel failure	γ _{Ms} 1)	[-]			1,56	
Strength class A80	M ⁰ _{Rk,s}	[Nm]	12	30	60	105
Partial factor for steel failure	γ _{Ms} 1)				1,33	•
Factor for ductility	k ₇	[-]			1,0	
Factor for pryout failure	k ₈				2,0	
Concrete edge failure						
Effective embedment depth for calculation	$I_f =$	[mm]			h _{ef}	
Outside diameter of fastener	d_{nom}		1	12		15
1) In absence of other national regulatio	ns					

Z56425.18 8.06.01-101/18

Performance characteristics of shear resistance for BHA-I and BHA-I A4

Annex C 4

BHA 15/M12-I A4

3,9

R120

			R30			R60	
Anchor type	N _{Rk,}	,s,fi,30 [N]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]
BHA 10, BHA 10 A4	0	,2	1,8	1,8	0,2	1,8	1,8
BHA 12, BHA 12 A4	2	.,0	3,0	5,0	1,3	3,0	5,0
BHA 15, BHA 15 A4	3	,2	4,0	7,4	2,3	4,0	7,4
BHA 18, BHA 18 A4	4	,8	6,3	10,3	3,9	6,3	10,3
BHA 24, BHA 24 A4	8	,9	9,0	18,0	7,3	9,0	18,0
BHA 28	13	3,9	12,6	31,4	11,3	12,6	31,4
BHA 32		0,0	16,5	49,6	16,3	16,5	49,6
BHA 12/M6-I, 5.8, A	$50^{1)}$ 0	,1			0,1		
BHA 12/M6-I A4 8.8, A		,2	2,3	5,0	0,2	2,3	5,0
BHA 12/M8-I, 5.8, As		,3	2,3	5,0	0,8	2,3	5,0
BHA 12/M8-I A4 8.8, A	70, A80 ^{1) 2)} 2	:,0			1,3		
BHA 15/M10-I, 5.8, A5	$50^{1)}$ 2	:,0			1,4		
BHA 15/M10-I A4 8.8, A7		,2	0.0	7.4	2,3	0.0	7.4
BHA 15/M12-I, 5.8/A5	01) 3	,0	3,0	7,4	2,4	3,0	7,4

Table C5.1: Performance characteristics of tension resistance under fire exposure

4,8

Anchor type	$N_{Rk,s,fi,90}$	$N_{Rk,p,fi,90}$	N ⁰ _{Rk,c,fi,90}	$N_{Rk,s,fi,120}$	$N_{Rk,p,fi,120}$	N ⁰ _{Rk,c,fi,120}
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
BHA 10, BHA 10 A4	0,1	1,8	1,8	0,1	1,5	1,5
BHA 12, BHA 12 A4	0,6	3,0	5,0	0,2	2,4	4,0
BHA 15, BHA 15 A4	1,4	4,0	7,4	1,0	3,2	5,9
BHA 18, BHA 18 A4	3,0	6,3	10,3	2,6	5,0	8,2
BHA 24, BHA 24 A4	5,6	9,0	18,0	4,8	7,2	14,4
BHA 28	8,8	12,6	31,4	7,5	10,1	25,2
BHA 32	12,6	16,5	49,6	10,8	13,2	39,7
BHA 12/M6-I, 5.8, A50 ¹⁾	0,1			0,1		
BHA 12/M6-I A4 8.8, A70, A80 ^{1) 2)}	0,1	2,3	5,0	0,1	1,8	4,0
BHA 12/M8-I, 5.8, A50 ¹⁾	0,4		5,0	0,1	1,0	4,0
BHA 12/M8-I A4 8.8, A70, A80 ^{1) 2)}	0,6			0,2		
BHA 15/M10-I, 5.8, A50 ¹⁾	0,9			0,6		
BHA 15/M10-I A4 8.8, A70, A80 ^{1) 2)}	1,4	2.0	7.4	1,0	2.4	5,9
BHA 15/M12-I, 5.8/A50 ¹⁾	1,9	3,0	7,4	1,6	2,4	5,9
BHA 15/M12-I A4 8.8, A70, A80 ^{1) 2)}	3,0			2,6		

R90

8.8, A70, A80^{1) 2)}

In absence of other national regulations the partial factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended

Berner High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension resistance under fire exposure	Annex C 5

¹⁾ Intermediate values by linear interpolation

²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

Table C6.1:	Performance	characteristics	of shear	resistance	under	fire exposure
-------------	-------------	-----------------	-----------------	------------	-------	---------------

