

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0155 of 27 March 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Q Highload Anchor SZ

Mechanical anchor for use in concrete

Q-railing Europe GmbH & Co. KG Marie-Curie-Straße 12 46446 Emmerich am Rhein DEUTSCHLAND

Deutschland, Werk 1

20 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-12/0155

Page 2 of 20 | 27 March 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0155

Page 3 of 20 | 27 March 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Q Highload Anchor SZ is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type SZ-B with threaded bolt,
- Anchor type SZ-S with hexagon head screw,
- Anchor type SZ-SK with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance for static and quasi-static loading	See Annex C1 to C5			
Characteristic resistance for seismic performance category C1 and C2	See Annex C6 to C7			
Displacements under tension and shear loads	See Annex C9 and C10			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	See Annex C8		

European Technical Assessment ETA-12/0155

Page 4 of 20 | 27 March 2018

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

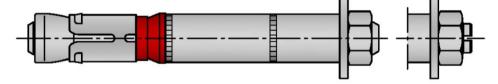
In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

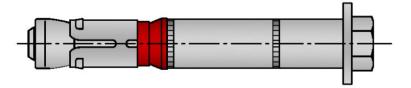
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

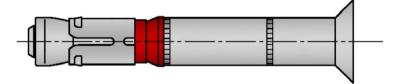
Issued in Berlin on 27 March 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

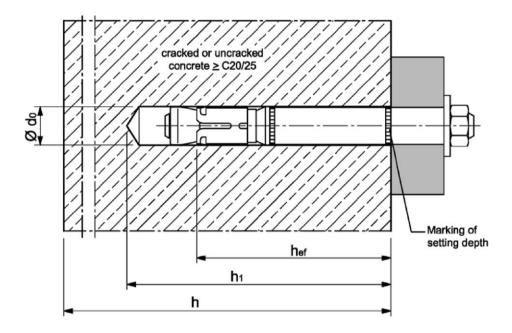
beglaubigt: Baderschneider



Anchor type SZ-B with threaded bolt


SZ-B (M6-M24) SZ-B (M8-M16) A4

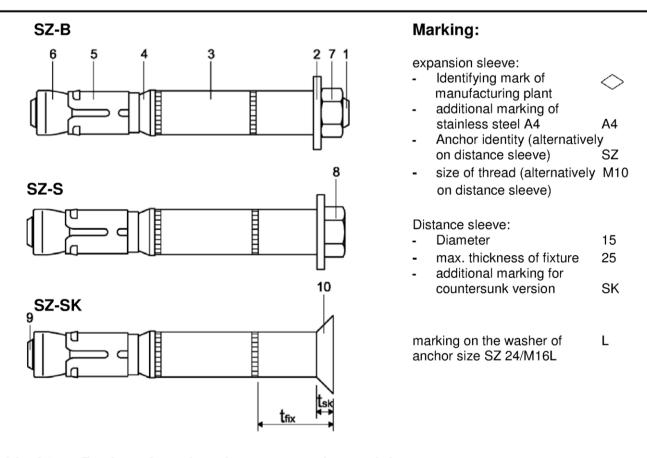
Anchor type SZ-S with hexagon head screw


SZ-S (M6-M24) SZ-S (M8-M16) A4

Anchor type SZ-SK with countersunk washer and countersunk screw

SZ-SK (M6-M12) SZ-SK (M8-M12) A4

Installation condition


Q Highload Anchor SZ

Product description

Product and installation situation

Annex A1

Table A1: Designation of anchor parts and materials

Part	Designation	Materials galvanised ≥ 5 μm, acc. to EN ISO 4042:1999	Stainless steel A4	
1	Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014	
2	Washer	Steel, EN 10139:2016	Stainless steel, EN 10088:2014	
3	Distance sleeve Steel tube EN 10305-2:2016, EN 10305-3:2016; Steel tube stainless steel, 1.4404 or 1.4571; EN 10217-1021			
4	Ring	Polyethylene	Polyethylene	
5	Expansion sleeve	Steel, EN 10139:2016	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014	
6	Threaded cone	Steel EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014	
7	Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, strength class 70, EN ISO 3506-2:2009	
8	Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009	
9	Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009	
10	Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014, zinc plated	

