

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0077 of 27 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Rebar connection with Berner Multicompoundsystem MCS Diamond

Systems for post-installed rebar connections with mortar

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6 Berner manufacturing plant 6

20 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0077 English translation prepared by DIBt

Page 2 of 20 | 27 June 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 27 June 2018

European Technical Assessment ETA-11/0077 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with Berner Multicompoundsystem MCS Diamond" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the rebar anchor BRA from sizes 12, 16 and 20 according to Annex A and injection mortar MCS Diamond are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

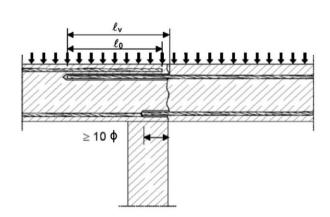
European Technical Assessment ETA-11/0077 English translation prepared by DIBt

Page 4 of 20 | 27 June 2018

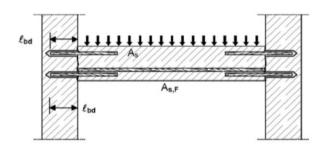
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

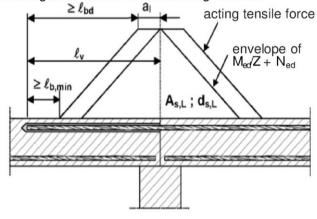
Issued in Berlin on 27 June 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

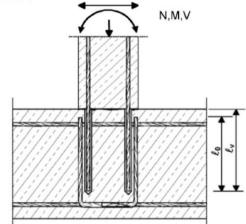
Installation anchor


Figure A1:

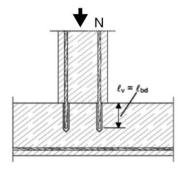
Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A3:

End anchoring of slabs of beams (e.g. designed as simply supported)


Figure A5:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member


Figure A2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

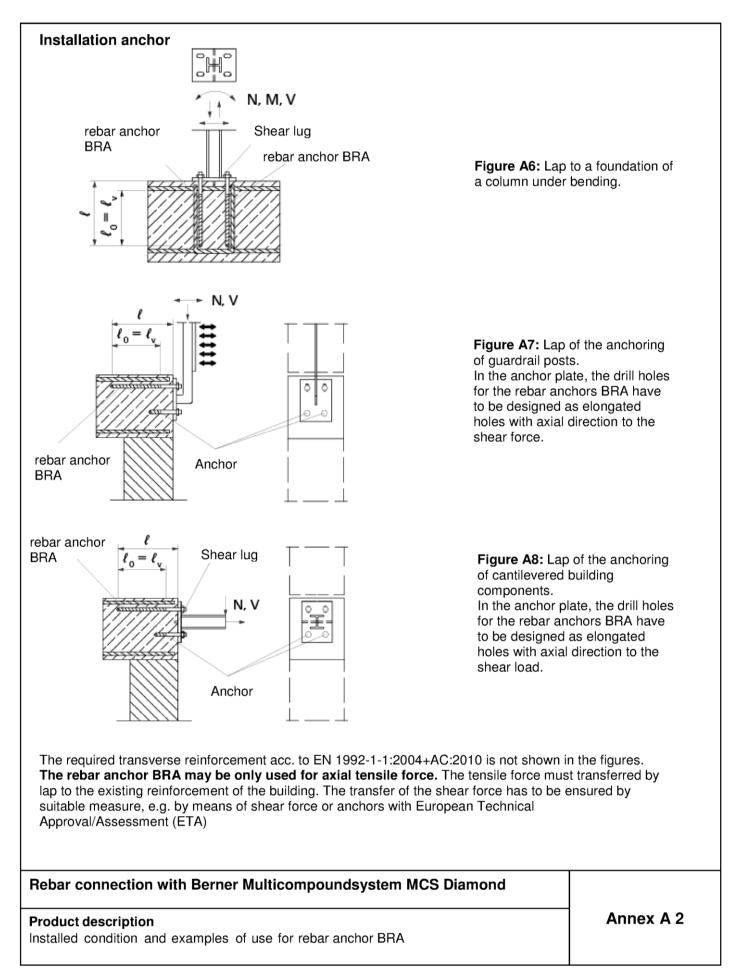
Figure A4:

Rebar connection for stressed primarily in compression

Note to Figure A1 to A5:

In the Figures no traverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1: 2004+AC:2010.