		R		R	60
Anchor type		V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
BHA 10, BHA 10 A4		0,3	0	0,3	0
BHA 12, BHA 12 A4		2,0	2	1,3	1
BHA 15, BHA 15 A4		3,2	4	2,3	3
BHA 18, BHA 18 A4		4,8	7	3,9	6
BHA 24, BHA 24 A4		8,9	19	7,3	15
BHA 28		13,9	37	11,3	30
BHA 32		20,0	64	16,3	52
BHA 12/M6 I,	5.8, A50 ¹⁾	0,2	0	0,2	0
BHA 12/M6 I A4	8.8, A70, A80 ^{1) 2)}	0,3	0	0,3	0
BHA 12/M8 I,	5.8, A50 ¹⁾	1,3	1	0,8	1
BHA 12/M8-I A4	8.8, A70, A80 ^{1) 2)}	2,0	2	1,3	1
BHA 15/M10 I,	5.8, A50 ¹⁾	2,0	3	1,4	2
BHA 15/M10-l A4	8.8. A70. A80 ^{1) 2)}	3,2	4	2,3	3
BHA 15/M12-I,	5.8/A50 ¹⁾	3,0	4	2,4	4
BHA 15/M12-I A4	8.8, A70, A80 ^{1) 2)}	4,8	7	3,9	6
		R		R1	20
Anchor type		V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	$V_{Rk,s,fi,120}$ [kN]	M ⁰ _{Rk,s,fi,120} [Nm]
BHA 10, BHA 10 A4		0,2	0	0,1	0
BHA 12, BHA 12 A4		0,6	1	0,2	0
BHA 15, BHA 15 A4		1,4	2	1,0	1
BHA 18, BHA 18 A4		3,0	5	2,6	4
BHA 24, BHA 24 A4		5,6	12	4,8	10
BHA 28		8,8	23	7,5	20
BHA 32		12,6	40	10,8	34
BHA 12/M6-I,	5.8, A50 ¹⁾	0,1	0	0,1	0
BHA 12/M6-I A4	8.8, A70, A80 ^{1) 2)}	0,2	0	0,1	0
BHA 12/M8-I,	5.8, A50 ¹⁾	0,4	1	0,1	0
BHA 12/M8-I A4		0,6	1	0,2	0
	5.8, A50 ¹⁾	0,9	2	0,6	1
BHA 15/M10-I A4	8.8, A70, A80 ^{1) 2)}	1,4	3	1,0	1
DIII 4504401	5.8/A50 ¹⁾	1,9	4	1,6	3
BHA 15/M12 I,	5.8/A50 /	1.9	4	0.1	ı ن

In absence of other national regulations the partial factor for resistance under fire exposure $\gamma_{M,fi}=1,0$ is recommended

Berner High-Performance Anchor BHA, BHA-I	
Perfomances Performance characteristics of shear resistance under fire exposure	Annex C 6

¹⁾ Intermediate values by linear interpolation
²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

English translation prepared by DIBt

0,50

l .	formance character egory C1 for BHA-S							performa	ince
Anchor type BHA-S BHA-S A4,-SK A4,				BHA 12	BHA 15	BHA 18	BHA 24	BHA 28 ³⁾	BHA 32 ³⁾
Steel failure									
Characteristic	BHA-S,-SK,-B,-H -B A4, -H A4	N _{Rk,s,C1}	[kN]	29,3	46,4	67,4	125,3	195,8	282,0
resistance of tension load C1	BHA-S A4,-SK A4	γ _{Ms,C1} 1) N _{Rk,s,C1}	[-] [kN]	29,3	46,4	67,4	,5 125,3		-
tension load of	БПА-5 A4,-5K A4	γ _{Ms,C1} 1)	[-]			1	,6		
Pullout failure									
Characteristic resis		$N_{Rk,P,C1}$	[kN]	12,0	16,0	25,0	36,0	50,3	66,1
tension load in crac		γ _{Mp,C1} 1)	[-]			1	,5		
Steel failure withou									
Characteristic res	istance of shear load	d C1						1	
BHA-S		- V ⁰ _{Rk,s,C1}	[kN]	25,0	41,0	60,0	123,0	141,0	200,0
BHA-B,-H			[14,14]	17,0	30,0	46,0	103,0	117,0	169,0
		t _{fix} 2)	[mm]	≥ 10		15			
BHA-SK		$V_{Rk,s,C1}$	[kN]	25,0	41,0	60,0		_	
Brin Core		t _{fix} 2)	[mm]	< 10	<	15			
		$V_{Rk,s,C1}$	[kN]	11,0	16,0	27,0			
Partial factor for ste	eel failure	γ _{Ms,C1} 1)	[-]				25		
BHA-S A4		$V_{Rk,s,C1}$	[kN]	25,0	41,0	60,0	123,0		-
Partial factor for ste	eel failure	γ _{Ms,C1} 1)	[-]				33		
BHA-B A4,-H A4		$V_{Rk,s,C1}$	[kN]	17,0	30,0	46,0	103,0		-
Partial factor for ste	eel failure	γ _{Ms,C1} 1)	[-]				25		
		t _{fix} ²⁾	[mm]	≥ 10		15			
BHA-SK A4		V _{Rk,s,C1}	[kN]	25,0	41,0	60,0		_	
		t _{fix} 2)	[mm]	< 10		15			
		V _{Rk,s,C1}	[kN]	11,0	16,0	27,0			
Partial factor for ste		γ _{Ms,C1} 1)	- [-]				33		
Factor for annular of	gap	$\alpha_{\sf dan}$	٢.1			0.	50		

