

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1038 of 26 January 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS3

Concrete screw for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

27 pages including 3 annexes which form an integral part of this assessment

EAD 330011-00-0601 and EAD 330232-00-0601

ETA-13/1038 issued on 8 December 2016

European Technical Assessment ETA-13/1038

Page 2 of 27 | 26 January 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z61937.17 8.06.01-216/17

European Technical Assessment ETA-13/1038

Page 3 of 27 | 26 January 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS3 is an anchor made of galvanised steel (HUS3-H, HUS3-HF, HUS3-C, HUS3-P. HUS3-PS, HUS3-A, HUS3-I, HUS3-I Flex) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C1 – C3
Characteristic resistance under seismic performance Category C1 and C2	See Annex C4 – C5
Displacements for tension and shear loads	See Annex C9 – C10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	See Annex C6 – C8		

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 and the European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z61937.17 8.06.01-216/17

European Technical Assessment ETA-13/1038

Page 4 of 27 | 26 January 2018

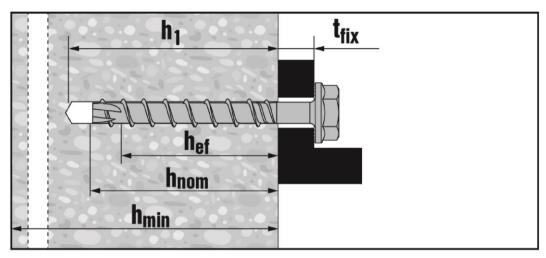
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

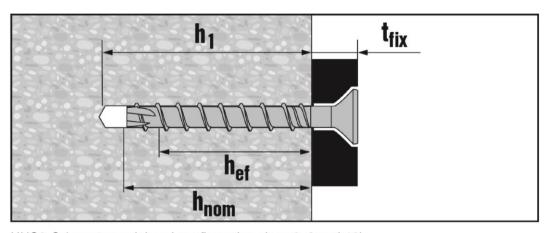
Issued in Berlin on 26 January 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt:

Lange

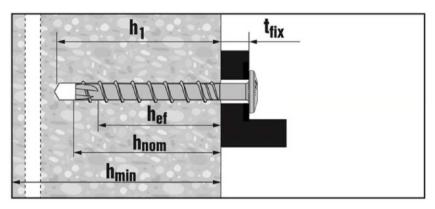
Z61937.17 8.06.01-216/17



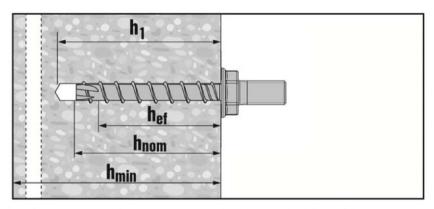
Installed condition without adjustment

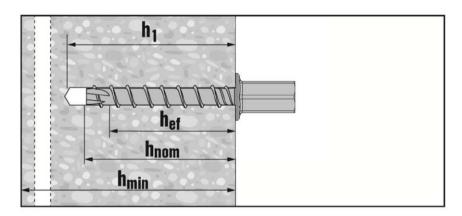
HUS3-H (hexagon head configuration sizes 6, 8, 10 and 14)

HUS3-HF (hexagon head configuration sizes 8, 10 and 14)



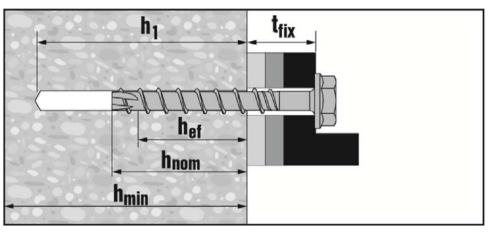
HUS3-C (countersunk head configuration sizes 6, 8 and 10)


Hilti screw anchor HUS3	Annex A1
Product description Installed condition without adjustment	Annex AT


