

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0142 of 7 November 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Apolo MEA Quick fix anchor BA plus
Product family to which the construction product belongs	Mechanical fasteners for use in concrete
Manufacturer	Apolo MEA Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND
Manufacturing plant	Plant 11 Plant 12
This European Technical Assessment contains	11 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-00-0601
This version replaces	ETA-12/0142 issued on 8 February 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-12/0142

Page 2 of 11 | 7 November 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 11 | 7 November 2018

Specific Part

1 Technical description of the product

The Apolo MEA Quick fix anchor BA plus is an anchor of sizes M6, M8, M10, M12, M16 and M20 made of galvanised steel which is placed into a drilled hole and anchored by torque-controlled expansion.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

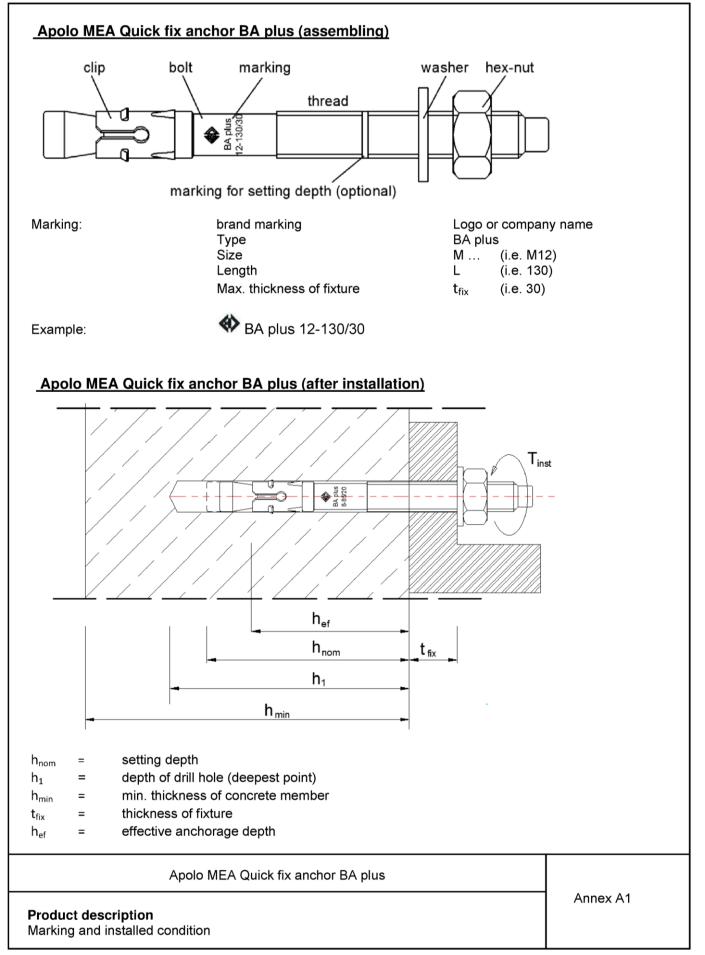
The system to be applied is: 1

European Technical Assessment ETA-12/0142

Page 4 of 11 | 7 November 2018

English translation prepared by DIBt

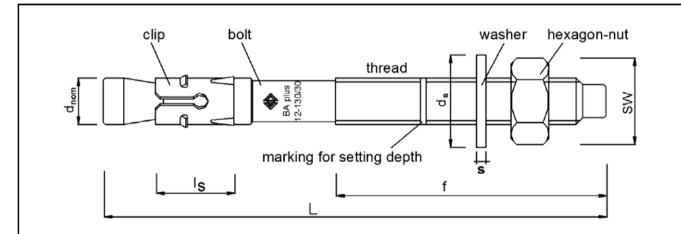
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 7 November 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Tempel



Page 6 of European Technical Assessment ETA-12/0142 of 7 November 2018

English translation prepared by DIBt

Table 1: Designation, materials and strength

Designation	material	strength
bolt	cold form steel or free cutting steel	$ \begin{array}{l} M6: \ f_{uk} \geq 900 \ N/mm^2 \ , \ f_{vk} \geq 720 \ N/mm^2 \\ M8: \ f_{uk} \geq 750 \ N/mm^2 \ , \ f_{vk} \geq 650 \ N/mm^2 \\ M10: \ f_{uk} \geq 670 \ N/mm^2 \ , \ f_{vk} \geq 540 \ N/mm^2 \\ M12: \ f_{uk} \geq 630 \ N/mm^2 \ , \ f_{vk} \geq 500 \ N/mm^2 \\ M16: \ f_{uk} \geq 600 \ N/mm^2 \ , \ f_{vk} \geq 510 \ N/mm^2 \\ M20: \ f_{uk} \geq 510 \ N/mm^2 \ , \ f_{vk} \geq 410 \ N/mm^2 \\ \end{array} $
clip	cold steel strip acc. EN 10130, C490, C1035/C1045	≥ 128 HV 10 or HV 1
washer	cold steel strip	≥ 140 HV 10 or HV 1
nut	Steel, size acc. DIN 934 or EN 4032	class 8 (DIN EN ISO 898-2)

