

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-11/0401 vom 27. Juni 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus

Systeme für nachträglich eingemörtelte Bewehrungsanschlüsse

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6
Berner manufacturing plant 6

20 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330087-00-0601

Europäische Technische Bewertung ETA-11/0401

Seite 2 von 20 | 27. Juni 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z44175.18 8.06.01-108/18

Europäische Technische Bewertung ETA-11/0401

Seite 3 von 20 | 27. Juni 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl mit dem "Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus" durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss wird Betonstahl mit einem Durchmesser ϕ von 8 bis 28 mm oder der Bewehrungsanker BRA in den Größen 12, 16 und 20 entsprechend Anhang A und dem Injektionsmörtel MCS Uni Plus oder MCS Uni Plus S verwendet. Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Bewehrungsanschlusses von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal			Leistung		
Charakteristischer quasi-statische Laste	Widerstand en	unter	statische	und	Siehe Anhang C 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung	
Brandverhalten	der Klasse A1	
Feuerwiderstand	Leistung nicht bewertet	

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330087-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z44175.18 8.06.01-108/18

Europäische Technische Bewertung ETA-11/0401

Seite 4 von 20 | 27. Juni 2018

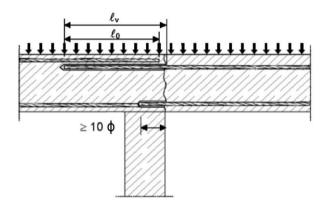
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

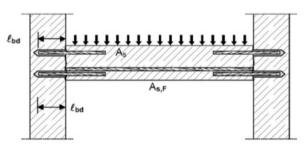
Ausgestellt in Berlin am 27. Juni 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

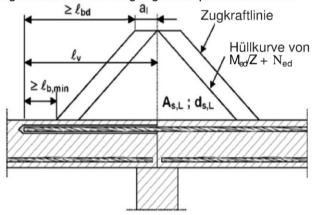
Beglaubigt:


Z44175.18 8.06.01-108/18

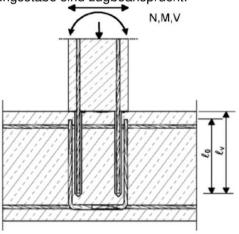
Ankereinbau


Bild A1:

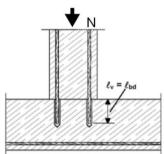
Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken


Bild A3:

Endverankerung von Platten oder Balken, die gelenkig gelagert berechnet wurden


Bild A5:

Verankerung von Bewehrung zur Deckung der Zugkraftlinie im auf Biegung beanspruchten Bauteil


Bild A2:

Übergreifungsstoß einer biegebeanspruchten Stütze oder Wand an ein Fundament. Die Bewehrungsstäbe sind zugbeansprucht.

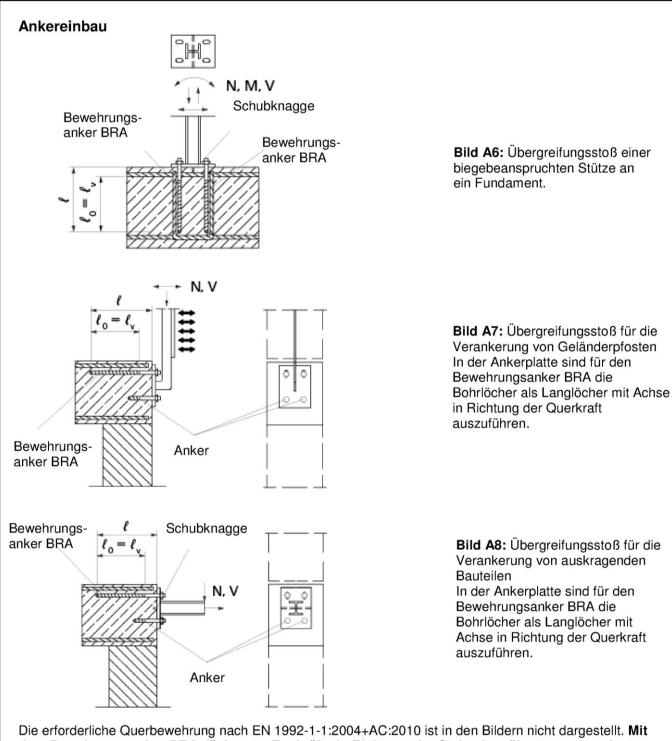
Bild A4:

