Approval body for construction products and types of construction **Bautechnisches Prüfamt** An institution established by the Federal and Laender Governments ### European Technical Assessment ETA-13/0418 of 22 June 2018 English translation prepared by DIBt - Original version in German language #### **General Part** Technical Assessment Body issuing the European Technical Assessment: Trade name of the construction product Product family to which the construction product belongs Manufacturer Manufacturing plant This European Technical Assessment contains This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces Deutsches Institut für Bautechnik "Next Base SL05 NF" Calcium Sulphoaluminate based Cement Buzzi Unicem Spa Via L. Buzzi 6 15033 CASALE MONFERRATO ITALIEN Buzzi Unicem SpA Trino (VC) Italy 10 pages including 1 annex which form an integral part of this assessment EAD 150001-00-0301 ETA-13/0418 issued on 21 June 2013 Page 2 of 10 | 22 June 2018 English translation prepared by DIBt The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such. This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011. Page 3 of 10 | 22 June 2018 English translation prepared by DIBt #### **Specific Part** #### 1 Technical description of the product The calcium sulphoaluminate (CSA) based Cement "Next Base SL05 NF" referred to in this document is a special cement that is not covered by the harmonised European standard EN 197-1. It is a hydraulic binder with rapid hardening features that contains a calcium sulphoaluminate (Yeelimite) content in the cement of at least 10 % by mass. The range of composition of the CSA-based cement "Next Base SL05 NF" is listed below: | Calcium sulphoaluminate clinker | 24 - 38 % by mass | |--|------------------------------| | Cement CEM I acc. EN 197-1 | 50 - 64 % by mass | | Calcium sulfate (as defined in EN 197-1, clause 5.4) | 4 - 18 % by mass | | Limestone (as defined in EN 197-1, clause 5.2.6) | 0 % by mass | | Minor additional constituents (as defined in EN 197-1, clause 5.3) | < 5 % by mass ¹ | | Additives as defined in EN 197-1, clause 5.5) | < 2,0 % by mass ² | | Of which organic additives as defined in EN 197-1, clause 5.5) | < 0,2 % by mass | The calcium sulphoaluminate clinker (CSAK) is made by sintering a precisely specified mixture of raw materials (raw meal, paste or slurry) containing elements, usually expressed as oxides, CaO, Al_2O_3 , SiO_2 , Fe_2O_3 , SO_3 and small quantities of other materials. The calcium sulphoaluminate clinker is a hydraulic material which is composed mainly of $C_4A_3\overline{S}$ (Yeelimite). The Yeelimite content is usually greater than 45 % by mass. The remaining consisting of calcium silicates (2CaO · SiO₂) and other compounds. The Yeelimite content of the calcium sulphoaluminate clinker is greater than 45 % by mass. The CSA-based cement "Next Base SL05 NF" complies with the specifications of the standard EN 197-1 except the following points, see Table 1 Table 1: Comparison between cement characteristics and specifications of EN 197-1 | CSA-based cement properties | Specifications of EN 197-1 | |---|---| | Calcium sulphoaluminate (CSA) clinker (20 – 90 % by mass) | Only Portland cement clinker | | Initial setting time can be < 45 min | Initial setting time ≥ 45 min (clause 7.1.2) | | Sulfate (as SO ₃) content > 4,0 % by mass | Sulfate (as SO_3) content \leq 4,0 % by mass (clause 7.3, table 4) | The residues of CSA-clinker process can be integrated as minor additional constituents EN 197-1 clause 5.5 specified: The total quantity of additives shall not exceed 1,0 % by mass of the cement (except for pigments). The quantity of organic additives on a dry basis shall not exceed 0,2 % by mass of the cement. A higher quantity may be incorporated in cements provided that the maximum quantity, in %, is declared on the packaging and/or the delivery note Page 4 