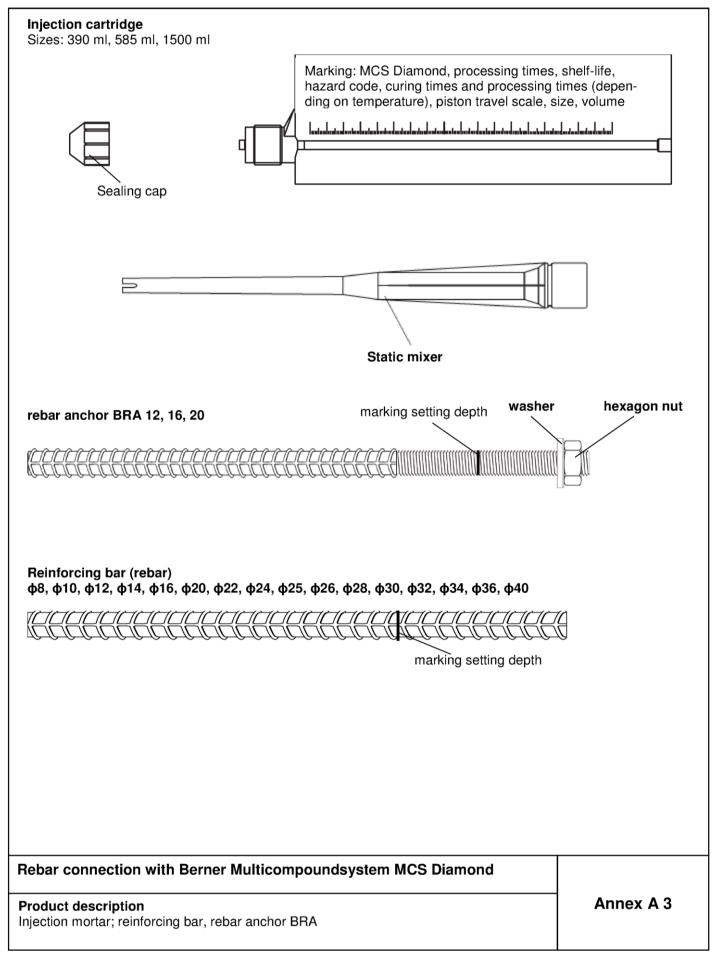
Preparing of joints according to Annex B 2

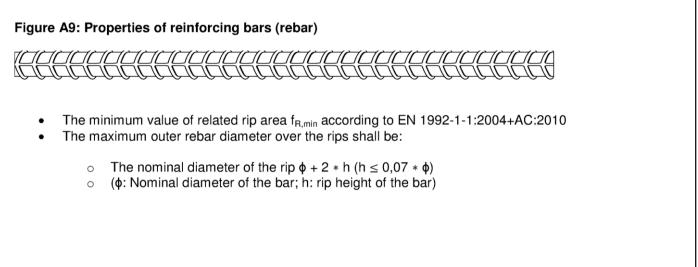

Rebar connection with Berner Multicompoundsystem MCS Diamond

Product description

Installed condition and examples of use for rebars

Annex A 1




Page 7 of European Technical Assessment ETA-11/0077 of 27 June 2018

English translation prepared by DIBt

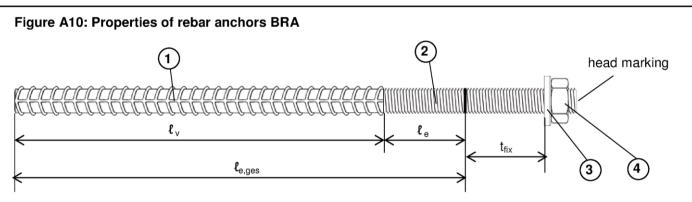


Table A1: Materials of rebars

Designation	Reinforcing bar (rebar)
Reinforcing bar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk}=f_{tk}=k{\mbox{\cdot}} f_{yk}$

Rebar connection with Berner Multicompoundsystem MCS Diamond

Product description Properties and materials of rebars Annex A 4

Head marking e.g.: BRA (for stainless steel)

BRA C (for high corrosion-resistant steel)