Installed condition without adjustment

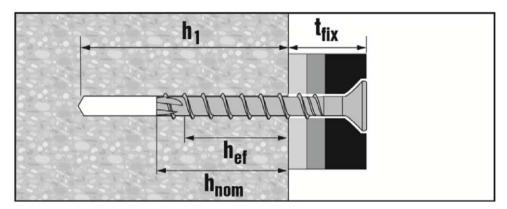
HUS3-P/PS (pan head configuration size 6)

HUS3-A (size 6 with external thread configuration M8 or M10)



HUS3-I (size 6 with internal thread configuration M8/M10)

Hilti screw anchor HUS3	Annex A2
Product description Installed condition without adjustment	Allilex A2



Installed condition with adjustment

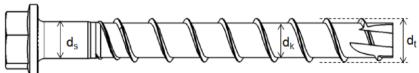
HUS3-H (hexagon head configuration sizes 8, $10 - h_{nom2}$, h_{nom3})

HUS3-HF (hexagon head configuration sizes 8 and $10-h_{nom2},h_{nom3}$)

HUS3-C (countersunk head configuration sizes 8 and $10 - h_{nom2}$, h_{nom3})

Hilti screw anchor HUS3	
Hitti Screw anchor Hoss	Annex A3
Product description Installed condition with adjustment	76% 7.6
mstalled condition with adjustment	

Table A1: Material and screw types


Part	Designation / Material				
1, 2,	Screw anchor / Carbon steel				
3, 4, 5, 6,	Anchor size HUS3	6	8	10	14
7	Characteristic yield strength f _{yk} [N/mm²]	745	695	690	630
	Characteristic ultimate strength fuk [N/mm²]	930	810	805	730
	Rupture elongation A ₅ [%]		≤	8	
Pane Spane		configuration	ı, galvanized		exagonal head
(10)			3-HF, sizes 8, n, multilayer co		xagonal head
10 S3		3) Hilti HUS3 configuration		and 10, cour	itersunk head
		4) Hilti HUS3 M10/21, galv	3-A, size 6, ex vanized	ternal thread	M8/16 and
S DIA		5) Hilti HUS3 galvanized	3-P, size 6, pa	n head config	uration,
		6) Hilti HUS3 configuration	3-PS, size6, p n, galvanized	oan head (sma	all)
C		7) Hilti HUS3 galvanized	3-I, size 6, inte	ernal thread M	8 and M10,
		thread - M8/16 prea	B-I Flex, size 6 assembled wite assembled w	h coupler M6	or M8,

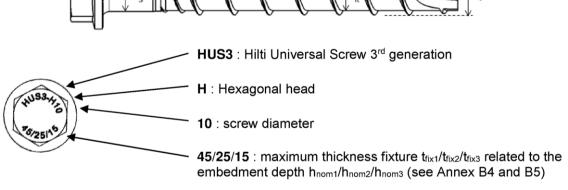

Hilti screw anchor HUS3	Annex A4
Production description Material and screw types	Aillex A4

Table A2: Specification and marking

Anchor size HUS3 Type		6		8			10			14		
		H, C, A, P, PS, I, I-Flex	H, HF, C		H, HF, C		H, HF		н			
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth		[mm]	55	50	60	70	55	75	85	65	85	115
Threaded outer diameter	dt	[mm]	7,85		10,30		12,40		16,85			
Core diameter	d_{k}	[mm]	5,85		7,85			9,90		12,95		
Shaft diameter	ds	[mm]	6,15	8,45			10,55			13,80		
Stressed section	As	[mm²]	26,9	48,4			77,0			131,7		

Hilti screw anchor HUS3	Annex A5
Production description Material and screw types	Ailliex A5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings: all sizes and all embedment depths.
- Seismic action for Performance Category C1:
 - HUS3-H sizes 8, 10 and 14, standard and maximum embedment depth (hnom2, hnom3).
 - HUS3-C and HUS3-HF sizes 8 and 10, standard and maximum embedment depth (hnom2, hnom3).
- Seismic action for Performance Category C2:
 - HUS3-H and HUS-HF size 10, HUS3-H size 14, maximum embedment depth hnom3.
 - HUS3-C size 10, maximum embedment depth hnom3.
- Fire exposure: All sizes and all embedment depths.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked or cracked concrete: all sizes and all embedment depths.