of 10 | 22 June 2018 English translation prepared by DIBt ### 2 Specification of the intended use in accordance with the applicable European Assessment Document The CSA based cement "Next Base SL05 NF" is cement for production of concrete, mortar, grouts and other mixes including in particular cast-in-situ and prefabricated structural concrete³ conforming to EN 206. The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of concrete incorporating the CSA based cement "Next Base SL05 NF" of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works. #### 3 Performance of the product and references to the methods used for its assessment #### 3.1 Mechanical resistance and stability (BWR 1) | Essential characteristic | Performance | | | | | |---|--|--|--|--|--| | Early strength $(1 \le t \le 24 \text{ h})$ | R _{C,24h} ≥ 15,0 MPa | | | | | | Standard strength (28 days) | ≥ 32,5 MPa acc. EN 197-1 | | | | | | Calcium sulphoaluminate (Yeelimite) content in the cement | (14,0 ± 5,0) % by mass | | | | | | | CSAK = 24 – 38 % by mass | | | | | | Cement composition | CEM I = 50 – 64 % by mass | | | | | | | $C\overline{S} = 4 - 18 \%$ by mass | | | | | | Initial setting time | ≥ 5 min | | | | | | Soundness | Passed | | | | | | Sulfate content (expressed as SO ₃) | (11,8 ± 5,0) % by mass | | | | | | Chloride content | Passed | | | | | | Density | $(3.0 \pm 0.2) \text{ g/cm}^3$ | | | | | | Fineness (Blaine) | (4700 ± 1000) cm ² /g | | | | | | Effect of high temperature on mortar hardened under standard conditions | See Annex A, clause A1 | | | | | | Shrinkage | No performance assessed. | | | | | | Effect of high temperature on mortar at early age | No performance assessed. | | | | | | Sulfate Resistance | No performance assessed. | | | | | | Carbonation of concrete | C _{dcr} = See Annex A, clause A2 | | | | | | Resistance to chloride penetration | $D_{mig,97d} = 14 \cdot 10^{-12} \text{ m}^2/\text{s}$ | | | | | e. g. EN 490, EN 516, EN 1168, EN 1317, EN 1338, EN 1340, EN 1520, EN 1858, EN 1857, EN 1916, EN 1917, EN 13084, EN 12446, EN 12737, EN 13224, EN 15037, EN 14844, EN 12839, EN 14843, EN 13978, EN 12843, EN 12951, EN 13224, EN 13813, EN 13877, EN 14843, EN 14992, EN 15037, EN 15258, EN 15435, EN 15498 Page 5 of 10 | 22 June 2018 English translation prepared by DIBt | Essei | ntial characteristic | Performance | | | | | | | |---------------------------------------|---|------------------------------------|--|--|--|--|--|--| | Freez | e-thaw resistance (without de-icing agent) | FT _{cube} = 5,8 % by mass | | | | | | | | Freez | e-thaw and de-icing salt resistance | No performance assessed. | | | | | | | | R _c
CSAK
CEM I
CS | | | | | | | | | | C _{dcr} | = Carbonation resistance (direct carbonation resistance) | | | | | | | | | D_{mig} | = Resistance to chloride penetration (chloride penetration by the non-steady state migration) | | | | | | | | | FT _{cube} | = Freeze thaw test without de-icing agent (Cube-procedure) | | | | | | | | #### 3.2 Safety in case of fire (BWR 2) | Essential characteristic | Performance | |--|--------------------------| | Content, emission and/or release of dangerous substances | No performance assessed. | ## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base In accordance with EAD No. 150001-00-0301, the applicable European legal act is: Decision 97/555/EC. The system to be applied is: 1+ ### 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik. Issued in Berlin on 22 June 2019 by Deutsches Institut für Bautechnik BD Dipl.-Ing. Andreas Kummerow beglaubigt: Head of Department Schröder #### ANNEX A: Assessment #### A1 Effect of high temperature on mortar hardened under standard conditions The testing procedure was done according to EAD 150001-00-0301, clause 2.2.11. **Figure A1.1:** Compressive strength of mortar with CSA-based cement "Next Base SL05 NF" stored at 20°C, 40°C and 60°C Figure A1.2: Compressive strength of mortar with CEM I 52,5 R stored at 20°C, 40°C and 60°C English translation prepared by DIBt #### A2 Carbonation of concrete – Method: Direct carbonation resistance D_{dcr} The testing procedure was done according to EAD 150001-00-0301, clause 2.4.15. **Table A2.1:** Compressive strength of concrete I¹ | age | | pre-s | torage 7 | 7 d | pre-storage 28 d | | | | | | |--------------|-------|----------|----------|---------------|------------------|------|------|---------------|--|--| | | | | | MPa | | | | | | | | | sin | gle valu | ies | mean
