

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0372 of 25 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Apolo MEA drop-in anchor SA plus

Deformation-controlled expansion anchor of sizes M8, M10, M12 and M16 for use in non-cracked concrete

Apolo MEA Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk 8 Werk 13

14 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-13/0372 English translation prepared by DIBt

Page 2 of 14 | 25 May 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 25 May 2018

Specific Part

1 Technical description of the product

The Apolo MEA Drop-In Anchor SA plus in the sizes M8, M10, M12 and M16 is an anchor made of zinc-plated steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

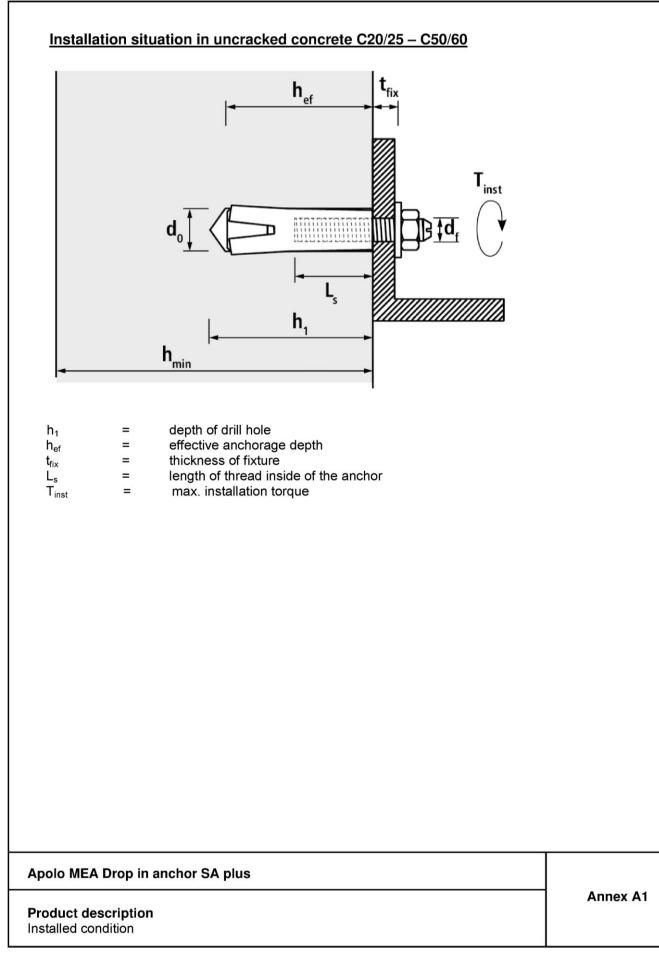
In accordance with the European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

European Technical Assessment ETA-13/0372 English translation prepared by DIBt

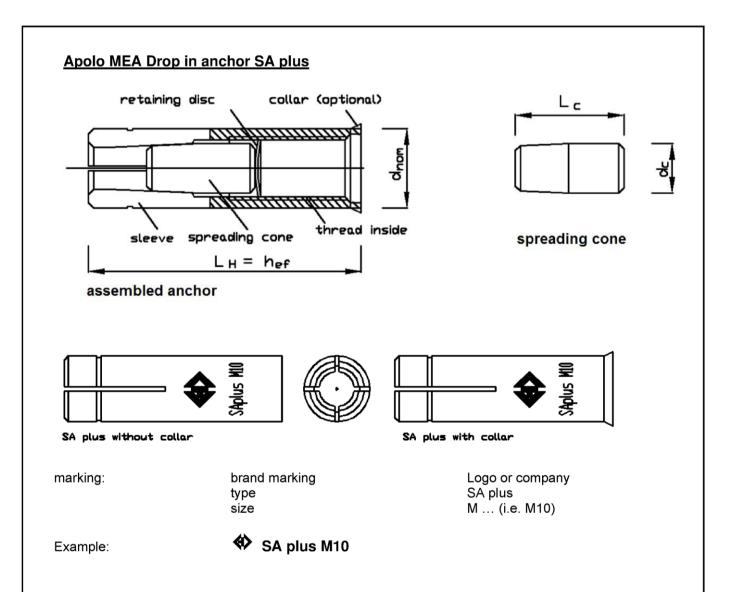
Page 4 of 14 | 25 May 2018

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 25 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Tempel