Q Highload Anchor SZ	
Product description Marking and materials	Annex A2

Specification of intended use

Q Highload Anchor SZ, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Static or quasi-static action		✓						
Seismic action (SZ-B and SZ-S)	-	- C1 + C2						
Seismic action (SZ-SK)	-	- C1 + C2 -						
Fire exposure		R 30 R 120						

Q Highload Anchor SZ, stainless steel A4	12/M8	15/M10	18/M12	24/M16	
Static or quasi-static action	✓				
Seismic action (SZ-B and SZ-S)	C1 + C2				
Seismic action (SZ-SK)	C1 + C2 -				
Fire exposure	R30 R120				

Base materials:

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)

Design:

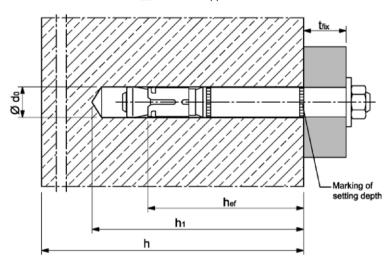
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions, seismic actions and under fire exposure are designed in accordance with FprEN 1992-4:2016 and TR 055.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured when the embedment mark of the anchor does no more exceed the concrete surface.
- Use as supplied by the manufacturer without replacing individual parts.
- Drilling of hole only by hammer drilling (use of vacuum drill bits is admissible)

Q Highload Anchor SZ	
Intended use Specification of intended use	Annex B1

electronic copy of the eta by dibt: eta-12/0155


Installation instructions 909 Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3. Blow out dust. Alternatively vacuum clean 2 down to the bottom of the hole. Drive in anchor. 3 TINST Apply installation torque T_{inst} by using calibrated torque wrench.

Q Highload Anchor SZ	
Intended use Installation instructions	Annex B2

Table B1: Installation parameters, steel zinc plated

	$\overline{}$								
		10/M6	12/ M8	15/ M10	18/ M12	24/ M16	24/ M16L	28/ M20	32/ M24
	[-]	M6	M8	M10	M12	M16	M16	M20	M24
h _{ef}	[mm]	50	60	71	80	100	115	125	150
$d_0 =$	[mm]	10	12	15	18	24	24	28	32
d _{cut} ≤	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
$h_1 \geq$	[mm]	65	80	95	105	130	145	160	180
$d_f\!\leq\!$	[mm]	12	14	17	20	26	26	31	35
t _{sk}	[mm]	4	5	6	7	-	-	-	-
2) x min	[mm]	8	10	14	18	-	-	-	-
SZ-S)	[Nm]	15	30	50	80	160	160	280	280
:-SK)	[Nm]	10	25	55	70	-	-	-	-
h _{min}	[mm]	100	120	140	160	200	230	250	300
S _{min}	[mm]	50	50	60	70	100	100	125	150
or c ≥	[mm]	50	80	120	140	180	180	300	300
C _{min}	[mm]	50	55	60	70	100	100	180	150
ors≥	[mm]	50	100	120	160	220	220	540	300
S _{min}	[mm]	50	60	60	70	100	100	125	150
or c ≥	[mm]	80	100	120	140	180	180	300	300
C _{min}	[mm]	50	60	60	70	100	100	180	150
ors≥	[mm]	100	120	120	160	220	220	540	300
3	$\begin{array}{l} d_0 = \\ d_{cut} \leq \\ h_1 \geq \\ \\ d_f \leq \\ \\ t_{sk} \\ \\ \hline \\ z = \\ c_{min} \\ \\ c_{cmin} \\ c_{cmin}$	$\begin{array}{c cccc} h_{ef} & [mm] \\ d_0 = & [mm] \\ d_0 = & [mm] \\ d_{cut} \leq & [mm] \\ h_1 \geq & [mm] \\ \end{array}$ $\begin{array}{c cccc} d_f \leq & [mm] \\ \hline \\ d_f \leq & [mm] \\ \hline \\ x_{min}^{2} & [mm] \\ \hline \\ x_$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Q Highload Anchor SZ **Annex B3** Intended use Installation parameters, steel zinc plated

