

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0093 of 28 August 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

IsoFux Rocket

Screwed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

RANIT-Befestigungssysteme GmbH Lennestraße 3-5 45701 Herten DEUTSCHLAND

RANIT-Befestigungssysteme GmbH Lennestraße 3-5 45701 Herten DEUTSCHLAND

19 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

ETA-12/0093 issued on 17 April 2017

European Technical Assessment ETA-12/0093

Page 2 of 19 | 28 August 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z54517.18 8.06.04-688/18

European Technical Assessment ETA-12/0093

Page 3 of 19 | 28 August 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The RANIT screwed-in anchor type IsoFux Rocket consists of a plastic sleeve made of polypropylene (virgin material), a plastic shaft with a plate and a cover cap made of polyamide (virgin material) and an accompanying specific screw of galvanised steel. For deep mounting of the anchor in the insulating material this anchor type consists in addition of an accompanying insulation cover made of Polystyrol or mineral wool.

For mounting on the surface the anchor may in addition be combined with the anchor plates T90, T110 and T140.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 3

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

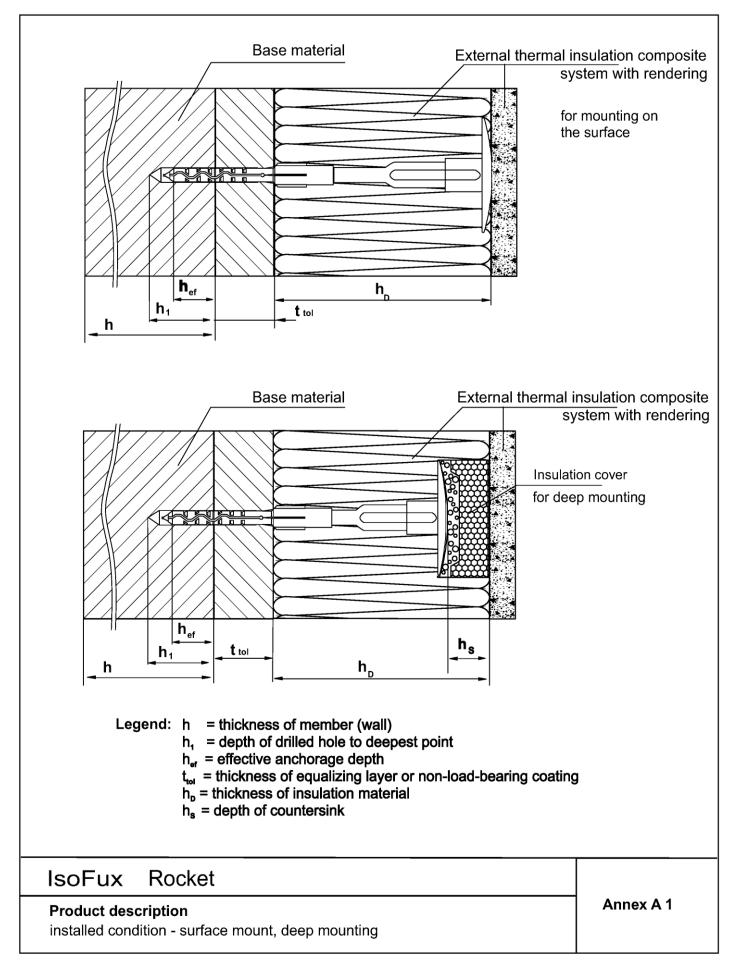
Z54517.18 8.06.04-688/18

European Technical Assessment ETA-12/0093

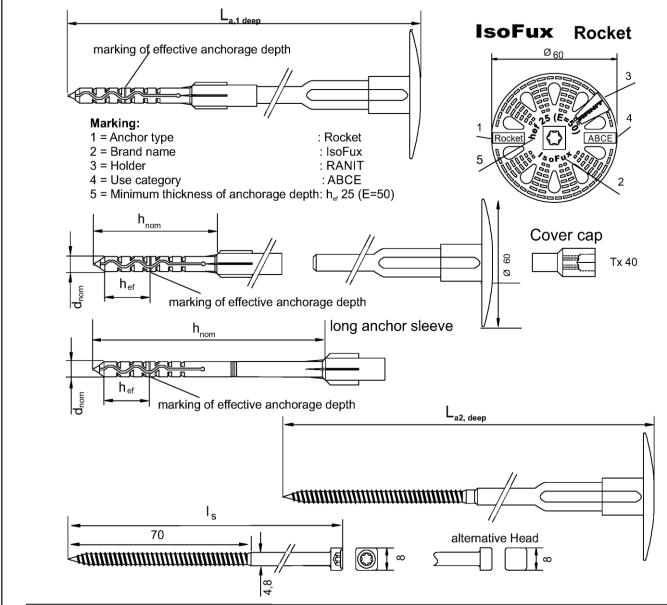
Page 4 of 19 | 28 August 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

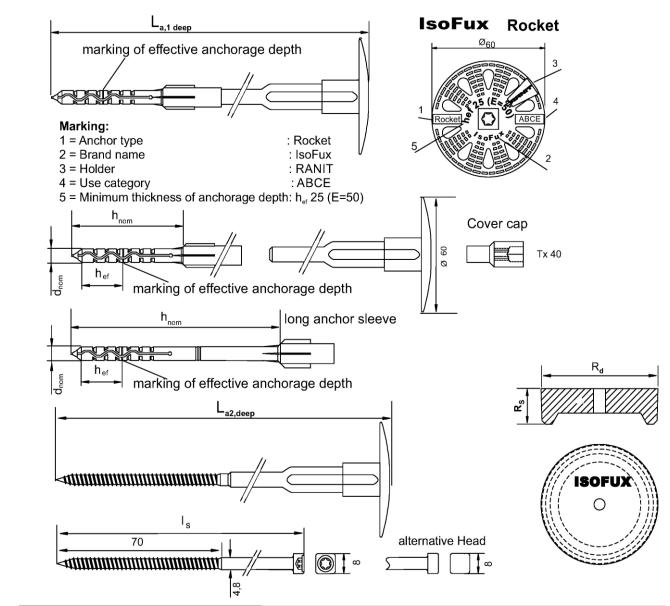
Issued in Berlin on 28 August 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Aksünger

Z54517.18 8.06.04-688/18

Table A1: Dimensions Sizes in mm									
Anchor type		Anchor sleeve				L _{a1}		L _{a2}	
Rocket	d _{nom}	h _{ef}	h _{nom}	t tol max	min L _{a1,}	max L _{a1}	min L _{a2,}	max L _{a2}	
short anchor sleeve	8	25	65	35	155	480	102	427	
long anchor sleeve	8	25	125	95	235	480	182	427	

Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with short anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} - 30 = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 155) 155 -65 -30 = 60 (\mathbf{h}_{Dmax}) Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with long anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} + 30 = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 235) 235 -125 +30 = 140 (\mathbf{h}_{Dmax})