Use conditions (Environmental conditions):

Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - FprEN 1992-4:2016 and EOTA Technical Report TR 055, 12/2016
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 FprEN 1992-4:2016 and EOTA Technical Report TR 045, 2/2013
- Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings where shear loads act on anchors with a lever arm, such as e.g.in stand-off installation or with a grout layer, are not covered.
- Anchorages under fire exposure are designed in accordance with:
 - FprEN 1992-4:2016 and EOTA Technical Report TR 020, 4/2004
 - In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Hilti screw anchor HUS3	
Intended use Specifications	Annex B1
Specifications	

Specifications of intended use

Installation:

- Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor must not be possible.
- The head of the anchor must be supported on the fixture and is not damaged.
- Adjustability according to Annex B8 for:
 HUS3-H, HUS3-HF and HUS3-C size 8 (h_{nom2} = 60 mm and h_{nom3} = 70 mm)
 HUS3-H, HUS3-HF and HUS3-C size 10 (h_{nom2} = 75 mm and h_{nom3} = 85 mm)
- Installation with Hilti filling set (HUS3-H only) according to Annex B7.

Hilti screw anchor HUS3	
Intended use Specifications	Annex B2

Table B1: Installation parameters HUS3 size 6

Anchor size HUS3			6				
Туре	н	С	A	P- PS	I I-Flex		
Nominal embedmenth depth	h_{nom}	[mm]			55		
Nominal drill hole diameter	d ₀	[mm]			6		
Cutting diameter of drill bit	d _{cut} ≤	[mm]			6,40		
Clearance hole diameter	d _f ≤	[mm]	n] 9				
Wrench size (H, A, I -type)	SW	[mm]	13	-	13	-	13
Countersunk head diameter	dh	[mm]	-	11,5	-	-	-
Torx size (C, P, PS -type)	TX	-	-	30	-	30	-
Depth of drill hole in floor/ wall position	h₁ ≥	[mm]			65		
Depth of drill hole in ceiling position	h₁ ≥	[mm]			58		
Installation Torque	T_{inst}	[Nm]	25				
Setting tool ¹⁾ Strength class		≥ C20/25	Hilti SIW 14 A or Hilti SIW 22 A				

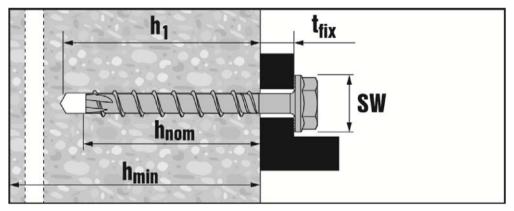
¹⁾ Installation with other impact screw driver of equivalent power is possible.

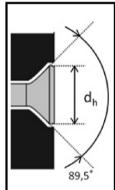
Table B2: Installation parameters HUS3 size 8, 10 and 14

Anchor size HUS3				8		10				14	
Туре			H, HF, C			H, HF, C			H, HF		н
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmenth depth	h_{nom}	[mm]	50	60	70	55	75	85	65	85	115
Nominal drill hole diameter	d ₀	[mm]		8		10			14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]		8,45			10,45		14,50		
Clearance hole diameter	d _f ≤	[mm]		12			14		18		
Wrench size (H, HF-type)	SW	[mm]		13			15		21		
Diameter of countersunk head	dh	[mm]		18			21			-	
Torx size (C-type)	TX	-		45			50			-	
Depth of drill hole	h₁ ≥	[mm]	60	70	80	65	85	95	75	95	125
Depth of drill hole (with adjustability setting process)			- 80 90		- 95 105		105	-			
Setting tool ¹⁾ Strength class		C20/25	Hilti SIW 14 A or Hilti SIW 22 A or Hilti SIW 22 T-A			Hilti SIW 22 A or Hilti SIW 22 T-A			Hilti SIW 22		T-A
Class	;	> C20/25				Hilti	SIW 22	T-A			