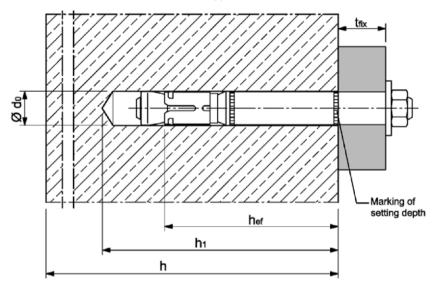

¹⁾ Intermediate values by linear interpolation
2) Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex Depending on the existing of hole) A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

Table B2: Installation parameters, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	$h_1 \geq$	[mm]	80	95	105	130
Diameter of clearance hole in the fixtu	re d _f ≤	[mm]	14	17	20	26
Thickness of countersunk washer SZ-	SK t _{sk}	[mm]	5	6	7	-
Minimum thickness of fixture SZ-SK	t _{fix min} 2)	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Installation torque	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	120	140	160	200
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
cracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	70	80
cracked concrete	for s ≥	[mm]	80	120	160	200
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
uncracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	85	70	180
uncracked concrete	for s ≥	[mm]	80	185	160	80

¹⁾ Intermediate values by linear interpolation

Q Highload Anchor SZ **Annex B4** Intended use Installation parameters, stainless steel A4

Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

Table C1: Characteristic values for tension load, cracked concrete, static or quasi-static action, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation safety factor	γinst	[-]				1	,0			
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Partial safety factor	γмѕ	[-]				1	,5			
Pull-out failure										
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	12	16	1)	1)	1)	1)	1)
Increasing factor for N _{Rk,p}	Ψс	[-]	$\left(rac{f_{ m ck}}{20} ight)^{0.5}$							
Concrete cone failure										
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Factor k ₁ =	$k_{\text{cr},N}$	[-]				7	,7			

¹⁾ Pull-out is not decisive

Table C2: Characteristic values for tension load, cracked concrete, static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16			
Installation safety factor	γinst	[-]		1	,0				
Steel failure									
SZ-B									
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110			
Partial safety factor	γMs	[-]		1	,5				
SZ-S and SZ-SK									
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110			
Partial safety factor	γMs	[-]		1,	87				
Pull-out failure									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	1)	1)			
Increasing factor for N _{Rk,p}	Ψс	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0,5}$						
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100			
Factor k ₁ =	k _{cr,N}	[-]	7,7						

¹⁾ Pull-out is not decisive

Q Highload Anchor SZ	
Performance Characteristic values for tension load, cracked concrete, static or quasi-static action	Annex C1

Table C3: Characteristic values for **tension load, uncracked concrete**, static or quasi-static action, **steel zinc plated**

Static of quasi-static action, steel zinc plated										
Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation safety factor	γinst	[-]				1	,0			
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Partial safety factor	γMs	[-]				1	,5			
Pull-out failure										
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	1)	20	1)	1)	1)	1)	1)	1)
Increasing factor for N _{Rk,p}	Ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Splitting failure (The higher re	esistance	of case	1 and ca	se 2 may	be applied	d)				
Case 1										
Characteristic resistance in uncracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	12	16	25	30	40	70	50	70
Edge distance	$C_{\text{cr,sp}}$	[mm]				1,5	h _{ef}			
Increasing factor for N ⁰ _{Rk,sp}	Ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Case 2										
Characteristic resistance in uncracked concrete	$N^0_{\ Rk,sp}$	[kN]				min {N _{Rk}	$_{,p}; N^0_{Rk,c}$			
Edge distance	C _{cr,sp}	[mm]	2,5 h _{ef} 1,5 h _{ef} 2,5 h _{ef} 2 h _{ef}						2 h _{ef}	
Concrete cone failure										
Effective Anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125	150
Edge distance	C _{cr,N}	[mm]				1,5	h _{ef}			
Factor k ₁ =	k _{ucr,N}	[-]				11	,0			

¹⁾ Pull-out is not decisive

Q Highload Anchor SZ

Performance

Characteristic values for **tension load**, **uncracked concrete**, static or quasi-static action, **steel zinc plated**