Page 5 of European Technical Assessment ETA-13/0372 of 25 May 2018

English translation prepared by DIBt

Table A2: Dimensions of the anchor

Anchor		Sleeve		Cone	
	Thread inside	Length	Outer-Ø sleeve	Length	Outer-Ø sleeve
type		L _H	d _{nom}	L _c	d _c
SA plus		[mm]	[mm]	[mm]	[mm]
M 8 x 30	M8	30	10	12	6
M10 x 40	M10	40	12	16	7,5
M12 x 50	M12	50	15	21	9,5
M16 x 65	M16	65	20	26	13

Apolo MEA Drop in anchor SA plus

Procuct description

Annex A2

able A3.1: Designation and materials	
Designation	Material
Sleeve	Steel for cold forming
M8 M10 M12 M16	C1008-C1012 or EN 10277 C1015 or EN 10277 C1008-C1012 or EN 10277 C1008-C1012 or EN 10277 C1008-C1012 or EN 10277
Spreading cone	Steel for cold forming C1006-1008
Retaining disc	Paper or plastics

all parts zinc plated and blue passivated \geq 5 µm acc. EN ISO 4042

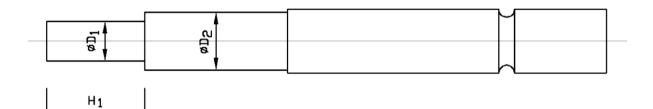
Table A3.2: Strength of the sleeve

Apolo MEA Drop in anchor SA plus		Size					
		plus	M8	M10	M12	M16	
Nominal characteristic steel ultimate strength	f _{uk}	[N/mm²]	535	535	430	430	
Nominal characteristic steel yield strength	f _{yk}	[N/mm²]	485	485	390	390	

Apolo MEA Drop in anchor SA plus

Product description Materials

Annex A3


Page 8 of European Technical Assessment ETA-13/0372 of 25 May 2018

English translation prepared by DIBt

Handsetting tool

Optional: setting tool with size marking and/or rubber grip possible

Table A4: Geometry of the setting tool

Setting tool	Setting pin							
Steel HRc 38-42	Dimension							
Туре	D ₁	D ₂	H ₁					
Туре	[mm]	[mm]	[mm]					
ESW 8	6,6	9,5	17,5					
ESW 10	8,3	12	23,5					
ESW 12	10,2	14	29					
ESW 16	13,9	19	39					

Apolo MEA Drop in anchor SA plus

Product description Setting tools

Annex A4

Page 9 of European Technical Assessment ETA-13/0372 of 25 May 2018

English translation prepared by DIBt

Specifications of Intended use

Anchorages subject to:

· Static and quasi-static loading,

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- · Only uncracked concrete.

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are to be designed in accordance with FprEN 1992-4:2016 and EOTA Technical Report TR 055.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Create drill hole with hammer drill only.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.

Apolo MEA Drop in anchor SA plus

Intended use Specifications

Annex B1

Page 10 of European Technical Assessment ETA-13/0372 of 25 May 2018

English translation prepared by DIBt

Table B2.1: Installation parameters

Fixing screws or anchor rods:

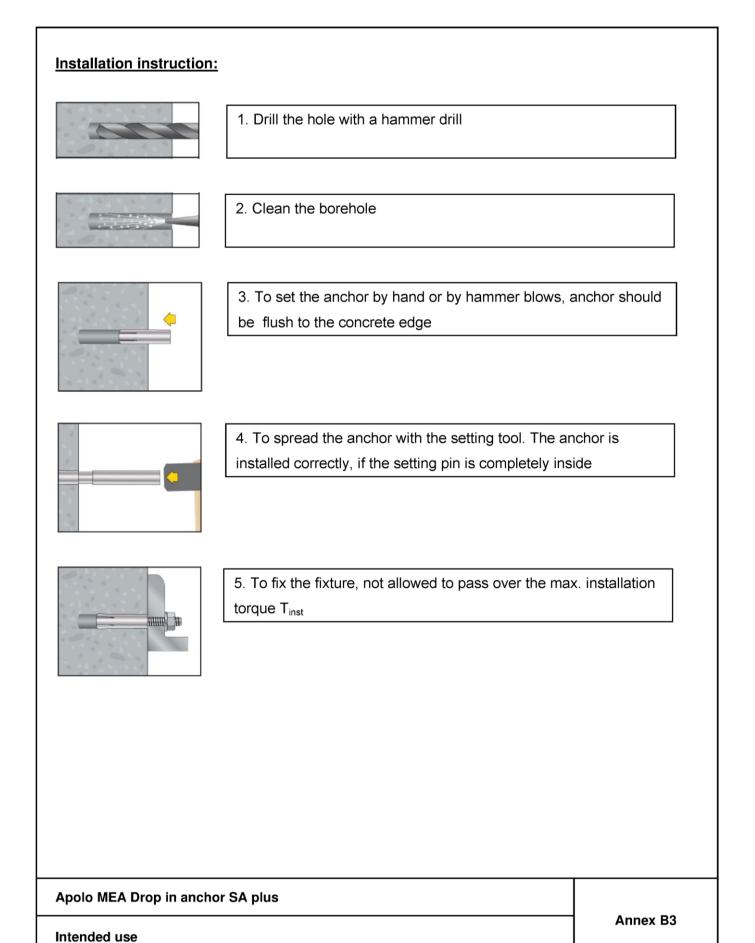
It can be used the strength categories 4.6, 5.6, 5.8 or 8.8 acc. EN ISO 898-1.

Minimal screwing depth:

The lenght of the fixing screw depends on the thickness t_{fix} on the fixed part, permissible tolerances and usable thread length $L_{s,max}$ as well as on the minimal screwing depth $L_{s,min}$.

Apolo MEA drop in anchor SA plus				Size				
			M8	M10	M12	M16		
Nominal driller diameter	d _o	[mm]	10	12	15	20		
Cutting diameter of drillbit	d _{cut} ≤	[mm]	10,45	12,50	15,50	20,55		
Diameter of thread	М	[mm]	8	10	12	16		
Depth of drill hole (deepest point)	h₁ ≥	[mm]	32	43	54	70		
Effective anchorage depth	h _{ef}	[mm]	30	40	50	65		
Maximum screwing depth	L _{s,max}	[mm]	13	16	23	32		
Minimum screwing depth	L _{s,min}	[mm]	8	10	12	16		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	18		
Maximum installation torque moment	max T _{inst}	[Nm]	8	15	35	60		

Table B2.2: Minimum thickness of concrete member, spacing and edge distance


Apolo MEA drop in anchor SA plus				Size				
			M8	M10	M12	M16		
Minimum thickness of member	h _{min}	[mm]	100	100	120	160		
Minimum spacing	S _{min}	[mm]	105	105	125	180		
Minimum edge distance	C _{min}	[mm]	105	140	175	230		