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS3	
Intended use Installation parameters	Annex B3




Table B3: Minimum thickness of concrete member, minimum edge distance and spacing HUS3 size 6

Anchor size I	HUS3	6		
Nominal embed	lmenth depth	h_{nom}	[mm]	55
Minumum thickness of concrete member		h _{min}	[mm]	100
Cracked and	Minimum spacing	S _{min}	[mm]	35
non-cracked concrete	Minimum edge distance	C _{min}	[mm]	35

Table B4: Minimum thickness of concrete member, minimum edge distance and spacing HUS3 size 8, 10 and 14

Anchor size HUS3				8			10			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embed	dmenth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Minumum thick concrete members		h _{min}	[mm]	100	100	120	100	130	140	120	160	200
	Minimum		[1	50	50	50	50	50	50			
Cracked and non-cracked concrete	spacing	S _{min}	[mm]	40 if c ≥ 50	50	50	50	50	50	60	60	60
	Minimum edge distance	C _{min}	[mm]	40	40	40	50	50	50	60	60	60

Hilti screw anchor HUS3	
Intended use Minimum concrete thickness and minimum edge distance and spacing	Annex B4

Table B5: Screw length and maximum thickness of fixture for HUS3 size 6

Anchor size			(3		
	Н	С	A	I I-Flex	Р	PS
Nominal embedment depth [mm]			h _n 5	om 5		
Įıj		Thi	ckness of	fixture [n	nm]	
Length of screw [mm]	\mathbf{t}_{fix}	t _{fix}	t _{fix}	t _{fix}	t _{fix}	t _{fix}
55			0	0		
60	5	5			5	5
70		15				
80	25				25	
100	45					
120	65					
135			80			
155			100			
175			120			
195			140			

Table B6: Screw length and maximum thickness of fixture for HUS3-C size 8, 10

Anchor size		8			10				
Nominal embedment depth [mm]	h _{nom1} 50	h _{nom2}	h _{nom3} 70	h _{nom1} 55	h _{nom2}	h _{nom3} 85			
[,,,,,]	Thickness of fixture [mm]								
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}			
65	15	5	-	-	-	-			
70	-	-	-	15	-	-			
75	25	15	-	-	-	-			
85	35	25	15	-	-	-			
90	-	-	-	35	15	-			
100	-	-	-	45	25	15			

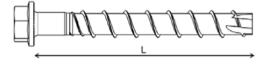
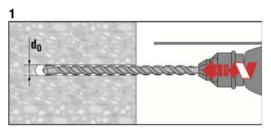
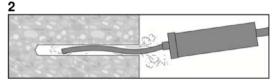

Hilti screw anchor HUS3	
Intended use Screw length / thickness of fixture	Annex B5

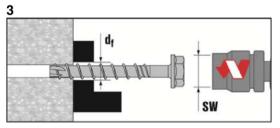
Table B7: Screw length and maximum thickness of fixture for HUS3-H, HUS3-HF¹⁾

Anchor size		8			10			14	
Nominal embedment depth	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
[mm]	50	60	70	55	75	85	65	85	115
				Thickne	ss of fixt	ure [mm]			
Length of screw [mm]	t fix1	t fix2	t fix3	t fix1	t _{fix2}	t fix3	t _{fix1}	t _{fix2}	t fix3
55	5	-	-	-	-	-	-	-	-
60	-	-	-	5	-	-	-	-	-
65	15	5	-	-	-	-	-	-	-
70	-	-	-	15	-	-	-	-	-
75	25	15	5	-	-	-	10	-	-
80	-	-	-	25	5	-	-	-	-
85	35	25	15	-	-	-	-	-	-
90	-	-	-	35	15	5	-	-	-
100	50	40	30	45	25	15	35	15	-
110	-	-	-	55	35	25	-	-	-
120	70	60	50	-	-	-	-	-	-
130	-	-	-	75	55	45	65	45	15
150	100	90	80	95	75	65	85	65	35