Annex C2

Table C4: Characteristic values for **tension load, uncracked concrete**, static or quasi-static action, **stainless steel A4**

Anchor size			12/M8	15/M10	18/M12	24/M16
Installation safety factor	γinst	[-]		1	,0	
Steel failure						
SZ-B						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1	,5	
SZ-S and SZ-SK						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1,	87	
Pull-out failure						
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	16	25	35	1)
Increasing factor for N _{Rk,p}	Ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Splitting failure						
Edge distance	$C_{cr,sp}$	[mm]	180	235	265	300
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Edge distance	C _{cr,N}	[mm]		1,5	h _{ef}	
Factor k ₁ =	$k_{ucr,N}$	[-]		11	,0	

¹⁾ Pull-out is not decisive.

Q Highload Anchor SZ

Performance

Characteristic values for **tension loads**, **uncracked concrete**, static or quasi-static action, **stainless steel A4**

Annex C3

Table C5: Characteristic values of **shear load**, static or quasi-static action, **steel zinc plated**

					1			04/		
Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Steel failure without	lever arn	n								
SZ-B										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	16	25	36	63	91	91	122	200
Factor	k_7	[-]				1	,0			
SZ-S and SZ-SK										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	18	30	48	73	126	126	150	200
Factor	k_7	[-]		1,0						
Partial safety factor	γ_{Ms}	[-]				1,	25			
Steel failure with lev	er arm									
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	266	519	898
Partial safety factor	$\gamma_{\sf Ms}$	[-]				1,2	25			
Concrete pry-out fail	lure									
Factor	k ₈	[-]	1,8				2,0			
Concrete edge failur	е									
Effective length of anchor in shear loading	l _f	[mm]	50	60	71	80	100	115	125	150
Outside diameter of anchor	d_{nom}	[mm]	10	12	15	18	24	24	28	32

Q Highload Anchor SZ	
Performance Characteristic values for shear load, static or quasi-static action, steel zinc plated	Annex C4

Table C6: Characteristic values for **shear load**, static or quasi-static action, **stainless steel A4**

Anchor size			12/M8	15/M10	18/M12	24/M16
Steel failure without lever arm						
Characteristic resistance	$V^0_{Rk,s}$	[kN]	24	37	62	92
SZ-B						
Factor	k_7	[-]		1	,0	
Partial safety factor	γ_{Ms}	[-]		1,	25	
SZ-S						
Factor	k_7	[-]		1,	0	
Partial safety factor	γ_{Ms}	[-]		1,	36	
SZ-SK						
Factor	k_7	[-]		0,8		-
Partial safety factor	γ_{Ms}	[-]		1,36		-
Steel failure with lever arm	_					
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232
SZ-B						
Partial safety factor	γ_{Ms}	[-]		1,	25	
SZ-S and SZ-SK						
Partial safety factor	γ_{Ms}	[-]		1,	56	
Concrete pry-out failure						
Factor	k_8	[-]	2,0			
Concrete edge failure						
Effective length of anchor in shear loading	I _f	[mm]	60	71	80	100
Outside diameter of anchor	d_{nom}	[mm]	12	15	18	24

Q Highload Anchor SZ	
Performance Characteristic values for shear load, static or quasi-static action, stainless steel A4	Annex C5

Table C7:	Characteristic values for	seismic action	Category C	1 and C2	steel zinc plated
Table C1.	Characteristic values for	Seisille action,	Calegory	i aliu CZ.	Sieer zinc pialeu