Apolo MEA Drop in anchor SA plus

Intended use Installation parameters

Annex B2

Installation instruction

Table C1: Design method A - Characteristic values for tension loads

Apolo MEA drop ir		siz	e				
Steel failure				M8	M10	M12	M16
Characteristic resistance	N _{Rk,s}	[kN]	steel 4.6	14,6	23,2	33,7	62,7
Partial safety factor	YMs	[-]			2,0	D	
Characteristic resistance	N _{Rk,s}	[kN]	steel 5.6	18,3	29,0	42,1	78,3
Partial safety factor	YMs	[-]			2,0	D	
Characteristic resistance	N _{Rk,s}	[kN]	steel 5.8	18,3	22,5	30,8	51,5
Partial safety factor	YMs	[-]			1,	5	
Characteristic resistance	N _{Rk,s}	[kN]	steel 8.8	17,8	22,5	30,8	51,5
Partial safety factor	YMs	[-]			1,	5	
Pull out failure							
Characteristic resistance in uncracked concrete C 20/25	N _{Rk,p}	[kN]		7,5	12	16	30
Increasing factors for $N_{Rk,p}$	Ψc	C30/37		1,22	1,11 1,22		
		C40/50		1,41	1,21	1,4	1
		C50/60		1,58	1,28	1,5	58
Installation safety factor	Yinst	[-]		1,0		1,2	
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]		30	40	50	65
Factor k₁	k _{ucr,N}	[-]			11,	,0	
Spacing	S _{cr,N}	[mm]		3 x h _{ef}			
Edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}			
Installation safety factor	Yinst	[-]		1,0 1,2			
Concrete splitting failure							
Spacing (splitting)	S _{cr,sp}	[mm]		210	280	350	460
Edge distance (splitting)	C _{cr,sp}	[mm]		105	140	175	230
Installation safety factor	Yinst	[-]		1,0		1,2	

Apolo MEA Drop in anchor SA plus

Performances

Design method A, characteristic values for tension loads

Annex C1

Table C2: Design method A - Characteristic values for shear load

Apolo MEA drop in anchor SA plus					si	ze	
Steel failure without lever arm				M8	M10	M12	M16
Characteristic shear load resistance	V _{Rk,s}	[kN]	steel 4.6	7,3	9,5	15,4	25,7
Partial safety factor	YMs	[-]		1,67		1,5	
Characteristic shear load resistance	V _{Rk,s}	[kN]	steel 5.6	8,9	9,5	15,4	25,7
Partial safety factor	YMs	[-]			1	,5	
Characteristic shear load resistance	V _{Rk,s}	[kN]	steel 5.8	8,9	9,5	15,4	25,7
Partial safety factor	YMs	[-]			1	,5	
Characteristic shear load resistance	V _{Rk,s}	[kN]	steel 8.8	8,9	9,5	15,4	25,7
Partial safety factor	YMs	[-]			1	,5	
Steel failure with lever arm							
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	steel 4.6	15,0	29,9	52,4	132,8
Partial safety factor	YMs	[-]		1,67			
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	steel 5.6	18,7	37,4	65,5	165,9
Partial safety factor	YMs	[-]			1,	67	
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	steel 5.8	18,7	37,4	65,5	165,9
Partial safety factor	YMs	[-]			1,	25	
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	steel 8.8	30,0	59,8	104,7	265,5
Partial safety factor	YMs	[-]			1,	25	
Concrete pryout failure							
Factor	k ₈	[-]		1,0 2,0			2,0
Installation safety factor	Yinst	[-]		1,0			
Concrete edge failure							
Effective anchor length under shear load	_f	[mm]		30	40	50	65
Effective external diameter of anchor	d _{nom}	[mm]		10	12	15	20
Installation safety factor	Yinst	[-]			1	,0	

Apolo MEA Drop in anchor SA plus

Performances

Design method A, Characteristic values for shear load

Annex C2

Table C3.1: Displacements of the anchors under tension loads

Apolo MEA drop in anchor SA plus			M8	M10	M12	M16	
Tension load	N	[kN]	3,5	3,5 4,8 6,3			
Displacements	δ_{No}	[mm]	0,2				
Displacements	δ _{N∞}	[mm]	1,3				

Table C3.2: Displacements under shear loads

Apolo MEA drop in anchor SA plus			M8	M10	M12	M16
Shear load	V	[kN]	4,2	4,5	7,3	12,2
Displacements	δ _{vo}	[mm]	1,4	1,6	2,3	1,0
Displacements	δ_{V^∞}	[mm]	2,1	2,4	3,5	1,5

Apolo MEA Drop in anchor SA plus

Performances Displacement under tension and shear loads

Annex C3