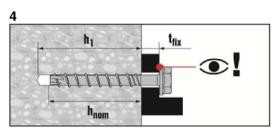

 $^{^{1)}\;} HUS3\text{-HF}$ available for size 14 with h_1 and $h_2\; only$


Hilti screw anchor HUS3	
Intended use Screw length / thickness of fixture	Annex B6

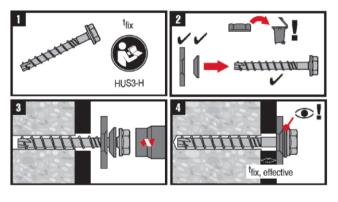
Installation instruction without adjustment

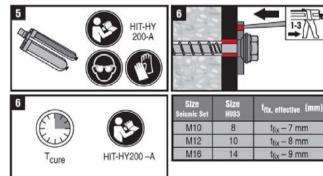


Make a cylindrical hole. If Hilti hollow drill bit TE-CD 14 is used, proceed to step 3 without additional cleaning of the drill hole


Clean the drill hole. For size 14 only, hole cleaning is not required under one of the following conditions:

- drilling is in the vertical upwards orientation; or
- drilling is in vertical downwards or horizontal directions and the drilling depth is increased by additional $3*d_0$; or
- Hilti hollow drill bit TE-CD 14 is used for drilling

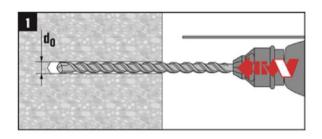


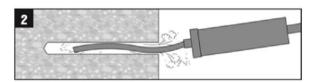

Install the screw anchor by impact screw driver (sizes 6, 8, 10 and 14) or by torque wrench (size 6)

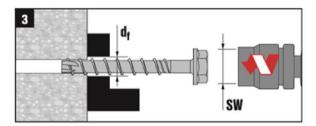
Ensure that the head of the anchor is fully supported on the fixture and it is not damaged

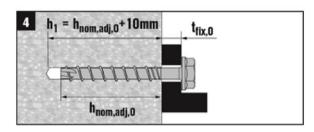
Installation instruction with Hilti seismic filling set (HUS3-H only)

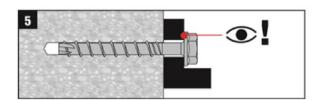
Hilti screw anchor HUS3

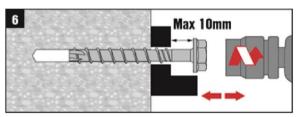

Intended use

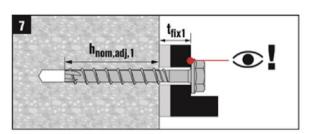

Installation instruction without adjustment Installation instruction with Hilti seismic filling set

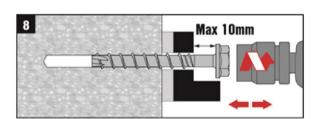

Annex B7

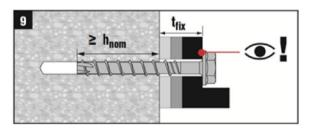



Installation instruction with adjustment









The anchor can be adjusted maximum two times.

The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be larger or equal than hnom2 or hnom3.

Annex B7 shows the cases when drill hole cleaning is not required (only for size 14).