Bewehrungsanschlüsse überwiegend auf Druck beanspruchter Bauteile

Bemerkung zu Bild A1 bis A5

Die erforderliche Querbewehrung nach EN 1992-1-1: 2004+AC:2010 ist in den Bildern nicht dargestellt.

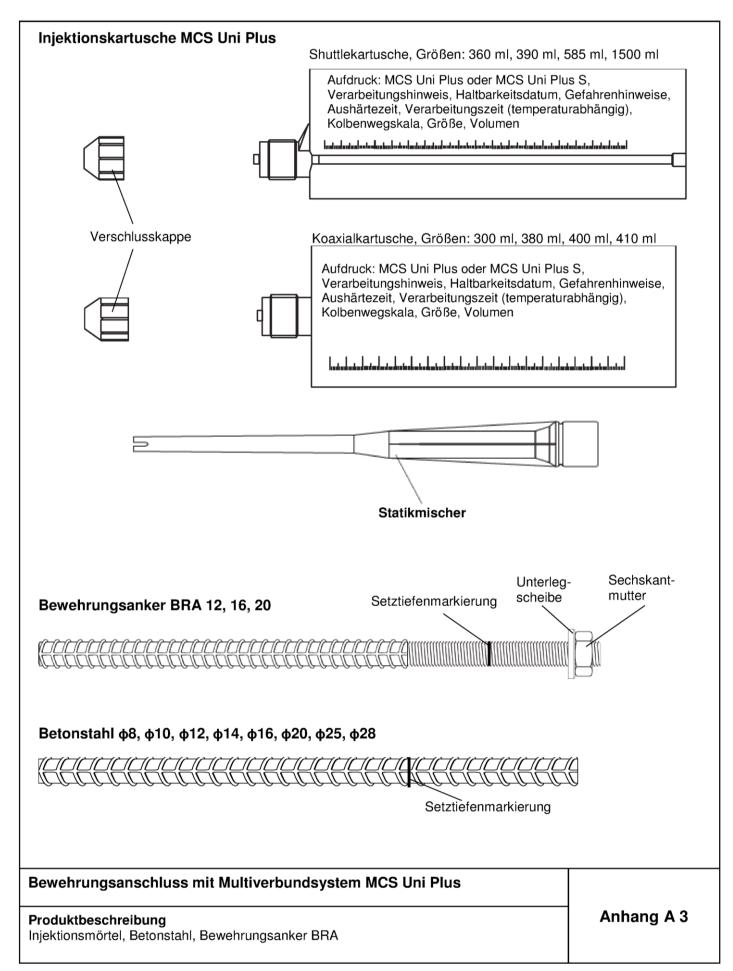
Ausführung des Einbaus gemäß Anhang B 2


Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus

Produktbeschreibung

Einbauzustand und Anwendungsbeispiele für Betonstahl

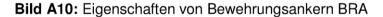
Anhang A 1

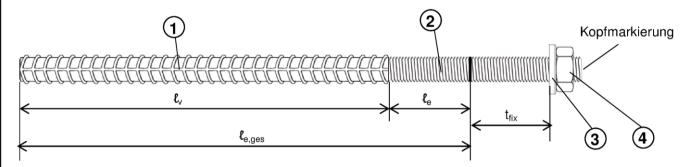


dem Bewehrungsanker BRA dürfen nur Zugkräfte in Richtung der Stabachse übertragen werden. Die Zugkraft muss über einen Übergreifungsstoß mit der im Bauteil vorhandenen Bewehrung weitergeleitet werden. Der Querlastabtrag ist durch geeignete zusätzliche Maßnahmen sicher zu stellen, z.B. durch Schubknaggen oder durch Dübel mit einer europäischen technischen Zulassung/Bewertung (ETA)