IsoFux	Rocket
1501 UX	LOCKEL

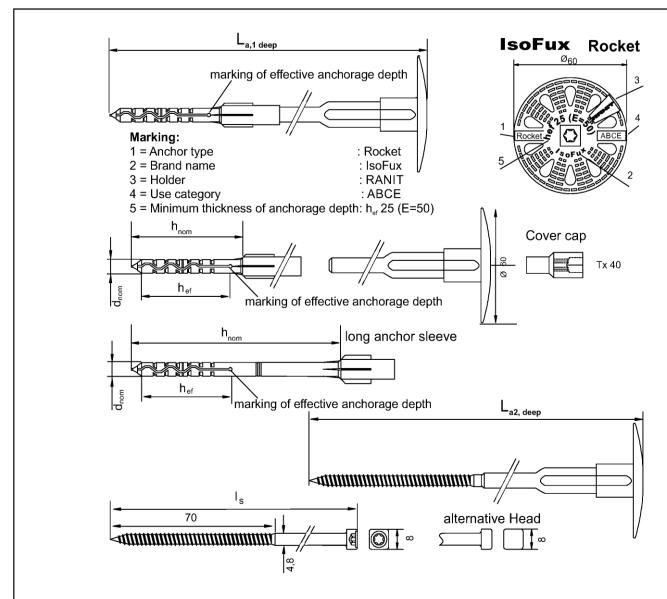
Product description

Use category A, B, C

Components of mounting on the surface Dimensions

Table A2: Dimensions Size							zes in	mm		
Anchor type	Δ	nchor	sleeve		L _{a1}		L _{a2}		COV	⁄er
Rocket	d _{nom}	h _{ef}	h _{nom}	t tol max	min L _{a1,}	max L _{a1}	min L _{a2,}	max L _{a2}	Rs	R₀
short anchor sleeve	8	25	65	35	155	480	102	427	20	64
long anchor sleeve	8	25	125	95	235	480	182	427	20	64

Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with short anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} - 30 + Rs = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 155) 155 -65 -30 +20 = 80 (\mathbf{h}_{Dmax}) Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with long anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} + 30 + Rs = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 235) 235 -125 +30 +20 = 160 (\mathbf{h}_{Dmax})


IsoFux Rocket

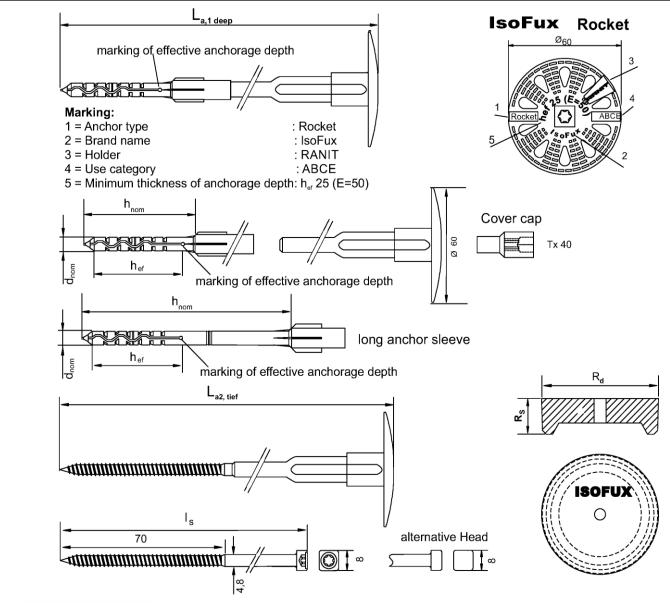
Product description

Use category A, B, C

Components for deep mounting Dimensions

Table A3: Dimensions Sizes in mm								in mm
Anchor type		Anchor sleeve				1	L	2
Rocket	d _{nom}	h _{ef}	h _{nom}	t tol max	min L _{a1,}	max L _{a1}	min L _{a2,}	max L _{a2}
short anchor sleeve	8	50	65	10	155	480	102	427
long anchor sleeve	8	50	125	70	235	480	182	427

Evaluation of thickness of the insulation $\mathbf{h}_{\scriptscriptstyle \mathsf{Dmax}}$ IsoFux Rocket with short anchor sleeve min $L_{a1, deep}$ - h_{nom} - 30 = h_{Dmax} ; e.g.: (min $L_{a1, deep}$ = 155) 155 -65 -30 = 60 (h_{Dmax}) Evaluation of thickness of the insulation $\mathbf{h}_{\scriptscriptstyle{Dmax}}$ IsoFux Rocket with long anchor sleeve min $L_{a1, deep}$ - h_{nom} + 30 = h_{Dmax} ; e.g.: (min $L_{a1, deep}$ = 235) 235 -125 +30 = 140 (h_{Dmax})


IsoFux Rocket

Product description

Use category E (Autoclaved aerated concrete)

Components of mounting on the surface Dimensions

Table A4: Dimensions Sizes in mm							mm			
Anchor type	Α	nchor	sleeve		L _{a1}		L _{a2}		cov	⁄er
Rocket	d _{nom}	h _{ef}	h _{nom}	t _{tol max}	min L _{a1,}	max L _{a1}	min L _{a2,}	max L _{a2}	Rs	R₀
short anchor sleeve	8	50	65	10	155	480	102	427	20	64
long anchor sleeve	8	50	125	70	235	480	182	427	20	64

Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with short anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} - 30 + Rs = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 155) 155 -65 -30 +20 = 80 (\mathbf{h}_{Dmax}) Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with long anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} + 30 + Rs = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 235) 235 -125 +30 +20 = 160 (\mathbf{h}_{Dmax})

IsoFux Rocket

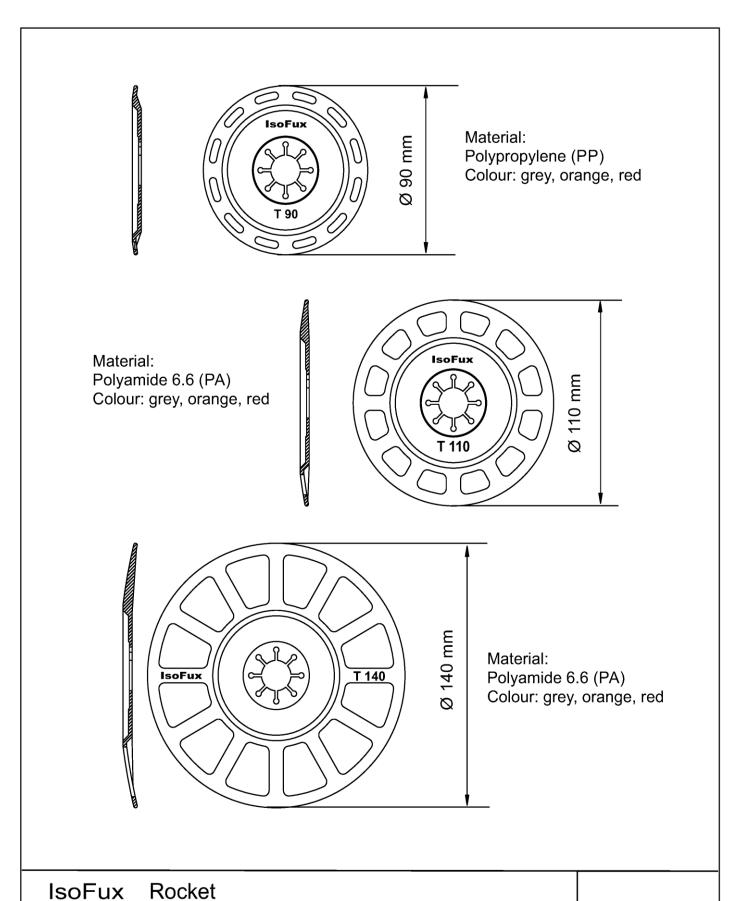
Product description

Use category E (Autoclaved aerated concrete) Components for deep mounting Dimensions

Table A5: Maximum insulation thickness for mounting on the surface and deep mounting, classification of the lengths L_{a1}, colour coding of the cover caps

mounting on the surface	deep mounting	min L _{a1,}	max L _{a1}	Cover cap
h₀ max	h₀ max	deep		Colour
60	80	155	180	beige
80	100	175	200	yellow
100	120	195	220	green
120	140	215	240	white
140	160	235	260	orange
160	180	255	280	brown
180	200	275	300	blue
200	220	295	320	red
220	240	315	340	light grey
240	260	335	360	black
260	280	355	380	violet
280	300	375	400	dark grey
320	340	415	440	dark green
360	380	455	480	natural

Screw-in tool for IsoFux Rocket


for mounting on the surface screw bit long TX 40 stop plate stop plate

IsoFux Rocket

Product description

Classification of the anchor length L_{a1} for the insulation thickness $h_{\text{\tiny D}}$ and colour coding of the cover caps Screw- in tool for IsoFux Rocket

Product description Plates T90, T110 and T140

in combination with IsoFux Rocket (for mounting on the surface)

Table A6: Materials

Designation	Material
Anchor sleeve Colour: grey	Polypropylene (PP) (virgin material)
Shaft with plate Colour: grey or red	Polyamid (PA) (virgin material)
Cover cap	Polyamid 6.0 GF (virgin material)
Additional plate T110, T140 Additional plate T 90 Colour: grey, orange or red	Polyamid 6.6 Polypropylene (PP) (virgin material)
Spezial screw	Steel, electrogalvanized 5 µm
Insulation cover	Polystyrol PS20 Mineral wool Type HD