							0 02, 50		•
Anchor size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Tension load									
Installation safety factor	γinst	[-]				1,0			
Steel failure									
Characteristic tension resistance category C1	$N_{Rk,s,eq,C1}$	[kN]	29	46	67	126	126	196	280
Characteristic tension resistance category C2	$N_{\text{Rk,s,eq,C2}}$	[kN]	29	46	67	126	126	196	280
Partial safety factor	γ_{Ms}	[-]				1,5			
Pull-out failure									
Characteristic tension resistance category C1	$N_{Rk,p,eq,C1}$	[kN]	12	16	25	36	44,4	50,3	63,3
Characteristic tension resistance category C2	$N_{Rk,p,eq,C2}$	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3
Shear load									
Steel failure without lever	r arm								
SZ-B									
Characteristic shear resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic shear resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
SZ-S									
Characteristic shear resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic shear resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
SZ-SK									
Characteristic shear resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	25,2	36,5	50,4	-	-	-	-
Characteristic shear resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	19,2	29,3	39,4	-	-	-	-
Partial safety factor	$\gamma_{\sf Ms}$	[-]				1,25			

Q Highload Anchor SZ	
Performance Characteristic values for seismic action, steel zinc plated	Annex C6

Table C8: Characteristic values for seismic action, Category C1 and C2, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Tension load						
Installation safety factor	γinst	[-]		1,	,0	
Steel failure						
Characteristic tension resistance, category C1	$N_{Rk,s,eq,C1}$	[kN]	26	41	60	110
Characteristic tension resistance, category C2	$N_{\text{Rk,s,eq,C2}}$	[kN]	26	41	60	110
Partial safety factor SZ-B	γ_{Ms}	[-]		1,	5	
Partial safety factor SZ-S and SZ-SK	γ̃Ms	[-]		1,	87	
Pull-out failure						
Characteristic tension resistance, category C1	$N_{Rk,p,eq,C1}$	[kN]	9	16	26	36
Characteristic tension resistance, category C2	$N_{Rk,p,eq,C2}$	[kN]	4,8	16,5	24,8	44,5
Shear load						
Steel failure without lever arm						
SZ-B						
Characteristic shear resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Characteristic shear resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Partial safety factor	γ _{Ms}	[-]		1,	25	
SZ-S						
Characteristic shear resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Characteristic shear resistance, category C2	$V_{\rm Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Partial safety factor	γ_{Ms}	[-]	1,36			
SZ-SK						
Characteristic shear resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-
Characteristic shear resistance, category C2	$V_{\rm Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	-
Partial safety factor	γ_{Ms}	[-]		1,36		-

Q Highload Anchor SZ	
Performance Characteristic values for seismic action, stainless steel A4	Annex C7

Table C9:	Characteristic values under fire exposure in cracked and uncracked concrete
	C20/25 to C50/60

Anchor size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Tension load		•						-		1	
Steel failure											
Steel zinc plate	d										
Characteristic	R30	– N _{Rk,s,fi}	[kN]	1,0	1,9	4,3	6,3	11	,6	18,3	26,3
	R60			0,8	1,5	3,2	4,6	8,	,6	13,5	19,5
resistance	R90			0,6	1,0	2,1	3,0	5	,0	7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,1		4,9	9,2
Stainless steel	A 4										
	R30		[kN]	-	6,1	10,2	15,7	29,2	-	-	-
Characteristic	R60	- N _{Rk,s,fi}		-	4,4	7,3	11,1	20,6	-	-	-
resistance	R90			-	2,6	4,3	6,4	12,0	-	-	-
	R120			1	1,8	2,8	4,1	7,7	ı	-	-
Shear load											
Steel failure wit	hout leve	er arm									
Steel zinc plate	d										
Characteristic resistance	R30	– V _{Rk,s,fi}	[kN]	1,0	1,9	4,3	6,3	11	11,6		26,3
	R60			0,8	1,5	3,2	4,6	8,6		13,5	19,5
	R90			0,6	1,0	2,1	3,0	5,0		7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,1		4,9	9,2
Stainless steel	A 4									•	
Characteristic resistance	R30		[kN]	-	14,3	22,7	32,8	61,0	-	-	-
	R60	-		-	11,1	17,6	25,5	47,5	-	-	-
	R90	$-V_{Rk,s,fi}$		-	7,9	12,6	18,3	34,0	-	-	-
	R120	-		-	6,3	10,0	14,6	27,2	-	-	-
Steel failure wit	h lever a	rm									
Steel zinc plate	d										
	R30			0,8	2,0	5,6	9,7	24,8		42,4	83,6
Characteristic resistance	R60	- NAO		0,6	1,5	4,1	7,2	18,3		29,8	61,9
	R90	- M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,0	2,7	4,7	11	,9	17,1	40,1
	R120			0,3	0,8	1,9	3,1	6,6		10,7	29,2
Stainless steel	A 4										•
	R30			-	6,2	13,2	24,4	61,8	-	-	-
Characteristic resistance	R60	- NAO	[NI =]	-	4,5	9,4	17,2	43,6	-	-	-
	R90	- M ⁰ _{Rk,s,fi}	[Nm]	-	2,7	5,6	10,0	25,3	-	-	-
	R120	-		-	1,8	3,6	6,4	16,2	-	-	-