 $\alpha_{\sf gap}$

Berner High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension and shear resistance for	Annex C 7
seismic performance category C1	

 ¹⁾ In absence of other national regulations
 2) The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm
 3) Only valid for zinc-plated version

0,50

	formance character egory C2 for BHA-S							oerforma	ınce
Anchor type BHA-S BHA-S A4,-SK A4,				BHA 12	BHA 15	BHA 18	BHA 24	BHA 28 ³⁾	BHA 32 ³⁾
Steel failure									
	BHA-S,-SK,-B,-H	$N_{Rk,s,C2}$	[kN]	29,3	46,4	67,4	125,3	19	5,8
Characteristic resistance of	-B A4, -H A4	γ _{Ms,C2} 1)	[-]			1,	5		
tension load C2	BHA-S A4,-SK A4	$N_{Rk,s,C2}$	[kN]	29,3	46,4	67,4	125,3		
	BH/(0 /(4), GI(/(4)	γ _{Ms,C2} 1)	[-]			1,	6		
Pullout failure									
Characteristic resis		N _{Rk,P,C2}	[kN]	6,2	11,3	21,8	43,0	65	,9
tension load in crac		γ _{Mp,C2} 1)	[-]			1,	5		
Steel failure withou									
	istance of shear load	d C2							
BHA-S		$V_{Rk,s,C2}$	[kN]	14,7	28,9	41,0		100,7	
BHA-B,-H			[14, 4]	9,8	20,9	34,1	61,9	67	7,2
	,	$t_{fix}^{2)}$	[mm]	≥ 10	≥	15			
BHA-SK	,	$V_{Rk,s,C2}$	[kN]	14,8	23,3	33,8		_	
BIII/ OI	,	t _{fix} 2)	[mm]	< 10	<	15			
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1			
Partial factor for ste	eel failure	γ _{Ms,C2} 1)	[-]				25		
BHA-S A4		$V_{Rk,s,C2}$	[kN]	14,7	28,9	41,0	100,7		
Partial factor for ste	eel failure	γ _{Ms,C2} 1)	[-]				33		
BHA-B A4,-H A4		$V_{Rk,s,C2}$	[kN]	9,8	20,9	34,1	61,9		<u>. </u>
Partial factor for ste	eel failure	γ _{Ms,C2} 1)	[-]			1,2	25		
		t _{fix} 2)	[mm]	≥ 10	≥ ′				
BHA-SK A4	,	V _{Rk,s,C2}	[kN]	14,8	23,3	33,8		_	
Di in Citati	,	t _{fix} 2)	[mm]	< 10	<	15			
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1			
Partial factor for ste	eel failure	γ _{Ms,C2} 1)	- [-]			1,			
Cookey for a secondary			L J			•			

 $\alpha_{\sf gap}$

[-]

Factor for annular gap

Berner High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension and shear resistance for seismic performance category C2	Annex C 8

¹⁾ In absence of other national regulations
2) The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm 3) Only valid for zinc-plated version

Table C9.1:	Displacements under static and	l quasi static tension loads for BHA and BHA A4

