

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0145 of 1 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer-Zykon-panel anchor FZP II

Fastener for the rear fixing of façade panels made of selected natural stones according to EN 1469

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

15 pages including 3 annexes which form an integral part of this assessment

EAD 330030-00-0601

European Technical Assessment ETA-11/0145

English translation prepared by DIBt

Page 2 of 15 | 1 July 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0145

Page 3 of 15 | 1 July 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer-Zykon-panel anchor FZP II is a special anchor of sizes M 6, M 8 and M 10 which consists of a cone bolt (with external thread or internal thread), an expansion part, a sleeve and, if need be, a nut. Cone bolt and expansion part are made of stainless steel. The sleeve is made of stainless steel or carbon. The nut is made of stainless steel or aluminium. The anchor is put into an undercut drill hole and by driving-in of the sleeve it is placed form-fit.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1
Anchor distances and spacing	See Annex B 3 and Annex C 1
Durability	Corrosion Resistance Class (CRC) III in accordance with EN 1993-1-4:2015

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	No performance assessed	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

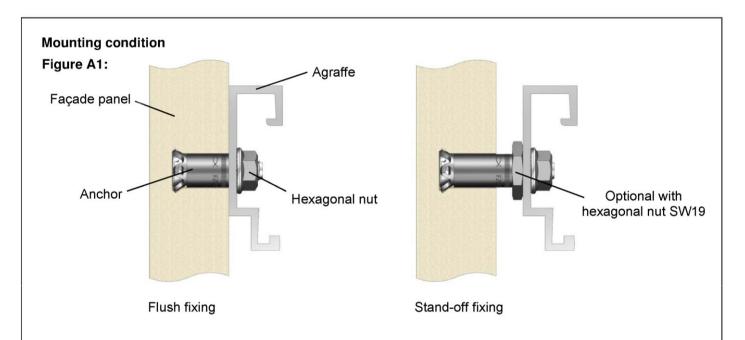
In accordance with EAD No. 330030-00-0601 the applicable European legal act is: [97/161/EG]. The system to be applied is: 2+

European Technical Assessment ETA-11/0145

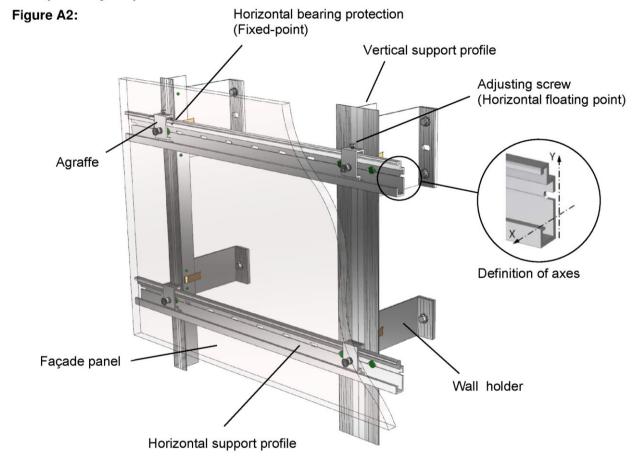
Page 4 of 15 | 1 July 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 1 July 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Aksünger

Deutsches
Institut
für
Bautechnik

Example of façade panel on substructure

fischer Zykon panel anchor FZP	
Product description Product and built-in state	Annex A 1

Type of anchor

Anchor with external thread

Figure A3:

With carbon fibre sleeve

With steel sleeve

With carbon fibre sleeve and sleeve flange

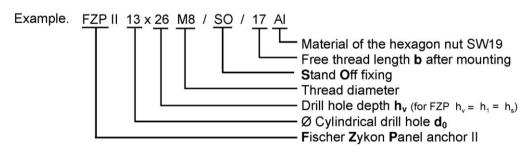
With Steel sleeve and hex nut SW19

With steel sleeve and hex nut ES 1)

1) Hex nut ES for suspension systems

Anchor with internal thread

Figure A4:


With carbon fibre sleeve

With steel sleeve

Identification system

fischer Zykon panel anchor FZP	
Product description Type of anchor and identification system	Annex A 2

Parts of anchor and materials

Cone bolt

Figure A5:

With external thread M6 / M8 / M10

With internal thread M6 / M8

Material identification

Option:

Anti rotation lock Nose or frontal profiling Option:

Identifying mark, drive, e.g.: Slot; polygonal (Outside; inside);

spanner flats

Expansion part Figure A6:

Sleeve

Figure A7:

Stainless steel

Type designation e.g. FZP...

