

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0006 of 18 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti anchor channels - HAC with channel bolts - HBC

Cast-in anchor channel

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

28 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601

ETA-11/0006 issued on 1 February 2016

European Technical Assessment ETA-11/0006

Page 2 of 28 | 18 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z26302.18 8.06.01-753/13

European Technical Assessment ETA-11/0006

Page 3 of 28 | 18 July 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti anchor channel (HAC) with channel bolts (HBC) is a system consisting of V-shaped channel profile of carbon steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Hilti channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance of anchor channel under tension load (static and quasi-static loading)	See Annex C1 to C2
Characteristic resistance of anchor channel under shear load perpendicular to the longitudinal axis of the channel (static and quasi-static loading)	See Annex C3 to C4
Characteristic resistance of anchor channel under shear load in the direction of the longitudinal axis of the channel (static and quasi-static loading)	See Annex C3 to C5
Characteristic resistance of anchor channel under combined tension and shear (static and quasi-static loading)	See Annex C5
Characteristic resistance of channel bolt under tension and shear load (static and quasi-static loading)	See Annex C6 to C7
Displacements (static and quasi-static loading)	See Annex C3 and C5
Characteristic resistances under fatigue cyclic load	See Annex C9 to C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C8

Z26302.18 8.06.01-753/13

European Technical Assessment ETA-11/0006

Page 4 of 28 | 18 July 2018

English translation prepared by DIBt

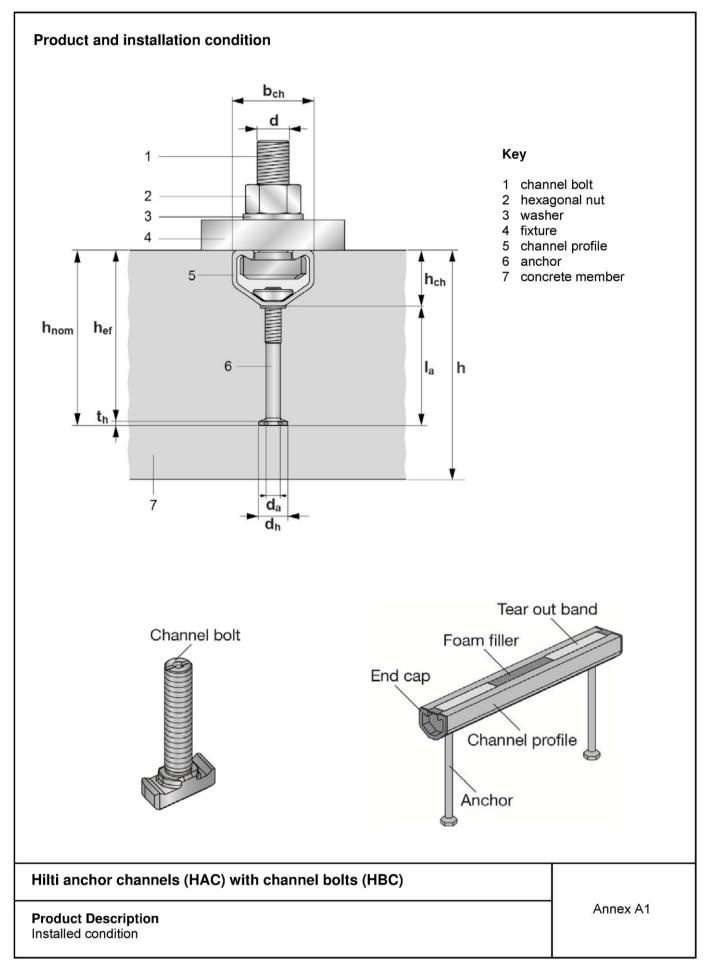
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

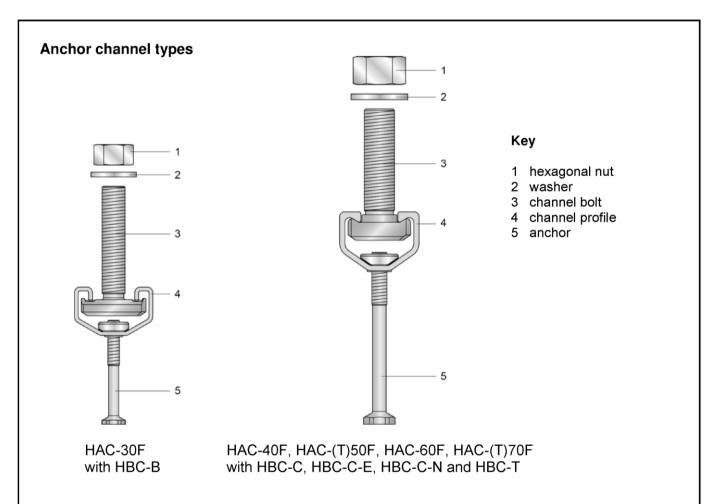
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 18 July 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Müller


Z26302.18 8.06.01-753/13

electronic copy of the eta by dibt: eta-11/0006

Marking of the Hilti anchor channel:

HAC-(T)XZ

HAC = Identifying mark of the manufacturer

(Hilti Anchor Channel)