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Produktbeschreibung Einbauzustand und Anwendungsbeispiele für Bewehrungsanker BRA	Anhang A 2

Bild A9: Eigenschaften des Betonstahls


- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Maximaler Außendurchmesser des Bewehrungsstabes gemessen über die Rippen ist:
 - Nomineller Durchmesser des Betonstahls mit Rippen: $\phi + 2 * h$ ($h \le 0.07 * \phi$)
 - ο (φ: Nomineller Durchmesser des Betonstahls; h: Rippenhöhe)


Tabelle A1: Materialien für Betonstahl

Bezeichnung	Betonstahl
Betonstahl EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstahl vom Ring Klasse B oder C mit f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Produktbeschreibung Eigenschaften und Materialien von Betonstahl	Anhang A 4

Kopfmarkierung z.B.: BRA (für nichtrostenden Stahl)

BRA C (für hochkorrosionsbeständigen Stahl C)

Tabelle A2: Einbaubedingungen für Bewehrungsanker BRA

Gewindedurchmesser			M ⁻	12	M16	M20
Nenndurchmesser Betonstahl	ф	[mm]	1:	2	16	20
Schlüsselweite	SW	[mm]	19	9	24	30
Bohrernenndurchmesser	d_0	[mm]	14 ¹⁾	16	10	25
Bohrlochtiefe ($h_0 = \ell_{e,qes}$)	ℓ _{e,ges}	[mm]	$\ell_{ m v} + \ell_{ m e}$			
Effektive Verankerungstiefe	$\ell_{\scriptscriptstyle{ee}}$	[mm]	Gemäß statischer Berechnung			chnung
Abstand Bauteiloberfläche zur Schweissstelle	ℓ _e	[mm]	100			
Durchgangsloch im	Vorsteck ≤ d _f	[mm]	1-	4	18	22
Anbauteil	Durchsteck ≤ d _f	[mm]	18	8	22	26
Minimale Bauteildicke	$h_{min} [mm] \qquad \begin{array}{c} h_0 + 30 \\ \geq 100 \end{array}$			h ₀ +	2d ₀	
Maximales Montagedrehmoment	T _{inst,max}	[Nm]	5	0	100	150

Beide Bohrdurchmesser sind möglich

Tabelle A3: Materialien für Bewehrungsanker BRA

Teil	Bezeichnung	Materialien		
		BRA	BRA C	
1	Betonstahl	Klasse B gemäß NDP oder NCL gemäß	3 EN 1992-1-1/NA; $f_{uk} = f_{tk} = k \cdot f_{yk}$	
2	Gewindestahl	Nichtrostender Stahl gemäß EN 10088-1:2014 Hochkorrosionsbeständiger Sta		
3	Unterlegscheibe	Nichtrostender Stahl gemäß EN 10088-1:2014	Hochkorrosionsbeständiger Stahl gemäß EN 10088-1:2014	
4	Sechskantmutter	Nichtrostender Stahl gemäß EN 10088-1:2014 Festigkeitsklasse 80; EN ISO 3506:2009	Hochkorrosionsbeständiger Stahl gemäß EN 10088-1:2014 Festigkeitsklasse 80; EN ISO 3506:2009	

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Produktbeschreibung Eigenschaften und Materialien von Bewehrungsankern BRA	Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

· Statische und quasi-statische Lasten.

Verankerungsgrund:

- bewehrter oder unbewehrter Normalbeton gemäß EN 206-1 :2000
- Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206-1 :2000
- zulässiger Chloridgehalt von 0,40 % (CL 0.40) bezogen auf den Zementgehalt entsprechend EN 206-1 :2000,
- nicht karbonisierter Beton.

Anmerkung: Bei einer karbonisierten Oberfläche des bestehenden Betons ist die karbonisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von ϕ + 60 mm zu entfernen.

Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992-1-1:2004+AC:2010 entsprechen. Dies entfällt bei neuen, nicht karbonisierten Bauteilen und bei Bauteilen in trockener Umgebung.

Temperaturbereich:

-40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C).

Anwendungsbedingung (Umweltbedingungen) mit Bewehrungsanker BRA

- Bauteile unter den Bedingungen trockener Innenräume. (Bewehrungsanker BRA und BRA C)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen. (Bewehrungsanker BRA und BRA C)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (Bewehrungsanker BRA C)

Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Bemessung entsprechend EN 1992-1-1 :2004+AC:2010 und Anhänge B 2 und B 3.
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen.

Finhau:

- in trockenen oder nassen Beton.
- · nicht in mit Wasser gefüllte Bohrlöcher.
- Bohrlochherstellung durch Hammerbohren oder Pressluftbohren
- Überkopfmontage möglich
- Nachträglich eingemörtelter Betonstahl oder nachträglich eingemörtelte Bewehrungsanker BRA sind durch entsprechend geschultes Personal und unter Überwachung auf der Baustelle vorzunehmen. Die Bedingungen für die entsprechende Schulung des Baustellenpersonals und die Überwachung auf der Baustelle obliegt den Mitgliedstaaten, in denen der Einbau vorgenommen wird.
- Die vorhandene Bewehrung darf nicht beschädigt werden; Überprüfung der Lage der vorhandenen Bewehrung (wenn die Lage der vorhandenen Bewehrung nicht ersichtlich ist, müssen diese mittels dafür geeigneter Bewehrungssuchgeräte auf Grundlage der Baudokumentation festgestellt und für die Übergreifungsstöße am Bauteil markiert werden).

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Verwendungszweck Spezifikationen	Anhang B 1

Bild B1: Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist entsprechend EN 1992-1-1:2004+AC:2010 nachzuweisen.
- · Die Betonierfugen sind mindestens derart aufzurauen, dass die Zuschlagstoffe herausragen.

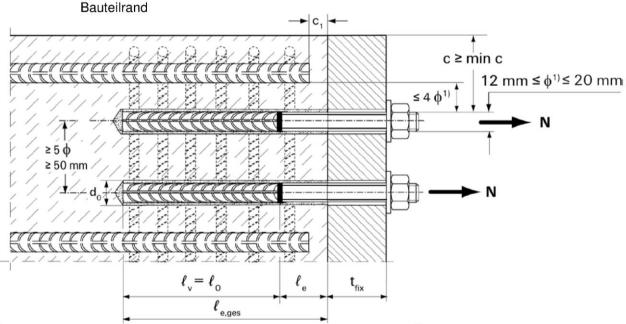
Bauteilrand $c \ge \min c$ $\le 4 \phi^{1)}$ $\ge 5 \phi$ $\ge 50 \text{ mm}$ d_0 nachträglich eingemörtelter Betonstahl

- 1) Ist der lichte Abstand der gestoßenen Stäbe größer als 4 φ, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Abstand und 4 φ vergrößert werden.
 - c Betondeckung des eingemörtelten Betonstahls
 - c₁ Betondeckung an der Stirnseite des einbetonierten Betonstahls
 - min c Mindestbetondeckung gemäß Tabelle B1 und der EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2
 - Nenndurchmesser Betonstahl
 - ℓ₀ Länge des Übergreifungsstoßes, gemäß EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3
 - ℓ_v wirksame Setztiefe, $\geq \ell_0 + c_1$
 - d_o Bohrernenndurchmesser, siehe Anhang B 5

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus

Verwendungszweck
Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

Anhang B 2


8.06.01-108/18

Z47371.18

Bild B2: Allgemeine Konstruktionsregeln für eingemörtelten Bewehrungsanker BRA

- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Zugkraft muss über einen Übergreifungsstoß mit der im Bauteil vorhandenen Bewehrung weitergeleitet werden.
- Der Querlastabtrag ist durch geeignete zusätzliche Maßnahmen sicher zu stellen, z.B. durch Schubknaggen oder Dübel mit einer Europäischen Technischen Bewertung (ETA)
- In der Ankerplatte sind für den Zuganker die Bohrlöcher als Langlöcher mit Achse in Richtung der Querkraft auszuführen.