Supplementary components

Figure A8:

Hex nut SW 19

Identifying mark of the producer

Marking: AI = Aluminum Optional: A4 = stainless steel

Table A1: Material of anchor parts

Anchor parts	Material	
Cone bolt	Stainless steel, EN 10088 :2014	
Expansion part	Stainless steel, EN 10088 :2014	
Sleeve	Stainless steel, EN 10088 :2014	
Carbonsleeve	Polyamide 6.6 CF	
Hexagonal nut SW19	Aluminium, EN 755 :2016, Stainless steel, EN 10088 :2014	
Hexagonal nut ES	Aluminium, EN 755 :2016, Stainless steel, EN 10088 :2014	

fischer Zykon panel anchor FZP	
Product description Parts of anchor and material	Annex A 3

8.06.01-410/18 Z54403.18

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Anchorage ground:

- Natural stone facade panels according to EN 1469:2015.
- The used material is free of crevices and mechanically effective cracks and alterations.
- Natural stone classified in accordance with Table B1.
- Characteristic values of the panels correspond to Table B2.

Table B1: Stone groups for façade panels made of natural stone

Stone group		Natural stone type	Boundary conditions	
I	High quality intrusive rocks (plutonic rocks)	Granite, granitite, tonalite, diorite, monzonite, gabbro, other magmatic plutonic rocks	None	
II	Metamorphic rocks with "hard stone characteristics"	morphic rocks with I stone characteristics" Quarzite, granulite, gneiss, migmatite		
III	High quality extrusive rocks (volcanic rocks)	Basalt and basaltic lava without harmful ingredients (like sun burner basalt)	Minimum density p: basalt: 2,7 kg/dm³ basaltic lava: 2,2 kg/dm³	
IV	Sedimentary rocks with "hard stone characteristics" 1)	Sandstone, limestone and marble	Sandstone: 2.1 kg/dm³	

For façade panels made of natural stones with planes of anisotropies, the difference between the flexural strength determined parallel to the planes of anisotropy and perpendicular to the edges of the planes of anisotropy shall not be more than 50 %.

Use conditions (Environmental conditions):

electronic copy of the eta by dibt: eta-11/0145

• In accordance with EN 1993-1-4:2015 dependent on Corrosion Resistancy Class (CRC) (ETA Section 3.1)

fischer Zykon panel anchor FZP	
Intended use Specifications	Annex B 1

Design:

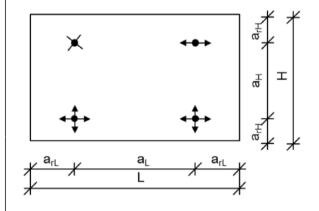
- The design of anchorages under static and quasistatic load is carried out in accordance with:
 EOTA Technical Report TR 062 "Design of fasteners for façade panels made of natural stone".
- The façade panels, their fixings as well as the substructure including its connection to wall brackets and their connection to the construction works are designed for the respective case of application under the responsibility of an engineer skilled in the field of façade construction.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.

Installation:

- The drillings are done at the factory or on site under workshop conditions; when making the drillings on site
 the execution is supervised by the responsible project supervisor or a skilled representative of the project
 supervisor.
- Making of the undercut drilling is done with a special drill bit or a special CNC drill bit according to Annex B 4
 and a special drilling device in accordance with the information deposited with Deutsches Institut für
 Bautechnik
- The drilling residues are removed from the drill hole.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole.
- The geometry of the drill hole is checked on 1 % of all drillings. The following dimensions shall be checked and
 documented according to manufacturer's information and testing instructions by means of a control aids
 according to Annex B 7, Figure B5, B6 and B7.
 - Diameter of the cylindrical drill hole.
 - · Diameter of the undercut.
 - Remaining wall thickness (drill hole depth and panel thickness respectively).
- If the tolerance given in Annex B 4, Table B2 is exceeded, the geometry of the drill hole shall be checked on 25 % of the drillings performed. No further drill hole may exceed the tolerances otherwise all the drill holes shall be controlled. Drilling holes falling below or exceeding the tolerances shall be rejected.
 - Note: Checking the geometry of the drill hole on 1 % of all drillings means that on one of the 25 panels (this corresponds to 100 drillings for panels with 4 undercut anchors) one drilling shall be checked. If the tolerances given in Annex B 4 Table B2 are exceeded the extent of the control shall be increase to 25 % of the drillings, i.e. one drilling each shall be checked on all the 25 panels.
- The anchors are installed in a deformation controlled manner. For this purpose suitable installation tools per Annex B 5, Figure B4 shall be used. The anchor is set correctly if the bolt projection "b" in accordance to Annex A 2 (designation system) according to Annex B 6 Figure B9 and B10 is observed. For flush mounting, the sleeve must not project beyond the plate surface. Internal thread anchors are mounted flush or recessed according to Annex B 6.
- During transport and storage on site the façade panels are protected from damages; the façade panels are not
 to be hung up jerkily (if need be lifters shall be used for hanging up the façade panels); façade panels and
 reveal panels respectively with incipient cracks are not be installed.
- The façade panels are arranged in a "reclined" or "upright" position, they also may be fixed at façade soffits.
- The façade are installed by skilled specialists and the laying instructions of the manufacturer shall be paid attention to.
- The façade panels must not be used for the transmission of scheduled impact loads and for the protection against falling.
- Overhead installation is allowed (e.g.: fastening cladding of ceilings)