= Additional marking for serrated channels

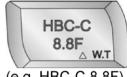
X Z = Size of the channel = Corrosion class

HAC-40 F (e.g. HAC-40F)

40

= Anchor channel size 40 = Hot-dip galvanized

Marking of the Hilti channel bolt:


HBC-X-(N) YZ

HBC = Identifying mark of the manufacturer

(Hilti Bolt Channel) Χ = Type of channel bolt

= Additional marking for notching bolt Ν

= Steel grade Ζ = Corrosion class

(e.g. HBC-C 8.8F)

С = Channel bolt type in combination with

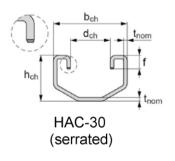
HAC-40 to HAC-70

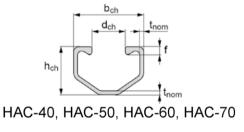
= Steel grade 8.8

= Hot-dip galvanized

Hilti anchor channels (HAC) with channel bolts (HBC)

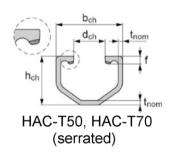
Product Description

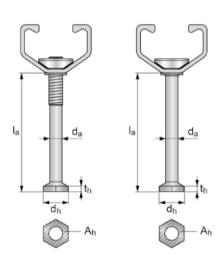

Anchor channel types and marking


Annex A2

Z35548.18

Anchor Channels




Table 1: Dimensions of channel profile

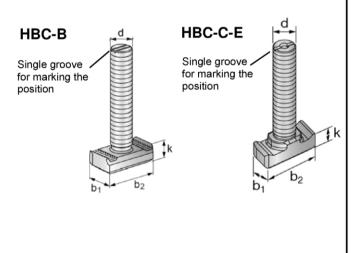
Anchor	b _{ch}	h _{ch}	t _{nom}	d _{ch}	f	l _y			
channel		[mm]							
HAC-30	41,3	25,6	2,00	22,3	7,5	15349			
HAC-40	40,9	28,0	2,25	19,5	4,5	21463			
HAC-50	41,9	31,0	2,75	19,5	5,3	33125			
HAC-T50	41,9	31,0	2,75	19,5	5,2	32049			
HAC-60	43,4	35,5	3,50	19,5	6,3	57930			
HAC-70	45,4	40,0	4,50	19,5	7,4	95457			
HAC-T70	45,4	40,0	4,50	19,5	7,1	92192			

Table 2: Dimensions of anchor (welded or bolted to the channel profile)

Anchor	d _a	d _h	t _h	min l _a	Head area A _h
channel		[[mm ²]		
HAC-30	5,4	11,5	2,0	44,4	89
HAC-40	7,2	17,5	3,0	66,0	209
HAC-50	9,0	19,5	3,5	78,5	258
HAC-T50	9,0	19,5	3,5	78,5	258
HAC-60	9,0	19,5	4,5	117,0	258
HAC-70	10,9	23,0	5,0	140,0	356
HAC-T70	10,9	23,0	5,0	140,0	356

bolted anchor welded anchor

Hilti anchor channels (H	HAC) with channel	bolts (HBC)
--------------------------	-------------------	-------------


Product Description Anchor channels (HAC) Annex A3

Channel bolts

Table 3: Dimensions of channel bolt

	Channel	Dimensions				
Anchor channel	bolt	b ₁	b ₂	k	d	
	type		[m	m]		
HAC-30	НВС-В	40.0	24.0		10	
HAC-30	пвс-в	19,0	34,0	9,2	12	
HAC-40	HBC-C-E	14,0	22.0	10,4	12	
HAC-50	пвс-с-Е	17,0	33,0	13,4	16	
		14.0		40.4	10	
	НВС-С	14,0	33,0	10,4	12	
HAC-40		18,5		11,4	16	
HAC-50 HAC-60				13,9	20	
HAC-70				44.4	12	
	HBC-C-N	18,5	33,0	11,4	16	
				13,9	20	
				12,0	12	
HAC-T50 HAC-T70	нвс-т	18,5	35,4		16	
					20	

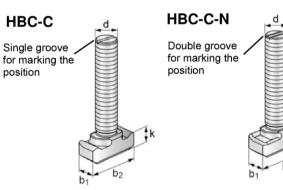
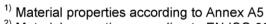



Table 4: Steel grade and corrosion protection

Channel Bolt	Carbon	Stainless steel 1)	
Steel grade	4.6	A4-50	
f _{uk} [N/mm ²]	400	800 / 830 ²⁾	500
f _{yk} [N/mm ²]	240	210	
Corrosion protection	G F	R	

²⁾ Material properties according to EN ISO 898-1

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Channel bolts (HBC)