1) Ist der lichte Abstand der gestoßenen Stäbe größer als 4 φ, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Abstand und 4 φ vergrößert werden.

Betondeckung des eingemörtelten Bewehrungsankers BRA

c₁ Betondeckung an der Stirnseite des einbetonierten Betonstahls

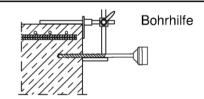
min c Mindestbetondeckung gemäß Tabelle B1 und der EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2

φ Nenndurchmesser Betonstahl

Länge des Übergreifungsstoßes, gemäß EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3

 $\ell_{\text{e,ges}}$ Setztiefe, $\geq \ell_0 + \ell_e$

 $egin{array}{ll} {\rm d_0} & {\rm Bohrernenndurchmesser, \ siehe \ Anhang \ B \ 5} \\ {\rm \textit{$\ell_{\rm e}$}} & {\rm L\ddot{a}nge \ des \ eingem\"{o}rtelten \ Gewindebereichs} \end{array}$


t_{fix} Dicke des Anbauteils

& wirksame Setztiefe

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus Verwendungszweck Allgemeine Konstruktionsregeln für eingemörtelten Bewehrungsanker BRA Anhang B 3

Tabelle B1: Minimale Betonüberdeckung c¹⁾ in Abhängigkeit von der Bohrmethode und der Bohrtoleranz

Nenndurchmesser		Minimale Betonüberdeckung min c			
Bohrmethode	Betonstahl φ [mm]	Ohne Bohrhilfe [mm]	Mit Bohrhilfe [mm]		
Hammerbohren	≤ 20	30 mm + 0,06 ℓ_{v}	30 mm + 0,02 ℓ _v ≥ 2 φ		
паншегропген	≥ 25	40 mm + 0,06 ℓ_{v}	40 mm + 0,02 ℓ _v ≥ 2 φ		
Pressluftbohren	≤ 20	50 mm + 0,08 ℓ_{v}	50 mm + 0,02 ℓ _v		
Fressiumboniren	≥ 25	60 mm + 0,08 ℓ_{v}	60 mm + 0,02 ℓ_{v}		

¹⁾ Siehe Anhang B2, Bild B1 und Anhang B3, Bild B2

Anmerkung: Die minimale Betondeckung gemäß EN 1992-1-1:2004+AC:2010 muss eingehalten werden.

Tabelle B2: Auspresspistolen, zugehörige Kartuschen und maximale Einbindetiefen ℓ_{ν,max}

Betonstahl / Bewehrungsanker BRA	Manuelle Auspresspistole	Akku und pneumatische Auspresspistole (klein)	pneumatische Auspresspistole (groß)
		Kartuschengröße	
	< 500 m	l;	>500 ml
φ [mm]	$\ell_{v,max}$ / $\ell_{e,ges,max}$ [mm]	$\ell_{v,\text{max}} / \ell_{e,\text{ges,max}}[\text{mm}]$ $\ell_{v,\text{max}} / \ell_{e,\text{ges}}$	
8		1000	
10		1000	
12 / BRA 12	1000	1200	1800
14		1200	1000
16 / BRA 16		1500	
20 / BRA 20	700	1300	
25	700	1000	2000
28	500	700	2000

Tabelle B3: Verarbeitungszeiten twork und Aushärtezeiten tcure

Temperatur im Verankerungsgrund	Maximal Vera t _{work} [M	rbeitungszeit ¹⁾ inuten]	Minimale Au t _{cure} [M	
[°C]	MCS Uni Plus	MCS Uni Plus S	MCS Uni Plus	MCS Uni Plus S
>±0 bis +5	13 ³⁾		180	360
>+5 bis +10	9 ³⁾	20	90	180
>+10 bis +20	5	10	60	120
>+20 bis +30	4	6	45	60
>+30 bis +40	2 4)	4	35	30

¹⁾ Zeitraum vom Beginn der Mörtelverfüllung bis zum Setzen und Positionieren des Betonstahls / BRA

⁴⁾ Bei Temperaturen im Verankerungsgrund über 30°C, muss die Mörtelkartusche auf +15°C bis 20°C heruntergekühlt werden.