Table A2: Installation parameters for rebar anchors BRA

Threaded diameter			M	12	M16	M20
Nominal bar size	ф	[mm]	1	2	16	20
Width across flat	SW	[mm]	1	9	24	30
Nominal drill bit diameter	d _o	[mm]	14 ¹⁾	16	20	25
Depth of drill hole $(h_0 = I_{ges})$	£ e,ges	[mm]	$\ell_{\rm v} + \ell_{\rm e}$			
Effective anchorage depth	l _v	[mm]	acc. to static calculation			
Distance concrete surface to v join	welded ¢ _e	[mm]			100	
Diameter of clearance hole	Pre-positioned ≤ d	[mm]	1	4	18	22
in the fixture	Push through ≤ d _f	[mm]	1	8	22	26
Minimum thickness of concrete member h _{min}			h ₀ + ≥ 1		h ₀ +	2d ₀
Maximum torque moment	T _{inst,max}	[Nm]	5	0	100	150

¹⁾ Both drill bit diameters can be used

Table A3: Materials of rebar anchors BRA

Part	Description	Materials			
		BRA	BRA C		
1	Reinforcing bar	Class B according to NDP or NCL acc. to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$			
2	Round bar with partial or full thread	Stainless steel acc. to EN 10088-1:2014	High corrosion-resistant steel acc. to EN 10088-1:2014		
3	Washer	Stainless steel acc. to EN 10088-1:2014	High corrosion-resistant steel acc. to EN 10088-1:2014		
4	Hexagon nut	Stainless steel acc. to EN 10088-1:2014 Strength class 80; acc. to EN ISO 3506:2009	High corrosion-resistant steel acc. to EN 10088-1:2014 Strength class 80; acc. to EN ISO 3506:2009		

Rebar connection with Berner Multicompoundsystem MCS Diamond

Product description

Properties and materials of rebar anchors BRA

Annex A 5

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C12/15 to C50/60 according to EN 206-1:2000
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000
 Non-carbonated concrete
 - Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C)

Use conditions (Environmental conditions) for rebar anchors BRA:

- Structures subject to dry internal conditions (rebar anchors BRA and BRA C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (rebar anchors BRA and BRA C)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (rebar anchors BRA C)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted
- Design according to EN 1992-1-1:2004+AC:2010 and Annex B 2 and B 3
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing

Installation:

- Dry or wet concrete
- It must not be installed in flooded holes
- Overhead installation allowed
- Hole drilling by hammer drill, compressed air drill or diamond drill mode
- The installation of post-installed rebar respectively rebar anchor BRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint)

Rebar connection with Berner Multicompoundsystem MCS Diamond

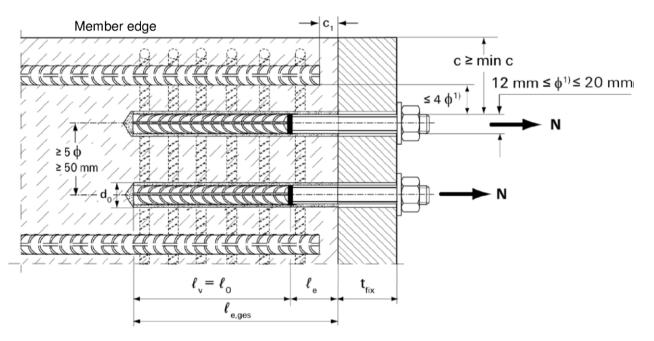
Intended use Specifications Annex B 1

Z56352.18

Figure B1: General construction rules for post-installed rebars Only tension forces in the axis of the rebar may be transmitted The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010 The joints for concreting must be roughened to at least such an extent that aggregate protrude Member edge c ≥ min c $\leq 4 \phi^{1}$ $8 \text{ mm} \le \phi'' \le 40 \text{ mm}$ ≥5 **φ** ≥ 50 mm d_0 post-installed rebars ł C ł

- $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ then the lap length shall be increased by the difference between the clear bar distance and 4 ϕ
 - c concrete cover of post-installed rebar
 - c1 concrete cover at end-face of existing rebar
 - min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - diameter of post-installed rebar
 - *l*₀ lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
 - ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
 - d_o nominal drill bit diameter, see Annex B 5

Rebar connection with Berner Multicompoundsystem MCS Diamond

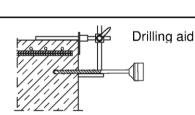

Intended use

General construction rules for post-installed rebars

Figure B2: General construction rules for post-installed rebar anchors BRA

- · Only tension forces in the axis of the BRA may be transmitted
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with an European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as elongated holes with the axis in the direction of the shear force.