Hilti screw anchor HUS3

Intended use

Installation instruction with adjustment

Annex B8

Table C1: Characteristic values of resistance in case of static and quasi-static loading (size 6)

Anchor s	ize HUS3					6					
Туре	Туре					A	I I-Flex	P	PS		
Nominal embedment depth h _{nom} [mm]							55				
Steel failu	re for tension and s	shear load									
Characteris	stic resistance	N _{Rk,s}	[kN]	24	22		24		21		
Partial safe	ety factor	$\gamma_{\text{Ms},N}^{1)}$	[-]			•	1,4				
Characteris	stic resistance	$V_{Rk,s}$	[kN]			1	2,5				
Partial safe	ety factor	$\gamma_{\text{Ms}, \vee^{1)}}$	[-]			•	1,5				
Ductility fac	otor	k ₇	[-]			(0,8				
Characteris	stic resistance	M ⁰ Rk,s	[Nm]			:	21				
Pull-out fa	ilure										
non-cracke	stic resistance in ed concrete C20/25	N _{Rk,p}	[kN]		9)			7,5		
	stic resistance in ncrete C20/25	$N_{Rk,p}$	[kN]	6							
		C30/37	[-]	1,22							
Increasing factor for		C40/50	[-]	1,41							
concrete ψ	С	C50/60	[-]	1,55							
Concrete	cone and splitting f	ailure									
Effective e	mbedment depth	h _{ef}	[mm]			,	42				
	Cracked	$k_1 = k_{cr,N}$	[-]	7,7							
Factor for	Non-cracked	$k_1 = k_{ucr,N}$	[-]			1	1,0				
Concrete	Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}							
cone failure	Spacing	S _{cr,N}	[mm]			3	h _{ef}				
Splitting	Edge distance	C _{cr,sp}	[mm]			(63				
failure	Spacing	Scr,sp	[mm]	126							
Installation	safety factor	γinst	[-]	1,2							
Concrete _l	ory-out failure										
Pry-out factor k ₈ [-]						•	1,5				
Concrete e	edge failure										
Effective le	ngth of anchor	$I_f = h_{ef}$	[mm]				42				
Outside dia	ameter of anchor	d _{nom}	[mm]				6				

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C1
Performances Characteristic resistance under static and quasi-static actions	

Table C2: Characteristic values of resistance in case of static and quasi-static loading (size 8, 10, 14)

Anchor size HUS3			. 8			10			14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal er	nbedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustmer	nt											
Total max. adjustment	thickness of layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-
Max. numb	er of adjustments	na	[-]	-	2	2	-	2	2	-	-	-
Steel failu	re for tension load											
Characteris	stic resistance	N _{Rk,s}	[kN]		39,2			62,2			96,6	
Partial safe	ety factor	$\gamma_{\text{Ms},N}^{1)}$	[-]					1,4				
Pull-out fa	ilure											
Characteristic resistance in non-cracked concrete C20/25		N _{Rk,p}	[kN]	9	12	16	12	20	2)	2)	2)	2)
Characteristic resistance in cracked concrete C20/25		$N_{Rk,p}$	[kN]	6	9	12	2)	2)	2)	2)	2)	2)
Increasing		C30/37	[-]	1,22								
factor for		C40/50	[-]	1,41								
concrete ψ	С	C50/60	[-]					1,55				
Concrete	cone and splitting f	ailure										
Effective e	mbedment depth	h _{ef}	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Factor	Cracked	$k_1 = k_{cr,N}$	[-]					7,7				
for	Non-cracked	$k_1 = k_{ucr,N}$	[-]	-] 11,0								
Concrete	Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
cone Spacing		S _{cr,N}	[mm]					3 h _{ef}				
Splitting	Edge distance	Ccr,sp	[mm]	60	70	85	65	90	110	85	100	140
failure	Spacing	S _{cr,sp}	[mm]	120	140	170	130	180	220	170	200	280
Installation safety factor γ_{inst} [-]			1,0									

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C2
Performances Characteristic resistance under static and quasi-static actions	7O.