fischer Zykon panel anchor FZP	
Intended use Specifications	Annex B 2

Table B2: Characteristic values of façade and reveal panels made of nature stones


Façade panels					
Nominal panel thickness		h_{nom}	[mm]	20 (30) $^{1)} \le h_{nom}$	
Maximum panel size		Α	[m²]	3,0	
Maximum side lenght		H bzw. L	[m]	3,0	
Number of anchors (rectangular arra	ngement)	N	[-]	4	
Embedment depth 2)		h _s	[mm]	$12 \le h_s \le 38$	
Minimum edge distance 3)		a_{rL} or a_{rH}	[m]	50	
Maximum edge distance		a_{rL} or a_{rH}	[mm]	0,25 L bzw. 0,25 H	
Minimum spacing 3)		a∟ or a _H	[mm]	8 h _s	
Minimum residual wall thickness 4)		h _r	[mm]	0,4 h _{nom}	
Minimum characteristic flexural strength in accordance with EN 12372					
Padang Cristallo G603, China	Stone group I	σ _{5%} ≥	[N/mm²]	13,4	
Jura Limestone (yellow), Germany	Stone group IV	σ _{5%} ≥	[N/mm²]	12,4	

For sandstone, limestone and basaltlava: panel thickness h \geq 30 mm, if the bending strength of the material $\sigma_{5\%}$ < 8 N/mm².

 $h_s = (h_1) = (h_v)$ in 1 mm steps only (12, 13, 14 mm ... 38 mm) - tolerances see Annex B 4, Table B3, footnote $h_s = (h_1) = (h_v)$

Only for stand-off fixing.

Figure B1: Definition of edge and centre distance

Legende:

 a_{rL} , a_{rH} = Edge distance – anchor distance to the panel edge

a_L, a_H = Spacing – Distance between the anchors
 L = Length of the panel in horizontal direction

H = Length of the panel in vertical direction

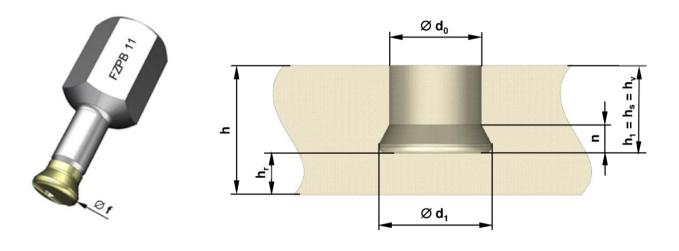
= Fixed bearing (fixed support)

← → → = Horizontal slide bearing (slide support)

= Horizontal and vertical slide bearing (slide support)

fischer Zykon panel anchor FZP	
Intended use Requirements of façade panels	Annex B 3