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Verwendungszweck Minimale Betondeckung / Auspresspistolen, Kartuschen und maximale Einbindetiefen / Verarbeitungs- und Aushärtezeiten	Anhang B 4

²⁾ In feuchtem Beton sind die Aushärtezeiten zu verdoppeln

³⁾ Bei Temperaturen im Verankerungsgrund unter 0°C, muss die Mörtelkartusche auf +15°C erwärmt werden.

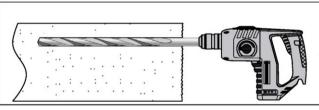
Tabelle B4: Werkzeuge für die Bohrlocherstellung, Bohrlochreinigung und Mörtelverfüllung

	Bohren und Reinigen						Mörtelverfüllung		ng			
Betonstahl/	Bohrer	nenn-	Bohrschneiden-		nneiden- Stahlbürsten-		Reinigungs-	Verläng- Injektion		ions-		
BRA	durchn	nesser	durchmesser durchmesser		düse	erung	ada	oter				
φ [mm]	d ₀ [r	nm]	d _{cut} [mm]		d _b [mm]		[mm]	[mm]	[Far	be]		
8	10 ¹⁾	12 ¹⁾	≤ 10,5	≤ 12,5	11,0	12,5	11		-	Natur		
10	12 ¹⁾	14 ¹⁾	≤ 12,5	≤ 14,5	12,5	15	11	9	Natur	Blau		
12 / BRA 12	14 ¹⁾	16 ¹⁾	≤ 14,5	≤ 16,5	15	17	15		Blau	Rot		
14	13	8	≤ 18	3,50		19	15		Ge	elb		
16 / BRA 16	2	0	≤ 20,55		:	25	19	9 oder	Gr	ün		
20 / BRA 20	2	5	≤ 25	5,55	26,5		19	15	Schv	varz		
25	30		≤ 30,55		32		32		28	15	Gr	au
28	3	5	≤ 35	5,70	37		20		Bra	un		

¹⁾Beide Bohrdurchmesser sind möglich

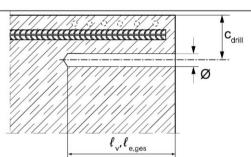
Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Verwendungszweck Werkzeuge für die Bohrlocherstellung, Bohrlochreinigung und Mörtelverfüllung	Anhang B 5

Sicherheitshinweise


Vor Benutzung bitte das Sicherheitsdatenblatt (SDS) für korrekten und sicheren Gebrauch lesen!

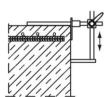
Bei der Arbeit mit MCS Uni Plus geeignete Schutzkleidung, Schutzbrille und Schutzhandschuhe tragen.

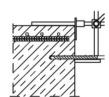
Wichtig: Bitte Gebrauchsanweisung beachten, die jeder Verpackung beiliegt


1. Bohrloch erstellen

Bemerkung: Vor dem Bohren karbonisierten Beton entfernen; Kontaktflächen reinigen (siehe Anhang B1) Bei Fehlbohrungen sind diese zu vermörteln.

Das Bohrloch mit einem Hammer- oder Pressluftbohrer bis zur erforderlichen Setztiefe erstellen.


Bohrergrößen siehe Tabelle B4.



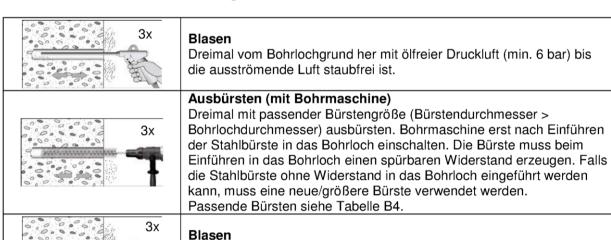
Betonüberdeckung c messen und prüfen $(c_{drill} = c + \phi/2)$.