all parts zinc plated and blue passivated \geq 5 μm acc. EN ISO 4042

Table 2: Dimensions

anchor		bolt			clip	was	hex-nut	
		length overall	length overall	bolt-Ø	length	thickness	outer-Ø	Wrench size
type	size	L	f	d _{nom}	ا _s	s	ds	SW
	si	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
BA plus	M6	55 - 150	acc. drawing	6	13,3	≥ 1,4	≥ 12	10
BA plus	M8	65 - 365	acc. drawing	8	13,5	≥ 1,4	≥ 16	13
BA plus	M10	75 - 375	acc. drawing	10	20,5	≥ 1,7	≥ 19	17
BA plus	M12	100 - 500	acc. drawing	12	20,0	≥ 2,2	≥ 23	19
BA plus	M16	120 - 615	acc. drawing	16	24,0	≥ 2,7	≥ 29	24
BA plus	M20	160 - 640	acc. drawing	20	28,8	≥ 2,7	≥ 35	30

Apolo MEA Quick fix anchor BA plus

Product description Designation, materials and anchor dimensions Annex A2

electronic copy of the eta by dibt: eta-12/0142

Page 7 of European Technical Assessment ETA-12/0142 of 7 November 2018

English translation prepared by DIBt

Specification of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- · Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Uncracked concrete.

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with FprEN 1992-4:2017 and EOTA Technical Report TR 055

Installation:

- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- · Hole drilling by hammer drilling only.
- · Positioning of the drill holes without damaging the reinforcement.

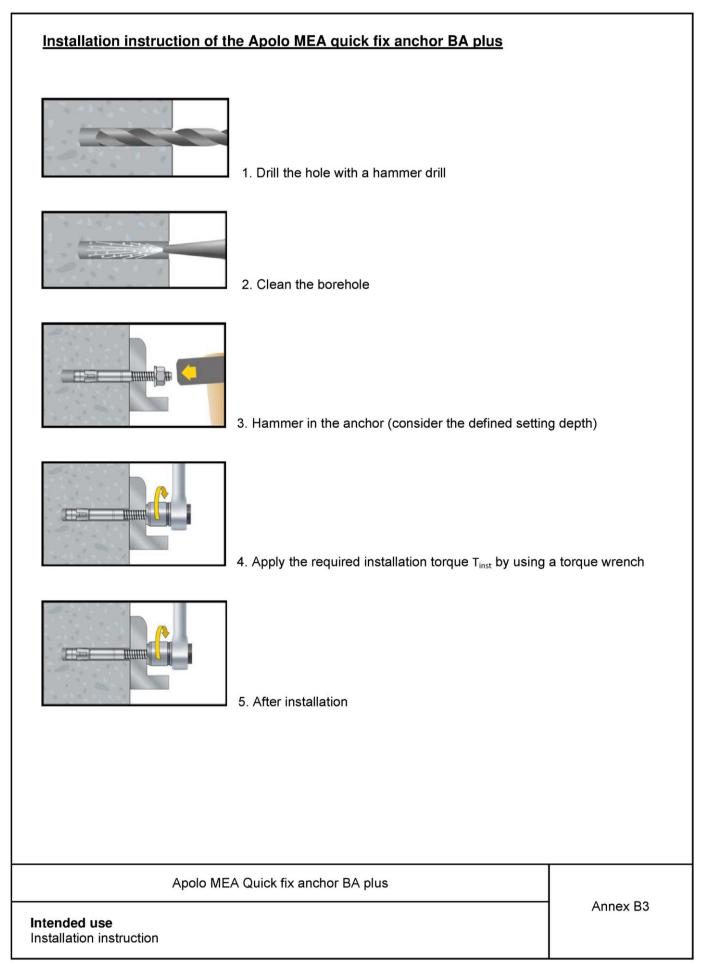
Apolo MEA Quick fix anchor BA plus

Intended use Specification Annex B1

Table 3: Installation data

Apolo MEA Quick fix ancho	r BA plus		size	size	size	size	size	size
			M6	M8	M10	M12	M16	M20
nominal driller diameter	d _o	[mm]	6	8	10	12	16	20
max. cutting diameter of drill bit	d _{cut,max} ≤	[mm]	6,40	8,45	10,45	12,50	16,50	20,55
depth of drill hole (deepest point)	h₁≥	[mm]	48	60	65	90	110	130
effective anchorage depth	h _{ef} ≥	[mm]	35	45	50	70	85	100
setting depth	h _{nom} ≥	[mm]	40	54	59	84	99	114
diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
thickness of fixture	t _{fix,minmax}	[mm]	0100	0300	0300	0400	0500	0500
wrench size of the nut	SW	[mm]	10	13	17	19	24	30
Required installation torque moment	T _{inst}	[Nm]	8	15	30	50	110	180