Annex A4

³⁾ Electroplated

⁴⁾ Hot-dip galvanized

Table 5: Materials

Component		Stainless steel		
Component	Material properties	Coat	ting	Material properties
1	2a	2b	2c	3
Channel Profile	Carbon steel according to EN 10025: 2004	Hot dip galvani Hot dip galvani according to EN	zed \geq 70 μ m ²⁾	-
Rivet	Carbon steel	Hot dip galvani according to EN	•	-
Anchor	Carbon steel	Hot dip galvani according to EN		-
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated ≥ 8 µm according to DIN EN ISO 4042: 1999 Hot-dip galvanized ≥ 45 µm ⁵⁾ according to EN ISO 146 1999		Steel grade 50 according to EN ISO 3506-1: 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Plain washer ³⁾ according to EN ISO 7089: 2000 and EN ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated ≥ 8 µm	Hot-dip galvanized ≥ 45 µm ⁵⁾	Hardness class A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Hexagonal nut according to EN ISO 4032: 2012 or DIN 934: 1987-10 4)	Property class 8 according to EN ISO 898-2: 2012	Electroplated ≥ 8 µm	Hot-dip galvanized ≥ 45 µm ⁵⁾	Property class 70 according to EN ISO 3506-2: 2009 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439

¹⁾ For HAC-30F, HAC-40F and HAC-(T)50F. ²⁾ For HAC-60F and HAC-(T)70F. ³⁾ Not in scope of delivery.

Hilti anchor channels (HAC) with channel bolts (HBC) Annex A5 **Product Description** Materials

⁴⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel.

⁵⁾ Hot-dip galvanized according to EN ISO 1461: 2009.

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel for HAC in combination with HBC-C and HBC-C-E as well as static and quasi-static loads in tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for HAC in combination with HBC-B, HBC-C-N and HAC-T in combination with HBC-T.
- Fatigue cyclic loads.
- Fire exposure: only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000.
- Strength classes C12/15 to C90/105 according to EN 206-1: 2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity)

 (anchor channels and channel bolts according to Annex A5, Table 5, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A5, Table 5, column 2c and 3).
- The stainless steel Hilti channel bolts (HBC), washers and nuts may be used in structures subject to external atmospheric conditions (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution e.g. desulphurization plants or road tunnels where de-icing materials are used) exist (channel bolts according to Annex A5, Table 5, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or FprEN 1992-4: 2016.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Specifications	Annex B1

English translation prepared by DIBt

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 6 are generated including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the installation instructions given in Annexes B5, B6, B7, B8 and B9.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A5 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6, B7, B8 and B9) rectangular to the channel axis.
- The required installation torques given in Annex B3 and B4 must be applied and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Intended Use Specifications	Annex B2

Z35548.18 8.06.01-753/13

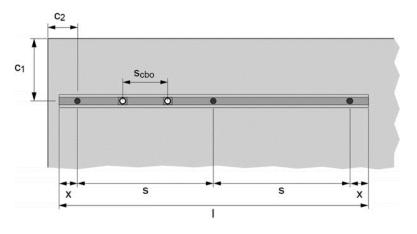

electronic copy of the eta by dibt: eta-11/0006

Table 6: Installation parameters for anchor channel

Anchor	channel		HAC-30	HAC-40	HAC-50	50 HAC-60 HAC-70 HAC-				
Min. effective embedment depth	h _{ef,min}		68	91	106	106	148	175	175	
Min. spacing	s _{min}		50	50 100						
Maximum spacing	S _{max}			250						
Minimum end spacing	х	[mm]		25						
Min. channel length	I _{min}	<u>L</u>	100	100 150						
Min edge distance	c _{min}			50 75						
Minimum thickness of	b.		80	105	125	125	168	196	196	
concrete member	h _{min}		$h_{ef} + t_h + c_{nom}^{1)}$							

¹⁾ c_{nom} according to EN 1992-1-1:2004 + AC2010

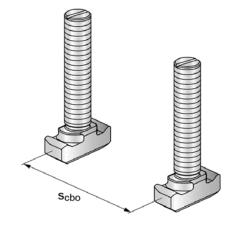


Table 7: Minimum spacing for channel bolts

Channel bolt	M10	M12	M16	M20		
Minimum spacing between channel bolts	S _{cbo,min}	[mm]	50	60	80	100

 s_{cbo} = center to center spacing between channel bolts ($s_{cbo,min}$ = 5d)

Table 8: Required installation torque Tinst for HBC-B

		T _{inst}	[Nm] ¹⁾
Chan	nel bolt	General	Steel-steel contact
		HAC-30	HAC-30
M10	4.6, A4-50	15	15
M12	4.6, A4-50	25	25

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for anchor channels (HAC) and channel bolts (HBC)

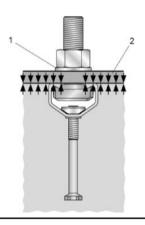
Annex B3

Table 9: Required installation torque T_{inst} for HBC-C and HBC-C-E

		T _{inst} [Nm] ¹⁾										
Chan	Channel bolt		Ge	neral		Steel-steel contact						
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40 HAC-50 HAC-60 HA						
M10	4.6, A4-50			15			•	15				
IVITO	8.8			15		48						
M12	4.6, A4-50		:	25		25						
IVI 12	8.8			25		75						
M16	4.6, A4-50			60		60						
IVITO	8.8			60		185						
M20	4.6, A4-50	70	105	120		120						
IVIZU	8.8	70					320					

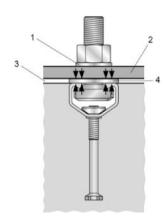
Table 10: Required installation torque T_{inst} for HBC-C-N