Parallel zum Rand und zur bestehenden Bewehrung bohren.

Wenn möglich, Bohrhilfe verwenden.

Für Bohrtiefen $\ell_{\rm v}$ > 20 cm Bohrhilfe verwenden. Drei Möglichkeiten:

- A) Bohrhilfe
- B) Latte oder Wasserwaage
- C) Visuelle Kontrolle


Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus

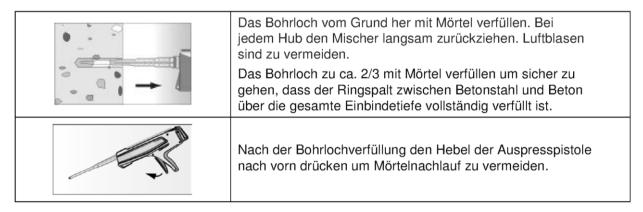
Verwendungszweck Setzanweisung Teil 1 Anhang B 6

Z47371.18

2.1 Bohrloch mit Druckluft reinigen

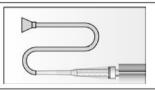
Dreimal vom Bohrlochgrund her mit ölfreier Druckluft (min. 6 bar) bis die ausströmende Luft staubfrei ist.

Ì	Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
	Verwendungszweck Setzanweisung Teil 2	Anhang B 7

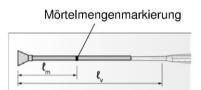


3. Vorbereitung der Betonstähle bzw. Bewehrungsanker BRA und der Mörtelkartusche

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nur saubere, ölfreie und trockene Betonstähle und Bewehrungsanker BRA verwenden. Die Einbindetiefe & markieren (z. B. mit Klebeband)
	Den Betonstahl in das Bohrloch stecken und prüfen, ob die Bohrlochtiefe und die Einbindetiefe übereinstimmen.
	Vorbereitung Mörtelkartusche
	Nr. 1: Die Abdeckkappe abschrauben
	Nr. 2:Den Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)
	Nr.3:Die Mörtelkartusche in eine geeignete Auspresspistole legen.
X	Nr. 4: Einen ca. 10 cm langen Mörtelstrang auspressen bis die Farbe des Mörtels gleichmäßig grau gefärbt ist. Nicht gleichmäßig grau gefärbter Mörtel darf nicht verwendet werden.


4. Injektion des Mörtels in das Bohrloch

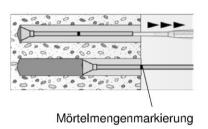
4.1 Bohrlochtiefe ≤ 250 mm:



Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Verwendungszweck Setzanweisung Teil 3	Anhang B 8

4.2 Bohrlochtiefe > 250 mm:

Auf den Statikmischer Verlängerungsschlauch und Injektionsadapter aufstecken (siehe Tabelle B 4)



Jeweils eine Markierung für die erforderliche Mörtelmenge ℓ_{m} und die Einbindetiefe & anbringen (Klebeband oder Markierungsstift)

a) Faustformel:

$$l_m=\frac{1}{3}*l_v\ resp.\ l_m=\frac{1}{3}*l_{e,ges}$$
 b) Genaue Formel für die optimale Mörtelmenge :

$$l_m = l_v resp. l_{e,ges} \left((1,2 * \frac{d_s^2}{d_0^2} - 0,2) \right) [mm]$$

Den Injektionsadapter bis zum Bohrlochgrund in das Bohrloch einstecken und Mörtel injizieren. Während des Verfüllvorgangs dem Injektionsadapter ermöglichen, dass er durch den Druck des eingespritzten Mörtels automatisch aus dem Bohrloch herausgedrückt wird.

Das Bohrloch zu ca. 2/3 mit Mörtel verfüllen um sicher zu gehen, dass der Ringspalt zwischen Betonstahl und Beton über die gesamte Einbindetiefe vollständig verfüllt ist.