Table 4: Minimum thickness of concrete member, min. spacing and edge distance


Apolo MEA Quick fix ancho	r BA plus		size M6	size M8	size M10	size M12	size M16	size M20
minimum thickness of member	h _{min}	[mm]	100	100	120	160	200	200
minimum spacing	S _{min}	[mm]	50	50	120	70	100	160
minimum edge distance	C _{min}	[mm]	50	50	90	90	100	150

Apolo MEA Quick fix anchor BA plus

Annex B2

Intended use Installation data, minimum thickness, min. spacing and edge distance

Apolo MEA Quick fix anchor		•	size	size	size	size	size	size
Apolo MEA Guick IX anchor DA plus			M6	M8	M10	M12	M16	M20
Steel failure								
characteristic resistance	N _{Rk,s}	[kN]	12,1	17,2	27,5	40,0	70,0	109,3
partial safety factor	γ _{Ms}	[-]	1,5	1,4	1,49	1,51	1,41	1,5
Pull out failure								
characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	7,5	17	16	24	32	50
increasing factors for $N_{Rk,p}$	Ψc	C25/30	1,10	1,00	1,10	1,08	1,10	1,10
		C30/37	1,22	1,00	1,22	1,16	1,22	1,22
		C40/50	1,41	1,00	1,41	1,28	1,41	1,41
		C50/60	1,58	1,00	1,58	1,39	1,58	1,58
installation factor	γ_{inst}	[-]	1,0	1,0	1,0	1,0	1,2	1,2
Concrete cone failure								
effective anchorage depth	h _{ef}	[mm]	35	45	50	70	85	100
factor for uncracked concrete	k _{ucr,N}	[-]			11	,0		
spacing	S _{cr,N}	[mm]			3	h _{ef}		
edge distance	C _{cr,N}	[mm]			1,5	h _{ef}		
installation factor	γ_{inst}	[-]	1,0	1,0	1,0	1,0	1,2	1,2
Concrete splitting failure								
spacing (splitting)	S _{cr,sp}	[mm]	190	190	240	390	400	400
edge distance (splitting)	C _{cr,sp}	[mm]	95	100	120	125	160	225
installation factor	γ_{inst}	[-]	1,0	1,0	1,0	1,0	1,2	1,2

Table 6: Displacements under tension loads

			size	size	size	size	size	size
Apolo MEA Quick fix ancho	рг БА ріц	5	M6	M8	M10	M12	M16	M20
tension load	N	[kN]	3,6	8,1	6,3	11,4	12,7	21,5
displacements	δ_{NO}	[mm]	0,2	1,2	1,3	1,3	0,7	0,4
displacements	δ _{N∞}	[mm]	0,6	1,6	1,9	1,6	1,6	1,5

Apolo MEA Quick fix anchor BA plus

Performances Characteristic values of tension load resistance, displacement Annex C1

Analo MEA Quick fix anaba			size	size	size	size	size	size
Apolo MEA Quick fix anchor BA plus			M6	M8	M10	M12	M16	M20
Steel failure with or without	lever arn	n						
characteristic shear load resistance	V _{Rk,s}	[kN]	6,4	13,7	19,4	16,8	30,6	50,5
characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	9,8	28,1	50,1	82,6	199,8	267,5
factor	k 7	[-]	1,0	1,0	1,0	1,0	1,0	1,0
partial safety factor	Ŷмs	[-]	1,5	1,5	1,5	1,26	1,5	1,5
Concrete pryout failure								
factor for pry out failure	k ₈	[-]	1,0	1,0	1,0	2,0	2,0	2,0
installation factor	γ_{inst}	[-]			1	,0		
Concrete edge failure								
effective length of anchor under shear load	l _f	[mm]	35	45	50	70	85	100
effective external diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20
installation factor	γ_{inst}	[-]			1	,0		

Table 7: Design method A - Characteristic values for shear loads

Table 8: Displacements under shear loads

Apolo MEA Quick fix ancho	r BA plus	5	size M6	size M8	size M10	size M12	size M16	size M20
shear load	V	[kN]	3,1	6,5	9,2	9,6	14,8	24,0
displacements	δ _{νο}	[mm]	0,7	0,9	1,9	0,8	1,5	1,0
displacements	δ _{V∞}	[mm]	1,1	1,4	2,9	1,2	2,3	1,5

Apolo MEA Quick fix anchor BA plus

Performances

Characteristic values of shear load resistance, displacement

Annex C2