			T _{inst} [Nm] ¹⁾										
Channel bolt		General				Steel-steel contact							
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40 HAC-50 HAC-60 HA			HAC-70				
M12	8.8			75		75							
M16	8.8		1	85		185							
M20	8.8	- 320				- 320							


Table 11: Required installation torque T_{inst} for HBC-T

		T _{inst} [Nm] ¹⁾								
Channel bolt		Gei	neral	Steel-steel contact						
		HAC-T50	HAC-T70	HAC-T50	HAC-T70					
M12	8.8		75	75						
M16	8.8	1	00	185						
M20	8.8	1	20	320						

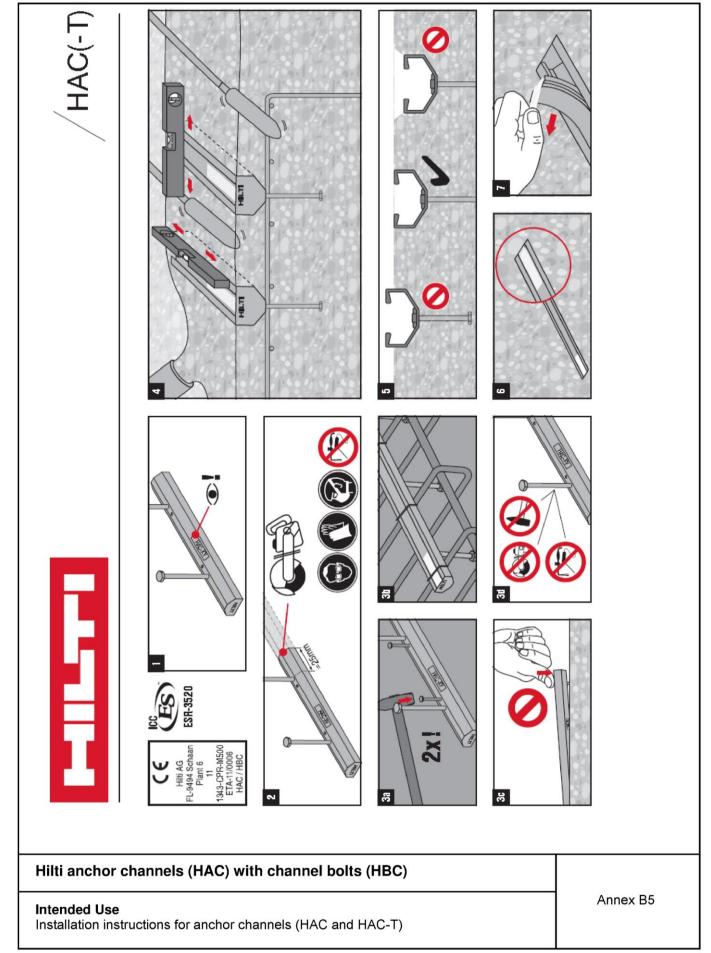
¹⁾ T_{inst} must not be exceeded.


<u>General:</u> The fixture is in contact with the channel profile and the concrete surface.

<u>Steel-steel contact:</u> The fixture is fastened to the anchor channel by suitable steel part (e.g. washer). Fixture is in contact with the channel profile only.

Key

- 1 washer
- 2 fixture
- 3 gap
- 4 suitable steel part

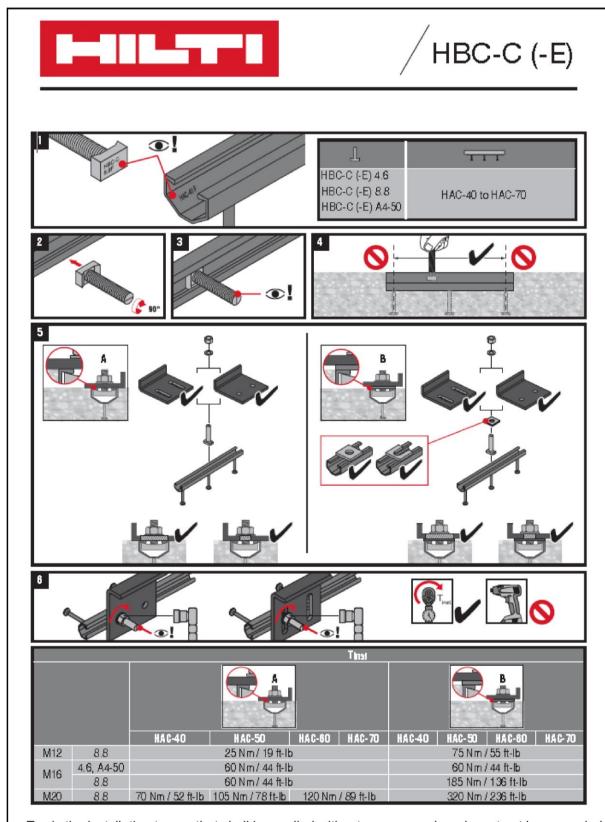

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC)