- $^{1)}$ If the clear distance between lapped bars exceeds 4 ϕ then the lap length shall be increased by the difference between the clear bar distance and 4 ϕ
 - c concrete cover of post-installed BRA
 - c1 concrete cover at end-face of existing rebar
 - min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of the bar
 - lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
 - $\ell_{e,ges}$ overall embedment depth, $\geq \ell_v + \ell_e$
 - d₀ nominal drill bit diameter, see Annex B 5
 - ℓ_e length of the bonded in threaded part
 - t_{fix} thickness of the fixture
 - ℓ_v effective embedment depth


Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

General construction rules for post-installed rebar anchors BRA

Deutsches Institut	
für Bautechnik	DIBt

Table B1: Minimum concrete cover c¹⁾ depending of the drilling method and the drilling tolerance

Drilling method	Nominal diameter	Minimum concrete cover min c			
Drilling method	of the bar \$ [mm]	Without drilling aid [mm]	With drilling aid [mm]		
Hommor drilling	≤ 20	30 mm + 0,06 ℓ _v	30 mm + 0,02 ℓ _v ≥ 2 φ		
Hammer drilling	≥ 22	40 mm + 0,06 ℓ _v	40 mm + 0,02 ℓ _v ≥ 2 φ		
Pneumatic	≤ 20	50 mm + 0,08 ℓ _v	50 mm + 0,02 ℓ _v		
drilling	≥ 22	60 mm + 0,08 ℓ _v	60 mm + 0,02 ℓ _v		
Diamond drilling	≤ 20	30 mm + 0,06 ℓ _v	30 mm + 0,02 ℓ _v ≥ 2 φ		
Diamond drilling	≥ 22	40 mm + 0,06 ℓ _v	40 mm + 0,02 ℓ _v ≥ 2 φ		

¹⁾ See Annex B2, Figure B1 and Annex B3, Figure B2

Note: The minimum concrete cover as specified in EN 1992-1-1:2004+AC:2010 must be observed

Table B2: Dispensers and cartride sizes correspondending to maximum embedment depth I_{v,max}

Rebar / BRA	Manual dispenser	Accu and pneumatic dispenser (small)	Pneumatic dispenser (large)
	Cartridge size	Cartridge size	Cartridge size
	390 ml, 585 ml	390 ml, 585 ml	1500 ml
φ [mm]	ئ ر, _{max} / f _{e,ges,max} [mm]	$\ell_{v,max}$ / $\ell_{e,ges,max}$ [mm]	<i>t</i> _{v,max} / <i>t</i> _{e,ges,max} [mm]
8		1000	
10		1000	
12 / BRA 12	1000	1200	1800
14		1200	1800
16 / BRA 16		1500	
20 / BRA 20	700	1300	
22 / 24 / 25	/00	1000	
26 / 28	500	700	
30 / 32 / 34			2000
36		500	
40			

Table B3: Working times $t_{\mbox{work}}$ and curing times $t_{\mbox{cure}}$

Temperature in	Max. working time ²⁾	Minimum curing time ³⁾
the anchorage	t _{work} [minutes]	t _{cure} [hours]
base		
[°C]	MCS Diamond	MCS Diamond
+5 to +9 ¹⁾	120	40
>+10 to +19	30	18
>+20 to +29	14	10
>+30 to +40	7	5

¹⁾ For installation temperature lower than 10°C the mortar MCS Diamond must be tempered to 20°C