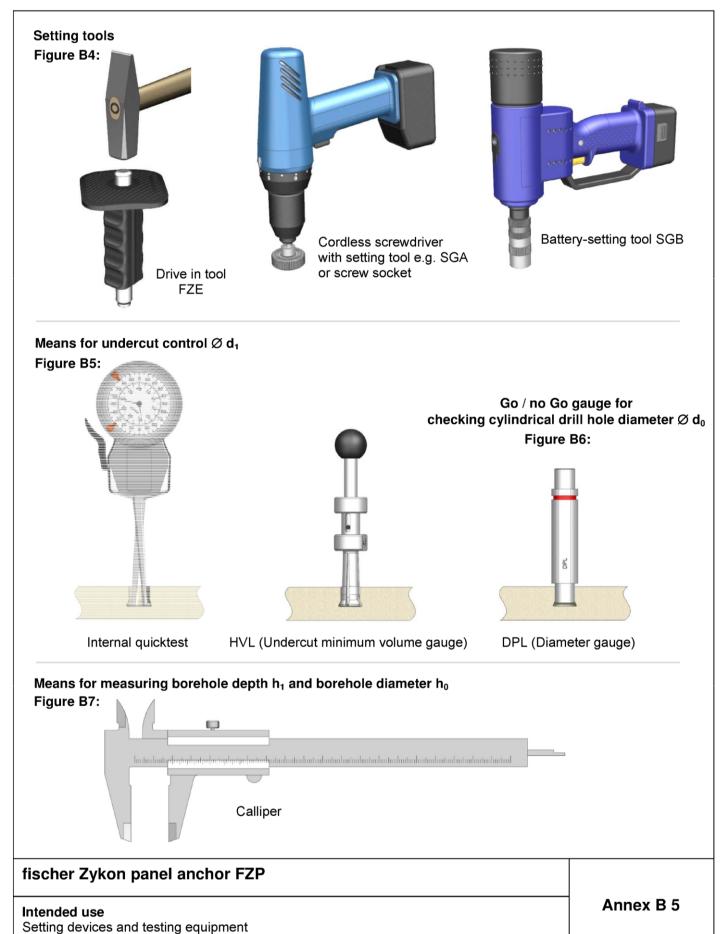
For small fitting, differential or fill in pieces, the minimum edge distance or spacing shall be chosen constructively. In case of design under static loading using FEM, smaller edge distances are allowed.

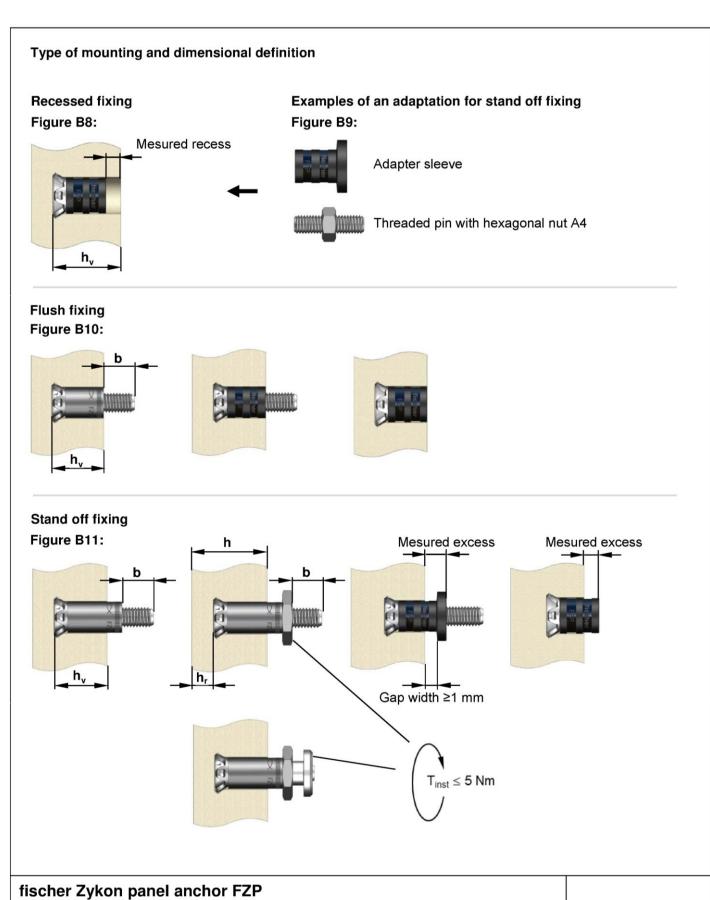

Table B3: Drill hole dimensions

Drill hole						
Drill bit ∅ f 1)	\emptyset d ₀ [mm] ²⁾	\varnothing d ₁ [mm] ²⁾	FZPII	n	h ₁ [mm] ^{2) 3)}	h _r [mm] ⁴⁾
FZPB 9	+0,4 11	13 5 +0 3	M6			
FZPB 11	-0,2	13,5 ±0,3	IVIO			
FZPB 11	+0,4 13	15,5 ±0,3	M8 / M6i	4	10 / h / 20	>0.4 b
FZPB 13	-0,2	15,5 ±0,3	IVIO / IVIOI	≈ 4	$12 \le h_1 \le 38$	≥ 0,4 h
FZPB 13	+0,4 15	17.5.00	M10 / M8i			
FZPB 15	-0,2	17,5 ±0,3	IVI TO / IVIOI			

- Drill bits for various drilling methods.
- Dimensions can be checked with the appropriate control equipment in accordance with (Annex B 5).
- Tolerances flush mounting: $h_1 = h_v + 0.4_{-0.1}^{+0.4}$
- ⁴⁾ Only for stand off fixing.