Annex B4

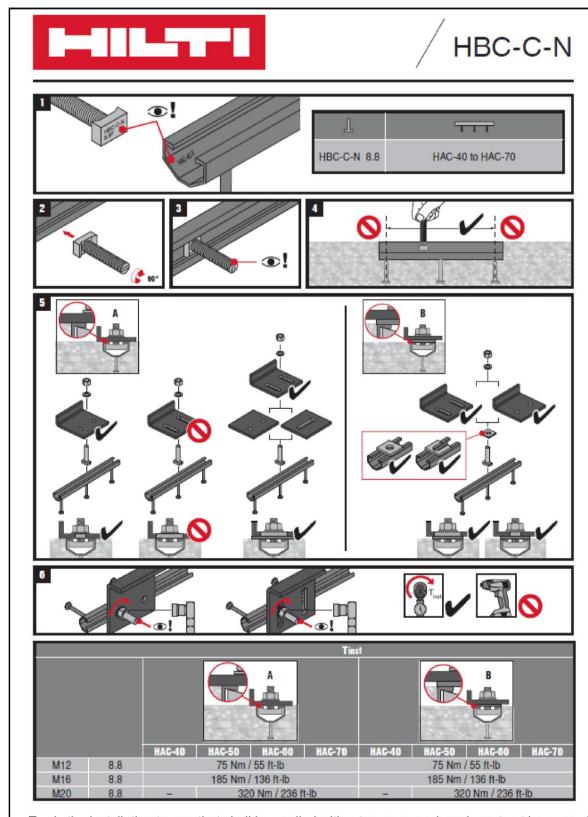
Z35548.18


 T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

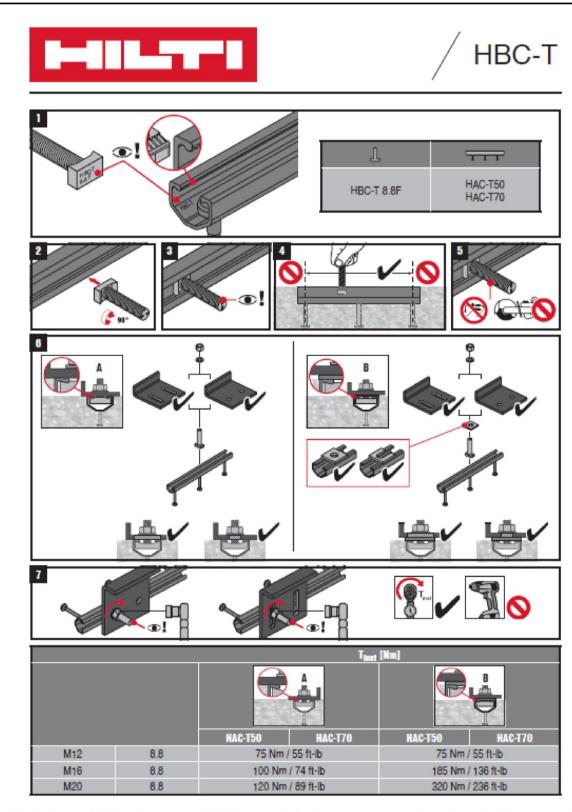
Installation parameters for channel bolts (HBC-B)


T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC-C and HBC-C-E)


T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC-C-N)

 T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC-T)

Table 12: Characteristic resistances under tension load – steel failure of anchor channel

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70			
Steel failure: Anchor	Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a} [kN]	18,2	33,1	52,5	52,5	52,5	76,3	76,3		
Partial safety factor	γ _{Ms} 1)		1,8							
Steel failure: Connec	Steel failure: Connection between anchor and channel									
Characteristic resistance	N _{Rk,s,c} [kN]	18,2	25,0	35,0	35,0	50,1	71,0	71,0		
Partial safety factor	γ _{Ms,ca} 1)		1,8							
Steel failure: Local fl	exure of	channel lij	os							
Characteristic spacing of channel bolts for N _{Rk,s,l}	s _{i,N} [mm]	83	82	84	84	87	91	91		
Characteristic resistance	N ⁰ _{Rk,s,l} [kN]	19,9	25,0	35,0	35,0	50,1	71,0	71,0		
Partial safety factor	γ _{Ms,I} 1)	1,8								

¹⁾ In absence of other national regulations.

Table 13: Characteristic flexural resistance of channel under tension load

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Steel fa	Steel failure: Flexure of channel									
e S	M _{Rk,s,flex} [Nm]	НВС-В	755	-	-	-	-	-	-	
ristic stan nel		HBC-C	-	1136	1596	-	2187	3160	-	
racterist Il resista channel		HBC-C-E	-	1136	1596	-	-	-	-	
Characteristic flexural resistance of channel		HBC-C-N	-	980	1345	-	2156	3005	-	
flei		НВС-Т	-	-	-	1596	-	-	2975	
Partial safety factor Partial safety		1,15								

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under tension load	Annex C1

Table 14: Characteristic resistances under tension load – concrete fa	ilure
---	-------