IsoFux Rocket	
Product description Materials	Annex A 8

Specifications of intended use

Anchorages subject to:

The anchor shall only be used for the transmission of wind suction loads and shall not be used for the transmission of dead loads of thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1
- Solid masonry (use category B) according Annex C 1 and C 2
- Hollow or perforated masonry (use category C) according to Annex C 1 and C 2
- Autoclaved aerated concrete (use category E) according to Annex C 1
- For other base materials of the use categories A, B, C and E, the characteristic resitance of the anchor may be determined by job site tests according to EOTA Technical Report TR051, Edition Dezember 2016.

Application temperature range:

■ 0°C to +40°C (maximum short term temperature +40°C and maximum long term temperature +24°C)

Design:

- The anchors are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safty factors $\gamma_{\rm M} = 2.0$ and $\gamma_{\rm F} = 1.5$, if there are no other national regulations.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored. The position of the anchor shall be indicated on the design drawings.
- Fasteners are only to be used for multiple fixing of thermal insulation composite system.

Installation:

- Drilling method shall comply to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the upervision of the person responsible for technical matters on the site.
- Ambient temperature during the installation of the anchor 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering < 6 weeks.

IsoFux Rocket
Intended use
Specification

Annex B 1

Z17690.17_1 8.06.04-688/18

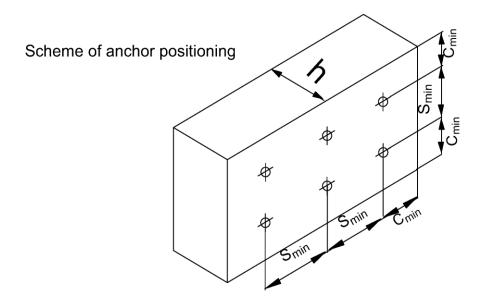
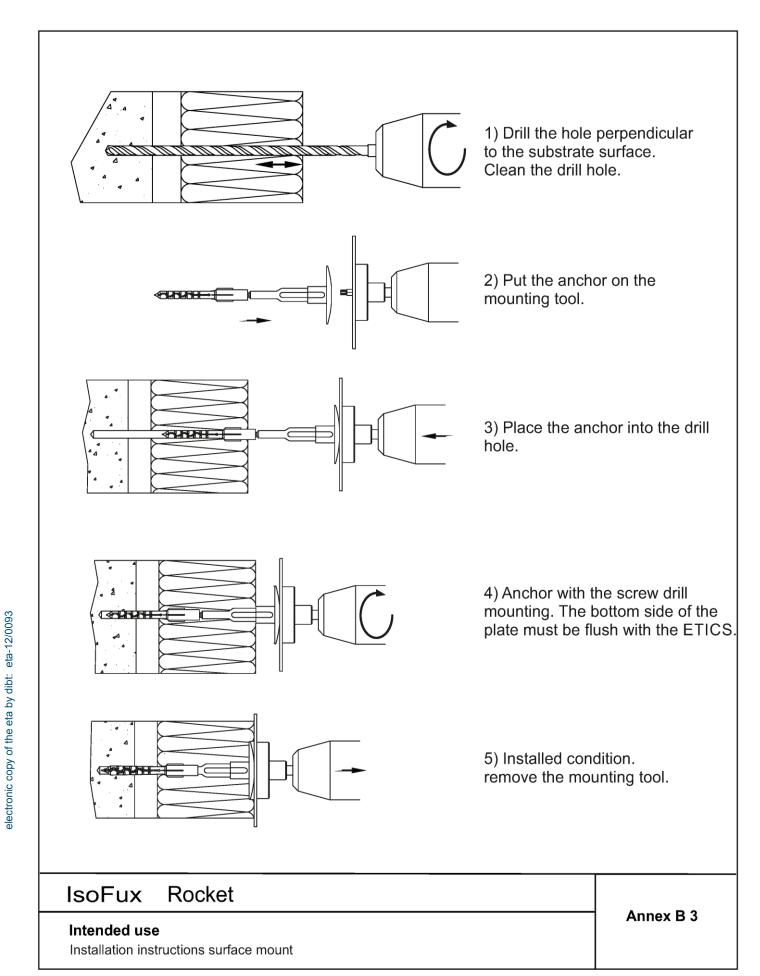
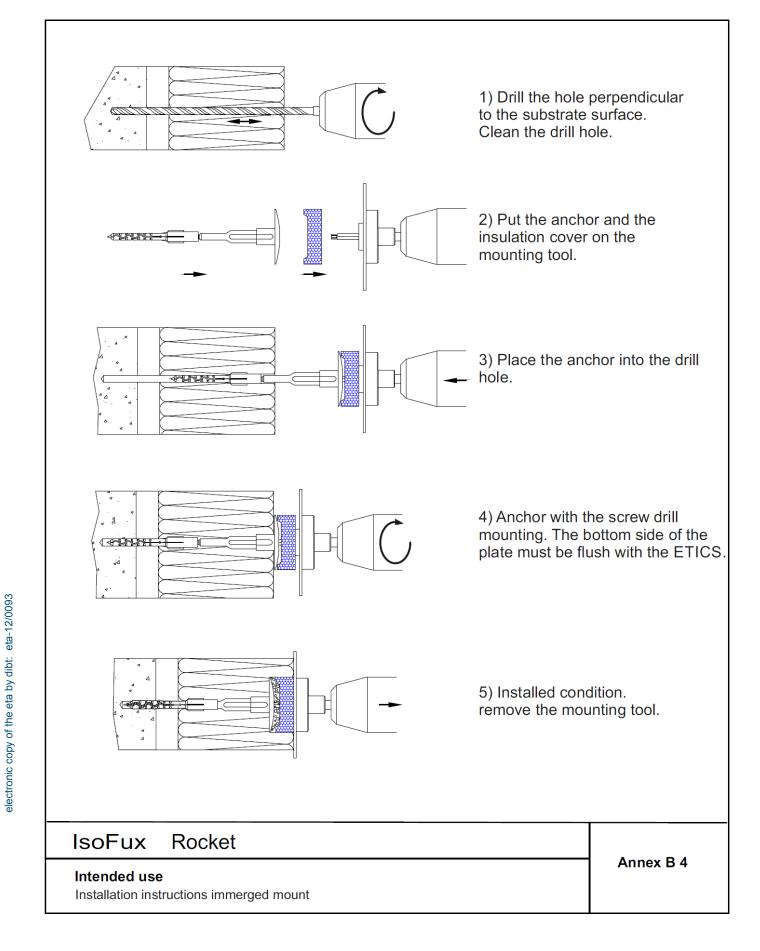


Table B1: Installation parameters

Anchor type	IsoFux	Rocket
Drill hole diameter	d ₀ (mm) =	8
Cutting diameter of drill bit	d _{cut} (mm) ≤	8,45
Depth of drill hole to deepest p	oint	
Use category : A B C	h ₁ (mm) <u>></u>	35
Use category : E	h ₁ (mm) ≥	60
Effective anchorage depth		
Use category : A B C	h _{ef} (mm) ≥	25
Use category : E	h _{ef} (mm) ≥	50


Table B2: Anchor distances and dimensions of members


Anchor type		Rocket
Minimum allowable spacing	S _{min} = [mm]	100
Minimum allowable edge distance	C _{min} = [mm]	100
Minimum thickness of concrete member	h = [mm]	100

IsoFux Rocket	
Intended use	Annex B 2
Installation parameters. Minimum thickness, edge distance nd spacing	

Z17690.17_1 8.06.04-688/18

Z17690.17_1

Table C1: Characteristic resistance N_{Rk} in [kN] to tension loads in concrete and masonry for a single anchor and minimum distances and dimensions