Figure B2: Drill bit example


Figure B3: Geometrie of drill hole



fischer Zykon panel anchor FZP	
Intended use Drill bit, geometry of the drill hole and installation parameters	Annex B 4

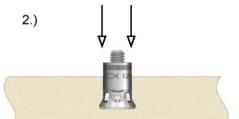
electronic copy of the eta by dibt: eta-11/0145

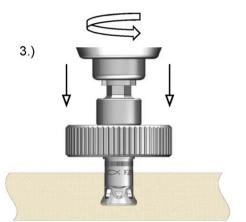
Z54403.18

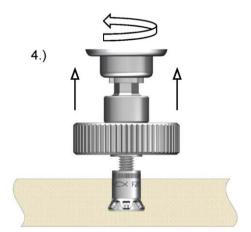
Intended use

Mounting types and dimension definitions

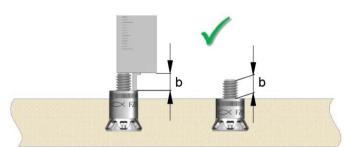
electronic copy of the eta by dibt: eta-11/0145

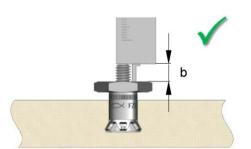

Annex B 6


Istallation instructions


Example: Set with SGA

1.)





5.1)

5.2)

Intended use Installation instructions Annex B 7

electronic copy of the eta by dibt: eta-11/0145

Table C1: Characteristic resistance

Diameter of drill hole	\emptyset d ₀	[mm]	11 (FZ	(P M6)	13 (FZP M8 / M6i)			
Designation of natural stone			Padang Cristallo G603	Jura Limestone (yellow)	Padang Cristallo G603	Jura Limestone (yellow)		
Country of origin			China	China Germany China				
Petrographic description			Granite	Limestone	Granite	Limestone		
Panel thickness	h	[mm]	30	40	30	40		
Edge distance	a _r	[mm]	100	100	100	100		
Embedment depth	hs	[mm]	15	17	17	25		
Characteristic resistance								
Tension load	N _{Rk} ^{1) 2)}	[kN]	6,2	4,8	7,8	8,0		
Sher load	V _{Rk} ^{1) 2)}	[kN]	7,8	7,9	7,0	9,1		
Partial safety factor	γм	[-]	1,8					
Combined tension and shear	load							
Trilinear limit value	Х	[-]	1,2					

Reduction factor α based on stone class is already included in these values. Reduction factor α in accordance with Technical Report 062 "Design of fasteners for façade panels made of natural stone".

Table C2: Characteristic resistance for steel failure

Diameter of drill hole and Anchor	Ø d₀	[mm]	11	13	15	13 ²⁾	15 ²⁾
			FZP M6	FZP M8	FZP M10	FZP M6i	FZP M8i
Characteristic resistance under tension load	$N_{Rk,s}$	[kN]	15,1	27,5		14,1	
Partial safety factor	γ_{Ms} 1)	[-]	1,5		1,87		
Characteristic resistance under shear load	$V_{Rk,s}$	[kN]	7,5	7,5 13,7		7,0	
Partial safety factor	$\gamma_{Ms}^{-1)}$	[-]	1,25		1,56		

¹⁾ In absence of national regulations

fischer Zykon panel anchor FZP	
Performances Characteristic resistance in natural stone and steel resistance	Annex C 1

For other natural stones according to Table B1, the resistance is determined in accordance with EAD 33-0030-0601 and Technical Report "Design of fasteners for façade panels made of natural stone".

For the anchor with internal thread only a fixing screw of size M6 or M8 made of stainless steel 1.4401 or 1.4571 EN ISO 10088-3 with a minimum strength class 70 according to EN ISO 3506-1 (fuk = 700 N/mm², fyk = 450 N/mm²) can be used