²⁾ Maximum time from the beginning of injection to rebar setting and positioning

³⁾ For wet concrete the curing time must be doubled

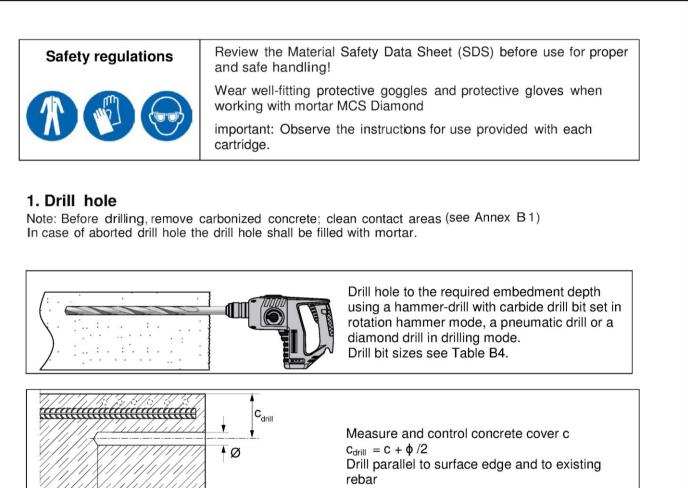
Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

Minimum concrete cover/ Maximum embedment depth per dispenser and cartridge size/ Working times and curing times

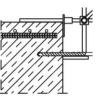
Table B4:Installation tools for drilling and cleaning the bore hole and injection of the mortar

	Drilling and cleaning							Injection		
Rebar / BRA	Nominal drill bit diameter		it Cutting edge		Steel brush diameter		Cleaning nozzle	Extension tube	Injection	adapter
φ [mm]	d ₀ [I			mm]	d _b [n	_	[mm]	[mm]	[col	our]
8	10 ¹⁾	12 ¹⁾	≤ 10,50	≤ 12,50	11,0	12,5	11		-	nature
10	12 ¹⁾	14 ¹⁾	≤ 12,50	≤ 14,50	12,5	15		9	nature	blue
12/ BRA 12	14 ¹⁾	16 ¹⁾	≤ 14,50	≤ 16,50	15	17	15		blue	red
14	1	8	≤ 18	3,50	19	19			yellow	
16/ BRA 16	2	0	≤ 20	0,55	21	5	19		green	
20/ BRA 20	2	5	≤ 25	5,55	26	5			black	
22, 24	3	0	≤ 30	0,55	32	2			gr	еу
25	3	0	≤ 30,55		32		28	9 or 15	gr	-
26 / 28	3	5	≤ 35	5,70	37	7			bro	wn
30 / 32 / 34	4	0	≤ 4(0,70	70 42				re	ed
36	4	5	≤ 4	5,70	47	7	38		yel	low
40	5	5	≤ 55	5,70	58	3			nature	


¹⁾ Both drill bit diameters can be used

Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use


Installation tools for drilling and cleaning the bore hole and injection installation of the mortar

Where applicable use drilling aid.

 $\tilde{\ell}_{v}, \ell_{e,ges}$

For holes $\ell_v > 20$ cm use drilling aid. Three different options can be considered:

A) drilling aidB) Slat or spirit levelC) Visual check

Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

Installation instruction part 1

Page 16 of European Technical Assessment ETA-11/0077 of 27 June 2018

English translation prepared by DIBt

lammer- and pneumatic drilling	OTHER DEC
	Blowing four times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.
Diamond drilling	
	Break away the drill core and remove it
	Flush the bore hole until the water comes clear
	Blowing two times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.
	Fix an adequate steel brush with an extension into a drilling machine and brush the bore hole two times
	Blowing two times from the back of the hole with oil-free compressed air (min. 6 bar) until return air stream is free of noticeable dust.

Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

Installation instruction part 2

3. Rebar preparation and cartridge preparation

	Before use, make asure the rebar or the rebar anchor BRA is dry and free of oil or other residue. Mark the embedment depth ℓ_v on the rebar (e.g. with tape) Insert rebar in borehole, to verify hole and setting depth ℓ_v resp. $\ell_{e,ges}$
	Injection system preparation
	No. 1: Twist off the sealing cap
	No. 2:Twist on the static mixer (the spiral in the static mixer must be clearly visible).
	No. 3:Place the cartridge into a suitable dispenser.
X	No. 4:Press approximate 10 cm of material out until the resin is evenly grey in colour. Don't use mortar that is not uniformly grey.

4. Inject mortar into borehole 4.1 borehole depth ≤ 250 mm:

	Inject the mortar from the back of the hole towards the front and slowly withdraw the mixing nozzle step by step after each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length.
- Fr	After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle.

Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

Installation instruction part 3

Page 18 of European Technical Assessment ETA-11/0077 of 27 June 2018

English translation prepared by DIBt

	Assemble mixing nozzle, extension tube and injection adapter (see Table B 4)
Mortar level mark	Mark the required mortar level l_m and embedment depth l_v resp. $l_{e,ges}$ with tape or marker on the injection extension tube.
	a) Estimation: $l_m = \frac{1}{3} * l_v resp. l_m = \frac{1}{3} * l_{e,ges}$ b) Precise formula for optimum mortar volume: $l_m = l_v resp. l_{e,ges} \left((1,2 * \frac{d_s^2}{d_0^2} - 0,2) \right) \text{[mm]}$
Mortar level mark	Insert injection adapter to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the injection adapter towards the front of the hole. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length. When using an injection adapter continue injection until the mortar level mark ℓ_m becomes visible. Maximum embedment depth see Table B 2
	After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle.

Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

Installation instruction part 4

Page 19 of European Technical Assessment ETA-11/0077 of 27 June 2018

English translation prepared by DIBt

4.3 Insert rebar

For each installation insert the rebar / rebar anchor BRA slowly twisted into the borehole until the embedment mark is at the concrete surface level.
For overhead installation support the rebar / rebar anchor BRA and secure it from falling till mortar started to harden, e.g. using wedges.
 After installing the rebar or BRA the annular gap must be completely filled with mortar. Proper installation Desired anchoring embedment is reached l_v: embedment mark at concrete surface. Excess mortar flows out of the borehole after the rebar has been fully inserted until the embedment mark.
Observe the working time "t _{work} " (see Table B3), which varies according to temperature of base material. Minor adjustments to the rebar / rebar anchor BRA position may be performed during the working time Full load may be applied only after the curing time "t _{cure} " has elapsed (see Table B 3)

Rebar connection with Berner Multicompoundsystem MCS Diamond

Intended use

Installation instruction part 5

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{\text{b,min}}$ and the minimum lap length $\ell_{\text{o,min}}$ according to EN 1992-1-1:2004+AC:2010 (L_{b,min} acc. to Eq. 8.6 and Eq. 8.7 and L_{o,min} acc. to Eq. 8.11) shall be multiply by a amplification factor α_{lb} according to Table C1.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Amplification factor α _{lb}
C12/15 to C50/60	Hammer drilling and pneumatic drilling	1,0
C12/15 to C50/60	Diamond drilling	1,3

Table C2: Reduction factor k_b for all drilling methods

Hammer drill or pneumatic drill											
	Reduction factor k _b										
Rebar / BRA	Concrete classe										
φ [mm]	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60									
8 bis 25	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00		
26 bis 40	1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00									
Diamond drill											
				Red	uction fact	or k _b					

	Reduction factor K _b										
Rebar / BRA	Concrete class										
φ [mm]	C12/15	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60									
8 bis 12	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,93	1,00		
14 bis 25	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,86	0,86		
26 bis 40	1,00	1,00	1,00	1,00	1,00	0,71	0,71	0,71	0,71		

Table C3: Design values of the ultimate bond resistance fbd,PIR in N/mm² for all drilling methods and for good bond conditions

 $\mathbf{f}_{bd,PIR} = \mathbf{k}_b \cdot \mathbf{f}_{bd}$

f_{bd}: Design value of the ultimate bond stress in N/mm² considering the concrete classes and the rebar diameter according to EN 1992-1-1: 2004+AC:2010

(for all other bond conditions multiply the values by 0,7)

k_b: Reduction factor according to Table C2

Hammer of	drill or pne	umatic d	rill								
		Bond resistance f _{bd,PIR} [N/mm ²]									
Rebar		Concrete class									
/ BRA	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ [mm]											
8 to 25 26 to 40	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3 4,0		
Diamand	الأسلم										

Diamond drill

		Bond resistance f _{bd,PIR} [N/mm ²]									
Rebar		Concrete class									
/ BRA	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ [mm]											
8 to 12						3,4	27	4,0	4,3		
14 to 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	3	,7		
26 to 40							3,0				

Rebar connection with Berner Multicompoundsystem MCS Diamond

Performances

Amplification factor α_{lb} , Reduction factor k_b Design values of ultimate bond resistance fbd.PIR Annex C 1