Anchor type BHA-S,-SK,-B,-H and BHA-S A4,-SK A4,-B A4,-H A4			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Tension load cracked concrete	N	[kN]	3,6	5,7	7,6	11,9	17,1	24,0	31,5
Corresponding displacements	δ_{N0}	[mm]	1,0	1,0	1,0	1,0	1,0	0,7	0,7
Corresponding displacements	$\delta_{N^{\infty}}$	[IIIIII]	1,7	1,6	1,6	1,6	1,8	1,3	1,1
Tension load uncracked concrete	N	[kN]	6,0	11,2	14,1	17,2	24,0	33,6	44,2
Corresponding displacements	δ_{N0}	[mm]	0,6	1,0	1,0	1,0	1,0	0,3	0,3
Corresponding displacements	$\delta_{N\infty}$	[mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1

Table C9.2: Displacements under static and quasi static tension loads for BHA-I and BHA-I A4

Anchor type BHA-I and BHA-I A4			BHA 12/M6 I BHA 12/M8 I	BHA 15/M10 I BHA 15/M12 I
Tension load cracked concrete	NI	[kN]	4,3	5,7
Tension load uncracked concrete	IV	[KN]	9,5	14,1
Corresponding displacements	δ_{N0}	[mm]	1,7	1,9
Corresponding displacements	$\delta_{N_{\infty}}$	[mm]	2,2	2,9

Table C9.3: Displacements under static and quasi static shear loads for BHA-S and -SK

Anchor type BHA-S and BHA-Sk	(ВНА 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
Shear load in cracked and uncracked concrete	٧	[kN]	10,3	18,9	33,7	43,4	83,4	99,4	124,0
Corresponding	δ_{V0}	- [mm]	2,4	2,7	4,4	5,0	7,0	6,0	8,0
displacements	$\delta_{V^{\infty}}$	[mm]	3,6	4,1	6,6	7,5	10,5	9,0	12,0

Table C9.4: Displacements under static and quasi static shear loads for BHA-B and -H

Anchor type BHA-B and BHA-H			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Shear load in cracked and uncracked concrete	٧	[kN]	8,9	15,4	23,4	35,4	68,0	83,4	96,6
Corresponding	δ_{V0}	- [mm]	2,2	2,3	3,0	5,0	7,0	5,0	5,0
displacements	$\delta_{V^{\infty}}$	- [111111]	3,3	3,5	4,5	7,5	10,5	7,5	7,5

Berner High-Performance Anchor BHA, BHA-I	
Performances Displacements under tension and shear loads	Annex C 9

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Table C10.1:	Displacements under static and quasi static shear loads
	for BHA-S A4, BHA-SK A4, BHA-B A4 and BHA-H A4

101 21 11 (0 7 (1) 21 11 (0	J. (7 (1,)		aa 2				
Anchor type BHA-S A4, -SK A4, -B A4, -H A4			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24
Shear load in cracked and uncracked concrete	V	[kN]	10,3	16,0	24,6	37,7	68,0
Corresponding	δ_{V0}	- [mm]	3,5	3,5	3,7	5,7	9,0
displacements	$\delta_{V^{\infty}}$	[mm]	5,3	5,3	5,6	8,6	13,5

Table C10.2: Displacements under static and quasi static shear loads for BHA-I and BHA-I A4

Anchor type: BHA-I and BHA-I A4			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Shear load in cracked and uncracked concrete	V	[kN]	4,6	8,3	13,3	13,7
Corresponding	δ_{V0}	[mm]	2,6	2,6	2,2	2,2
displacements	$\delta_{V^{\infty}}$	נוווווון	3,9	3,9	3,3	3,3

Table C10.3: Displacements under **tension loads** for **seismic performance category C2** for BHA and BHA A4

Anchor type BHA-S,-S BHA-S A4,-SK A4,-B	, ,		BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Displacement DLS	$\delta_{\text{N,C2 (DLS)}}$	[mm]	1,55	2,63	2,04	4,26	3,	06
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	- [mm]	8,71	11,07	7,30	11,70	11	,44

Table C10.4: Displacements under **shear loads** for **seismic performance category C2** for BHA and BHA A4

Anchor type BHA-S,-SK and BHA-S A4,-SK A4		ВНА 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
Displacement DLS $\delta_{V,C2 (DLS)}$	[mm]	3,53	4,18	4,67	5,59	4,	79
Displacement ULS δ _{V,C2 (ULS)}	[IIIIII]	6,62	7,38	9,03	14,09	9,	95
Anchor type BHA-B,-H and BHA-B A4,-H A4		BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Displacement DLS $\delta_{V,C2 (DLS)}$	[mm]	3,42	4,26	4,29		4,79	
Displacement ULS δ _{V,C2 (ULS)}	[mm]	5,26	6,66	7,95	7,69	9,	95

Berner High-Performance Anchor BHA, BHA-I	
Performances Displacements under tension and shear loads	Annex C 10