Anchor type IsoFux Rocket				ocket	
Baustoff	Bulk density class	Minimum compressive strength	Remarks	Drill method	N _{Rk}
	ρ [kg/dm³]	f _b [N/mm²]			[kN]
Concrete C12/15 - C20/25 EN 206 :2013				Hammer	1,5
Concrete C50/60 EN 206 : 2013				Hammer	1,5
Clay bricks Mz EN 771-1 : 2011	≥ 1,8	20	Cross-section reduced by vertical perforation up to 15%	Hammer	1,5
Sand-lime solid bricks KS EN 771-2 : 2011	≥ 1,8	12	Cross-section reduced by vertical perforation up to 15%	Hammer	1,5
Sand-lime perforated bricks KSL EN 771-2 : 2011	<u>≥</u> 1,4	12	Cross-section reduced by vertical perforation more than 15%	Rotary drilling	1,2
Vertically perforated clay bricks HLZ EN 771-1 : 2011	≥ 1,0	12	Cross-section reduced by vertical perforation for more than 15% and less than 50%	Rotary drilling	0,75
Lightweight concrete solid bricks EN 771-3 : 2011	≥ 1,2	6	Proportion of hole up to 10% maximum extension of hole: length= 110mm; wide= 45 mm	Rotary drilling	0,4
Lightweight concrete hollow blocks Hbl DIN V18151- 100 :2001-10/ EN 771-3 : 2011	≥ 1,2	6	see Annex C2	Rotary drilling	0,6
Autoclaved aerated concrete EN 771-4 : 2011	<u>≥</u> 0,65	4	PP/PPE	Rotary drilling	1,2

- 1) The value applies only for outer web thicknesses ≥ 20 mm; otherwise the characteristic resistance shall be determined by job-site pull-out tests.
- 2) The value applies only for outer web thickness ≥ 14 mm; otherwise the characteristic resistance shall be determined by job-site pull-out tests.

IsoFux Rocket	
Performance	Annex C 1
Characteristic resistance	

 Table C2:
 Assignment type of anchor for lightweight

concrete hollow blocks according to DIN V 18151-100:2005-10 (EN 771-3:2011)

concrete nollow blocks according	10 011 1 10 10 1-1	00.2005-10 (EN 771-
Geometry	Thickness d [mm]	Outer web in longitudinal direction a [mm]
□ □ □ □ □ □ □	175	50
	240 300	50
a	175	35
a	240 300 365	35
	240 300 365	30

Anchor shall be placed in the brick in such way, that the spreading part of the expansion sleeve is located in the outer web.

Table C3: Plate stiffness according EOTA Technical Report TR 026: May 2016

Ancher type	Diameter of the anchor plate [mm]	Load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]
RANIT Isofux Rocket	60	2,5	1,1

IsoFux Rocket	
Performance Assignment type of anchor for hollow blocks of lightweight concrete, plate stiffness	Annex C 2

Table C4: Displacements

Base material	Bulk density class [kg/dm³]	Minimum compressive strength [N/mm²]	Tension load N [kN]	Displacements δ _m (N) [mm]
Concrete C12/15 - C50/60 (EN 206:2013)	≥ 1,8	20	0,50	0,3
Clay brick, Mz (EN 771-1:2011)	≥ 1,8	20	0,50	0,3
Sand-lime solid brick, KS (EN 771-2:2011)	≥ 1,8	12	0,50	0,3
Vertically perforated sand-lime brick , KSL (EN 771-2:2011)	≥ 1,4	12	0,40	0,3
Vertically perforated clay brick, HLZ (EN 771-1:2011)	≥ 1,0	12	0,25	0,3
Lightweight concrete solid bricks, V (EN 771-3:2011)	≥ 1,2	6	0,15	0,3
Lightweight concrete hollow blocks, Hbl (DIN V 18151-100:2005-10) (EN 771-3:2011)	≥ 1,2	6	0,20	0,3
Autoclaved aerated concrete, AAC (EN 771-4:2011)	≥ 0,65	4	0,40	0,3

Table C5: Point thermal transmittance according EOTA Technical Report TR 025: May 2016

Anchor type	Insulation thickness h _D [mm]	point thermal transmittance χ [W/K]
RANIT IsoFux Rocket deep mounted	80 - 380	0,001
RANIT IsoFux Rocket flush mounted	60 - 360	0,002

IsoFux Rocket	
Performance	Annex C 3
Displacements, point thermal transmittance	