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Pullout failur	e										
Characteristic resistance in concrete C12/	cracked	$N_{Rk,p}$	8,0	18,8	23,2	23,2	23,2	32,0	32,0		
Characteristic resistance in uncracked cor C12/15		[kN]	11,2	26,3	32,5	32,5	32,5	44,9	44,9		
	C16/20					1,33					
	C20/25			1,67							
	C25/30			2,08							
	C30/37		2,50								
Amplification	C35/45		2,92								
factor of N _{Rk,p}	C40/50	$\Psi_{\mathtt{c}}$				3,33					
,, բ	C45/55					3,75					
	C50/60					4,17					
	C55/67		4,58								
	≥ C60/75		5,00								
Partial safety	factor	γ _{Mp} = γ _{Mc} 1)	1,5								
Concrete cor	ne failure										
Product	cracked	k _{cr,N}	7,7	8,0	8,2	8,2	8,6	8,9	8,9		
factor k₁	un- cracked	k _{ucr,N}	11,0	11,5	11,7	11,7	12,3	12,7	12,7		
Partial safety	factor	γ _{Mc} 1)				1,5					
Splitting											
Characteristic distance	edge	c _{cr,sp} [mm]	204	273	318	318	444	525	525		
Characteristic	spacing	s _{cr,sp} [mm]	2,0 · c _{cr,sp}								
Partial safety factor $ \begin{array}{c} \gamma_{\rm Msp} \\ = \\ \gamma_{\rm Mc} \end{array} $		1,5									

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under tension load	Annex C2

Table 15: Displacements under tension load

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Tension load	N [kN]	6,6	11,3	14,3	14,7	18,8	26,6	25,2
Short time displacement 1)	δ _{N0} [mm]	1,6	1,7	1,1	1,7	1,1	1,0	1,5
Long time displacement 1)	δ _{N∞} [mm]	3,2	3,4	2,2	3,4	2,2	2,0	3,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

Table 16: Characteristic resistances under shear load – steel failure of anchor channel

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Steel failure: Anch	or									
Characteristic	V _{Rk,s,a,y} [kN]	23,7	39,6	53,6	53,6	77,3	114,8	114,8		
resistance	V _{Rk,s,a,x} [kN]	10,2	18,4	29,0	29,0	29,0	41,9	41,9		
Partial safety factor	γ _{Ms} 1)		1,5							
Steel failure: Connection between anchor and channel										
Characteristic	V _{Rk,s,c,y} [kN]	23,7	39,6	53,6	53,6	77,3	114,8	114,8		
resistance	V _{Rk,s,c,x} [kN]	9,1	12,5	17,5	17,5	25,1	35,5	35,5		
Partial safety factor	γ _{Ms,ca} 1)				1,8					
Steel failure: Local the c	flexure o	of channel	lips under	shear load	l perpendic	ular to the	longitudin	al axis of		
Characteristic spacing of channel bolts for V _{Rk,s,l}	s _{i,V} [mm]	83	82	84	84	87	91	91		
Characteristic resistance	V ⁰ _{Rk,s,l,y} [kN]	23,7	34,9	47,5	47,5	72,2	95,8	95,8		
Partial safety factor	γ _{Ms,I} 1)	1,8								

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Displacements under tension load. Characteristic resistances of anchor channels under shear load	Annex C3

Table 17: Characteristic values under shear load in direction of the longitudinal axis of the channel – steel failure of anchor channel

Anchor o	hannel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Connection between channel lips and channel bolt									
		HBC-B M12 4.6	3,5		-			-	
Characteristic resistance [Xy]		HBC-C-N M12 8.8		8,5	8,5	-	8,5	8,5	
	$V_{Rk,s,l,x}$ [kN]	HBC-C-N M16 8.8		19,7	19,7		19,7	19,7] -
ristic re		HBC-C-N M20 8.8		-	24,1		24,1	24,1	
haracte		HBC-T M12 8.8	-	1	-	15,1			15,1
0		HBC-T M16 8.8				20,1	-	-	20,1
		HBC-T M20 8.8				20,1			20,1
Installation safety factor		γinst		1,4		1,2	1,	,4	1,2

Table 18: Characteristic resistances under shear load – concrete failure

Anchor channel			HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Pry out failure									
Product fact	tor	k ₈	2,0						
Partial safet	y factor	γ _{Mc} 1)	1,5						
Concrete edge failure									
Product factor k ₁₂	cracked concrete	k _{cr,V}	7,5	7,5	7,5	7,5	7,5	7,5	7,5
	un- cracked concrete	k _{ucr,V}	10,5	10,5	10,5	10,5	10,5	10,5	10,5
Partial safety factor $\gamma_{Mc}^{(1)}$			1,5						

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of anchor channels under shear load	Annex C4

Table 19: Displacements under shear load perpendicular to longitudinal axis of the channel

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Shear load	V _y [kN]	8,0	13,9	18,9	21,0	29,0	38,0	45,6
Short time displacement 1)	δ _{v,y,0} [mm]	1,0	1,0	1,5	2,7	1,5	1,5	2,4
Long time displacement 1)	δ _{V,y,∞} [mm]	1,5	1,5	2,3	4,1	2,3	2,3	3,6

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

Table 20: Displacements under shear load in direction of the longitudinal axis of the channel