Verfüllen, bis die Mörtelmengenmarkierung ℓ_m sichtbar wird. Maximale Einbindetiefen siehe Tabelle B2.

Nach der Bohrlochverfüllung den Hebel der Auspresspistole nach vorn drücken um Mörtelnachlauf zu vermeiden.

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Verwendungszweck Setzanweisung Teil 4	Anhang B 9

4.3 Setzen des Betonstahls bzw. BRA

	Den Betonstahl / BRA mit hin und her drehenden Bewegungen in das verfüllte Bohrloch bis zur Setztiefenmarkierung einführen.
	Bei Überkopfmontage den Betonstahl / BRA gegen Herausfallen mit Keilen sichern bis der Mörtel auszuhärten beginnt.
	Nach dem Setzten des Betonstahls / BRA muss der Ringspalt vollständig mit Mörtel ausgefüllt sein. Setzkontrolle ■ Die gewünschte Setztiefe ℓ, ist erreicht, wenn die Setztiefenmarkierung am Bohrlochmund (Betonoberfläche) sichtbar ist ■ Sichtbarer Mörtelaustritt am Bohrlochmund
	Beachtung der Verarbeitungszeit "t _{work} " (siehe Tabelle B3), die je nach Baustofftemperatur unterschiedlich sein kann. Während der Verarbeitungszeit "t _{work} " ist ein geringfügiges Ausrichten des Betonstahls / BRA möglich.
V.D.	Eine Belastung des Bewehrungsanschlusses darf erst nach Ablauf der Aushärtezeit "t _{cure} " erfolgen (siehe Tabelle B 3)

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Verwendungszweck Setzanweisung Teil 5	Anhang B 10

Minimale Verankerungslängen und minimale Übergreifungslängen

Die minimale Verankerungslänge $\ell_{\text{b,min}}$ und die minimale Übergreifungslänge $\ell_{\text{o,min}}$ entsprechend EN 1992-1-1:2004+AC:2010 ($\ell_{\text{b,min}}$ nach Gl. 8.6 und Gl. 8.7 und $\ell_{\text{o,min}}$ nach Gl. 8.11) müssen mit dem Erhöhungsfaktor α_{lb} nach Tabelle C1 multipliziert werden.

Tabelle C1: Erhöhungsfaktor α_{lb} in Abhängigkeit der Betonfestigkeit und des Bohrverfahrens

Betonfestigkeitsklasse	Bohrverfahren	Erhöhungsfaktor α _{lb}		
C12/15 bis C50/60	Hammerbohren und Pressluftbohren	1,0		

Tabelle C2: Reduktionsfaktor kb für alle Bohrverfahren

				Redul	ktionsfakto	r k _b			
Betonstahl / BRA		Betonfestigkeitsklasse							
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 bis 28					1,0				
BRA M10 bis M20					• •				

Tabelle C3: Bemessungswerte der Verbundtragfähigkeit f_{bd,PIR} in N/mm² für alle Bohrverfahren und für gute Verbundbedingungen

 $f_{bd,PIR} = k_b \cdot f_{bd}$

 f_{bd} : Bemessungswerte der Verbundspannung in N/mm² in Abhängigkeit von der Betonfestigkeitsklasse und dem Stabdurchmesser gemäß EN 1992-1-1: 2004+AC:2010

(für alle anderen Verbundbedingungen sind die Werte mit 0,7 zu multiplizieren)

k_b: Reduktionsfaktor gemäß Tabelle C2

	Verbundtragfähigkeit f _{bd,PIR} [N/mm²]								
Betonstahl / BRA	tahl / BRA Betonfestigkeitsklasse								
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 bis 28 BRA M10 bis M20	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Bewehrungsanschluss mit Multiverbundsystem MCS Uni Plus	
Leistungen	Anhang C 1
Erhöhungsfaktor α _{lb} , Reduktionsfaktor k _b	
Bemessungswerte der Verbundtragfähigkeit fbd,PIR	