value | single values | | | mean
value | | | | 1 | 2 3 4 | | | 5 | 6 7 | | 8 | 9 | | | | | 46,3 | 44,3 | 48,9 | | 57,9 | 54,4 | 59,1 | | | | | | 45,0 | 45,8 | 47,3 | | 58,4 | 57,7 | 60,3 | | | | | after | 44,4 | 45,0 | 48,6 | 46,5 | 58,4 | 56,0 | 59,7 | 58,0 | | | | pre-storage | 46,5 | 44,0 | 47,6 | 46,5 | 58,8 | 56,2 | 59,6 | 56,0 | | | | | 46,5 | 45,3 | 47,0 | | 57,9 | 54,8 | 52,1 | | | | | | 46,4 | 44,6 | 48,5 | | 55,9 | 56,2 | 60,0 | | | | | | 62,8 | 62,1 | - | 63,0 | 72,4 | 65,2 | 72,1 | | | | | | 64,9 | 60,2 | - | | 72,2 | 66,1 | 69,9 | | | | | 35 d | 66,1 | 60,6 | - | | 69,9 | 67,1 | 68,6 | 69,5 | | | | 35 d | 66,8 | 59,2 | - | | 66,5 | 65,9 | 72,4 | 09,5 | | | | | 63,9 | 62,4 | - | | 72,9 | 65,9 | 73,9 | | | | | | 64,9 | 62,6 | - | | 72,8 | 65,3 | 72,4 | | | | | | 64,6 | 61,7 | 65,9 | | 72,8 | 74,7 | - | | | | | | 63,1 | 64,9 | 68,6 | | 76,2 | 76,1 | - | | | | | after 140 d | 63,3 | 61,7 | 67,0 | 64,5 | 76,5 | 77,1 | - | 75,7 | | | | main storage | 61,9 | 63,1 | 68,9 | | 73,9 | 76,3 | - | 13,1 | | | | | 63,4 | 63,5 | 67,0 | | 76,6 | 75,5 | - | | | | | | 64,6 | 63,4 | 63,8 | | 74,8 | 78,1 | ı | | | | **Table A2.2:** Carbonation depth of concrete I¹ | main storage | Concrete I ¹ | | | | | | | | | |--------------|-------------------------|------------|-----------------------|------------|--|--|--|--|--| | | pre-stor | age 7 d | pre-storage 28 d | | | | | | | | d | mm | | | | | | | | | | | single values | mean value | single values | mean value | | | | | | | 1 | 2 | 3 | 4 | 5 | | | | | | | 14 | 3,1 / 0,3 / 2,1 / 2,2 | 1,9 | 0,0 / 0,0 / 0,0 / 0,0 | 0,0 | | | | | | | 28 | 2,6 / 3,1 / 2,9 / 3,0 | 2,9 | 0,2 / 0,4 / 0,0 / 0,0 | 0,1 | | | | | | | 56 | 3,6 / 3,4 / 3,0 / 3,0 | 3,3 | 0,0 / 1,3 / 0,5 / 0,4 | 0,6 | | | | | | | 98 | 3,5 / 3,6 / 4,0 / 4,0 | 3,8 | 0,3 / 0,8 / 0,8 / 0,7 | 0,6 | | | | | | | 140 | 4,0 / 4,1 / 5,1 / 4,3 | 4,4 | 0,5 / 1,1 / 0,8 / 0,4 | 0,7 | | | | | | The carbonation depth resp. the carbonation speed of the concrete I¹ is compared to data which are given in EAD 150001-00-0301, Annex D. The calculated carbonation speed for concrete I¹ are given in Table A6. Concrete I: Fine concrete c = 450 g (CSA-based cement "Next Base SL05 NF"); w/c =0,50 Table A3.3: Calculation of the carbonation speed | No. | storage time [d] | Compres
f _C [MPa] | sive str | ength | Carbonation depth [mm] | | | | | | | Carbonation
speed
[mm / d ^{0,5}] | | | |-----|------------------|---------------------------------|----------|-----------------------|------------------------|------|------|------|-------|-----|-----|--|---------------------|-------------------| | | pre-sto | after
Pre-storage | 35 d | 140 d
main-storage | 14 d | 28 d | 56 d | 98 d | 140 d | 1 a | 2 a | 5 a | V _{C,140d} | V _{C,2a} | | I | 7 | 46,2 | 63,0 | 64,5 | 1,9 | 2,9 | 3,3 | 3,8 | 4,4 | - | - | - | 0,28 | - | | I | 28 | 58,0 | 69,5 | 75,7 | 0,0 | 0,1 | 0,6 | 0,6 | 0,7 | - | - | - | 0,09 | - | Figure A2.1: Carbonation speed compared to the compressive strength after 7 d pre-storage Figure A2.2: Carbonation depth compared to the compressive strength after 7 d pre-storage electronic copy of the eta by dibt: eta-13/0418 Figure A2.3: Carbonation speed compared to the compressive strength after 28 d pre-storage Figure A2.4: Carbonation depth compared to the compressive strength after 28 d pre-storage