Anchor chan	Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Channel bolt	Channel bolt		нвс-в	нвс	HBC-C-N		HBC-C-N		нвс-т
	, M12		1,4	3	,4	6,7	3,4		6,7
Shear load	V _x [kN]	M16		7,8		8,9	7,8		8,9
	[KIV]	M20	_	9,6		8,9	9,6		8,9
Short time	8	M12	0,1	0,	0,05		0,05		1,4
dis-	δ _{v,x,0} [mm]	M16		0,4		1,7	0,4		1,7
placement 1)	[]	M20	_	0	0,1		0,1		1,7
Long time	2	M12	0,2	0	,1	2,1	0,	1	2,1
dis-	δ _{∨,x,∞} [mm]	M16		0	,6	2,5	0,6 0,2		2,5
placement 1)	[mini	M20	_	0	,2	2,5			2,5

¹⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

Table 21: Characteristic resistances under combined tension and shear load

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Steel failure: Local flexure of channel lips and flexure of channel									
Product factor	k ₁₃		1,0 ¹⁾						
Steel failure: Anchor and connection between anchor and channel									
Product factor	k ₁₄		1,0 ²⁾						

 $^{^{1)}}$ k_{13} can be taken as 2,0 if $V_{Rd,s,l}$ is limited to $N_{Rd,s,l}.$

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance	Annex C5
Displacements under shear load. Characteristic resistances under combined tension and shear load	

²⁾ k_{14} can be taken as 2,0 if max($V_{Rd,s,a}$; $V_{Rd,s,c}$) is limited to min($N_{Rd,s,a}$; $N_{Rd,s,c}$).

Table 22: Characteristic resistances under tension and shear load – steel failure of Hilti channel bolts HBC-B, HBC-C, HBC-C-E, HBC-C-N and HBC-T

Channel bolt d	iameter		M10	M12	M16	M20			
Steel failure									
			HBC-B	4.6	23,2	33,7	-	-	
			TIBC-B	A4-50 ¹⁾	29,0	42,2	-	-	
				4.6	23,2	33,7	62,8	98,0	
Characteristic resistance	N _{Rk,s} ²⁾	[kN]	HBC-C HBC-C-E	8.8	46,4	67,4	125,6	174,3	
, , , , , , , , , , , , , , , , , , , ,				A4-50 ¹⁾	29,0	42,2	78,5	122,5	
			HBC-C-N	8.8	-	67,4	125,6	174,3	
			НВС-Т	8.8	-	67,4	125,6	177,4	
				4.6	2,0				
Partial safety fa	ctor	γ _{Ms} ³⁾ 8.8		8.8	1,5				
			A4-5		2,86				
			НВС-В	4.6	13,9	20,2	-	-	
				A4-50 ¹⁾	17,4	25,3	-	-	
				4.6	13,9	20,2	37,7	58,8	
Characteristic resistance	V _{Rk,s} 2)	[kN]	HBC-C HBC-C-E	8.8	23,2	33,7	62,8	101,7	
, , , , , , , , , , , , , , , , , , , ,				A4-50 1)	17,4	25,3	47,1	73,5	
			HBC-C-N	8.8	-	33,7	62,8	101,7	
			НВС-Т	8.8	-	33,7	62,8	101,7	
	Partial safety factor		4.6			1,67			
Partial safety			γ _{Ms} 3)	8.8	1,25				
•				A4-50 ¹⁾		2,	38		

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances of channel bolts under tension and shear load	Annex C6

Materials according to Table 5, Annex A5.
 In conformity with EN ISO 898-1.
 In absence of other national regulations.

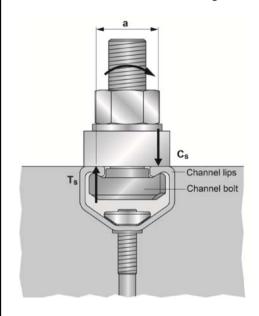


Table 23: Characteristic resistances under shear load with lever arm – steel failure of Hilti channel bolts HBC-B, HBC-C, HBC-C-E, HBC-C-N and HBC-T

Channel bolt d	liameter				M10	M12	M16	M20	
Steel failure									
			LIDO D	4.6	29,9	52,4	-	-	
Characteristic flexure resistance			HBC-B	A4-50 1)	37,4	65,5	-	-	
				4.6	29,9	52,4	133,2	259,6	
	M ⁰ _{Rk,s} ³⁾	[Nm]	HBC-C HBC-C-E	8.8	59,8	104,8	266,4	538,7	
			1100-0-2	A4-50 1)	37,4	65,5	166,5	324,5	
			HBC-C-N	8.8	-	104,8	266,4	538,7	
			нвс-т	8.8	-	104,8	266,4	538,7	
				4.6	1,67				
Partial safety	factor		γ _{Ms} ²⁾	8.8	1,25				
			A4-50 1)		2,38				
			нвс-в	4.6, A4-50	25	27	-	-	
Internal lever arm	а	[mm]	HBC-C HBC-C-E	4.6, 8.8, A4-50	24	26	28	30	
			HBC-C-N	8.8	-	26	28	30	
			НВС-Т	8.8	-	26	28	30	

¹⁾ Materials according to Table 5, Annex A5.

²⁾ In absence of other national regulations.