If pull-out is not decisive in equation D.4 and D.5, FprEN 1992-4:2016 $N_{Rk,p}$ must be replaced by $N_{Rk,c}^0$.

Q Highload Anchor SZ Performance Characteristic values under fire exposure Annex C8

Anchor size			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24 /M16L	28/ M20	32/ M24
Tension load			1110	IIIC	161.10	14.1.	10.10	/////	11120	
Tension load in cracked concrete	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
	δ _{Ν0}	[mm]	0,5	0,5	0,5	0,7	0,8	0,7	0,9	1,4
Displacement	$\delta_{N_{\infty}}$	[mm]	2,0	2,0	1,3	1,3	1,3	1,3	1,4	1,9
Tension load in uncracked concrete	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Displacement	δ_{N0}	[mm]	0,8	1,0		1,1		1,3	0,3	0,7
Displacement	$\delta_{N\infty}$	[mm]] 3,4 1,7					2,3	1,4	0,7
Seismic action C2										
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Shear load										
SZ-B										
Shear load in cracked and uncracked concrete	٧	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Displacement	δ_{V0}	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3	10,5
Displacement	$\delta_{\text{V}\infty}$	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5	15,8
Seismic action C2										
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S										
Shear load in cracked and uncracked concrete	٧	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3	10,5
Displacement	$\delta_{V\infty}$	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5	15,8
Seismic action C2										
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK								ļ		
Shear load in cracked a uncracked concrete	V	[kN]	10,1	17,1	27,5	41,5	-	-	-	-
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	-	-	-	-
·	$\delta_{V\infty}$	[mm]	4,4	3,8	5,4	5,3	-	-	-	-
Seismic action C2										
Displacement for DLS	$\delta_{V,eq\;(DLS)}$	[mm]	-	3,1	3,9	3,9	-	-	-	-
Displacement for ULS	$\delta_{ m V,eq~(ULS)}$	[mm]	-	10,2	11,8	13,0	-	-	-	-

Q Highload Anchor SZ

Performance

Displacements under tension and shear load, steel zinc plated

Annex C9

Table C11: Displacements under tension and shear load, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Tension load						
Tension load in cracked concrete	Ν	[kN]	4,3	7,6	12,1	17,0
Displacement	δ_{N0}	[mm]	0,5	0,5	1,3	0,5
Displacement	$\delta_{N^{\infty}}$	[mm]	1,2	1,6	1,8	1,6
Tension load in uncracked concrete	N	[kN]	7,6	11,9	16,7	24,1
Displacement	δ_{N0}	[mm]	0,2	0,3	1,2	1,5
Displacement	$\delta_{N^{\infty}}$	[mm]	1,1	1,1	1,1	1,1
Seismic action C2						
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	4,7	4,5	4,3	4,9
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	13,3	12,7	9,7	10,1
Shear load						
Shear load in cracked concrete	٧	[kN]	13,9	21,1	34,7	50,8
Displacement	δ_{V0}	[mm]	3,4	4,9	4,8	6,7
Displacement	$\delta_{V\infty}$	[mm]	5,1	7,4	7,1	10,1
Seismic action C2						
SZ-B, SZ-S						
Displacement for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Displacement for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,5	2,8	2,9	-
Displacement for ULS	$\delta_{ m V,eq~(ULS)}$	[mm]	5,8	5,9	6,9	-

Q Highload Anchor SZ	
Performance Displacements under tension and shear load, stainless steel A4	Annex C10