³⁾ The characteristic flexure resistance according to Table 23 is limited as follows:

$$M_{Rk,s}^0 \le 0.5 \cdot N_{Rk,s,l} \cdot a$$
 ($N_{Rk,s,l}$ according to Table 12) and

$$M^{0}_{Rk,s} \le 0.5 \cdot N_{Rk,s} \cdot a$$
 ($N_{Rk,s}$ according to Table 22)

a = internal lever arm according Table 23

 T_s = tension force acting on the channel lips

C_s = compression force acting on the channel lips

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under shear load with lever arm

Annex C7

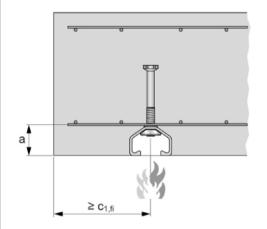


Table 24: Characteristic resistances of anchor channel under fire exposure

Anchor channel				HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Steel failure of anc	hor, conne	ection betv	veen an	chor and o	hannel, lo	cal flexure	of channel	lip
Characteristic	R30	$N_{Rk,s,fi}$		2,5	2,8		5,7	
resistance in cracked concrete	R60	=	[kN]	1,8	2,3	4,0		
C20/25	R90	$V_{Rk,s,fi}$		1,1	1,7	2,3		
Partial safety factor		γ _{Ms,fi} 1)	[-]	1,0				
	R30		[mm]	35 50				
Min. axis distance	R60	а	[mm]	35		50		
	R90		[mm]	4	5	50		

¹⁾ In absence of other national regulations.

Fire exposure from one side only

Fire exposure from more than one side

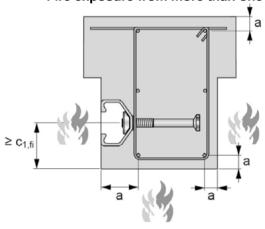


Table 25: Characteristic resistances of channel bolt under fire exposure

Channel bolt				M10	M12	M16	M20	
Steel failure without lever arm								
Characteristic resistance	НВС-В	R30	N _{Rk,s,fi} = V _{Rk,s,fi}	[kN]	1,7	2,5	-	-
		R60			1,3	1,8	-	-
		R90			0,9	1,1	-	-
		R30			2,5	3,1	5	7
	НВС-С	R60			1,9	2,5	4	,0
		R90			1,3	1,9	2	,3
Partial safety factor			γ _{Ms,fi} 1)	[-]	1,0			

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Annex C8

Table 26: Combination of anchor channels and channel bolts under fatigue load

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion protection		
HAC-30	HBC B	M10	4.6			
HAC-30	HBC-B	M12	4.0			
		M12	4.6			
HAC-40	HBC-C	M16				
		M20	8.8	G ¹⁾		
HAC-50		M16	4.6			
		M20	8.8	F ²⁾		
		M16	4.6			
		M20	8.8			
HAC-70		M20	4.6			
			8.8			

Table 27: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload ($N_{Ed} = 0$) (Design method I according to EOTA TR 050)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Steel failure	n	$\Delta N_{Rk,s,0,n}$ [kN]				
	≤ 10 ⁶	1,76	1,57	2,66	3,54	6,44
	≤ 3·10 ⁶					
Characteristic resistances under fatigue tension load without static preload	≤ 10 ⁷					
	≤ 3·10 ⁷	1,60	1,50	2,60	3,50	6,40
	≤ 6·10 ⁷					
	> 6·10 ⁷					

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load	Annex C9

8.06.01-753/13 Z35548.18

¹⁾ Electroplated²⁾ Hot-dip galvanized

Table 28: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Pullout failure Concrete cone failure		η _{c,fat} [-]					
Reduction factor for	≤ 10 ⁶			0,600			
$\Delta N_{Rk,p;0;n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 3·10 ⁶	0,571					
$\Delta N_{Rk,c;0;n} = \eta_{c,fat} \cdot N_{Rk,c}$	≤ 10 ⁷			0,542			
with N _{Rk,p} according to Annex C2 and	≤ 3·10 ⁷			0,516			
N _{Rk,c} calculated according to	≤ 6·10 ⁷	0.500					
EOTA TR 047, March 2018 or FprEN 1992-4: 2016	> 6·10 ⁷	0,500					

Table 29: Characteristic resistances under fatigue tension load with n $\rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Steel failure							
$\Delta N_{Rk,s;0;\infty}$ [kN]		1,6	1,5	2,6	3,5	6,4	
Concrete cone and pullout failure							
$\eta_{c,\text{fat}}$	[-]	[-] 0,5					

For the reduction of the characteristic resistances given in Tables 27 and 28 in the transition zone from the static resistance to the fatigue limit resistance the partial safety factors are calculated as follows:

$$\gamma_{M,fat,n} = \gamma_{M,fat} + (\gamma_M - \gamma_{M,fat}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$$

In absence of other national regulations the following safety factors $\gamma_{\rm M}$ and $\gamma_{\rm M,fat}$ are recommended for design method I according to EOTA TR 050:

 γ_{M} according Annex C1

 $\gamma_{M,fat} = 1,35$

In absence of other national regulations the following safety factor $\gamma_{M,fat}$ is recommended for design method II (Table 29) according to EOTA TR 050:

$$\gamma_{M,fat} = 1,35$$

Hilti anchor channels (HAC) with channel bolts (HBC)	
Performance Characteristic resistances under fatigue cyclic tension load	Annex C10