²⁾ Pull-out failure is not decisive.

electronic copy of the eta by dibt: eta-13/1038

Table C2 continued

Anchor size HUS3				8			10			14	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustment				•		•			•	•	
Total max. thickness of adjustment layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-
Max. number of adjustments	na	[-]	-	2	2	-	2	2	-	-	-
Steel failure for shear load											
Characteristic resistance	V _{Rk,s}	[kN]	1	19 22 30 3		34	55		62		
Partial safety factor	γ _{Ms,V} 1)	[-]					1,5				
Ductility factor	k ₇	[-]					0,8				
Characteristic resistance	M ⁰ Rk,s	[Nm]		46			92			187	
Concrete pry-out failure											
Pry-out factor k ₈ [-]			1,0	1,0 2,0 1,0 2,0							
Concrete edge failure											
Effective length of anchor	$I_f = h_{ef}$	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Outside diameter of anchor d _{nom} [mm]		8			10			14			

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C3
Performances Characteristic resistance under static and quasi-static actions	7 IIIII CA

Table C3: Characteristic values of resistance in case of seismic performance category C1

Anchor size HUS3				8		1	0	14				
				h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}			
Nominal emb	edment depth	h _{nom}	[mm]	60	70	75	85	85	115			
Steel failure	for tension and	shear load										
Characteristic	resistance	N _{Rk,s,seis}	[kN]	39),2	62	2,2	96	6,6			
Partial safety	factor	γ _{Ms,N} 1)	[-]			1	,4					
Characteristic	resistance	$V_{Rk,s,seis}$	[kN]	11	,9	16,8	17,7	22,5	34,5			
Partial safety factor $\gamma_{\text{Ms,V}}^{-1}$ [-]						1	,5					
Pull-out failu	ire											
Characteristic resistance in cracked concrete		$N_{Rk,p,seis}$	[kN]	9	12	2)	2)	2)	2)			
Concrete co	ne failure											
Effective emb	edment depth	h _{ef}	[mm]	46,4	54,9	58,6	67,1	66,3	91,8			
Concrete	Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}								
cone failure	Spacing	Scr,N	[mm]	3 h _{ef}								
Installation sa	afety factor	γ inst	[-]	1,0								
Concrete pry	y-out failure											
Pry-out factor k ₈ [-]			2,0									
Concrete ed	ge failure											
Effective length of anchor		$I_f = h_{ef}$	[mm]	46,4	54,9	58,6	67,1	66,3	91,8			
Outside diameter of anchor d _{nom}			[mm]	8	3	1	0	14				

¹⁾ In absence of other national regulations.2) Pull-out failure is not decisive.

Hilti screw anchor HUS3	Annex C4
Performances Characteristic resistance under seismic actions, performance category C1	337. 3

8.06.01-216/17 Z6529.18

Table C4: Characteristic values of resistance in case of seismic performance category C2

Anchor size	e HUS3			10	14	
				h _{nom3}	h _{nom3}	
Nominal emb	edment depth	h _{nom}	[mm]	85	115	
Adjustment						
Total max. th adjustment la		t _{adj}	[mm]	10	-	
Max. number	of adjustments	na	[-]	2	-	
Steel failure	for tension load					
Characteristic	c resistance	$N_{Rk,s,seis}$	[kN]	62,2	96,6	
Partial safety	factor	γ _{Ms,N} 1)	[-]	1	,4	
Pull out failu	ire					
Characteristic cracked conc	c resistance in rete	$N_{Rk,p,seis}$	[kN]	9,4	17,7	
Concrete co	ne failure					
Effective emb	pedment depth	h _{ef}	[mm]	67,1	91,8	
Concrete	Edge distance	Ccr,N	[mm]	1,5	h _{ef}	
cone failure	Spacing	Scr,N	[mm]	3 h _{ef}		
Installation sa	afety factor	γ inst	[-]	1,0		
Steel failure	for shear load					
Installation w	ith Hilti filling set (HUS3-H only)				
Characteristic	c resistance	V _{Rk,s,seis}	[kN]	25,6	46,5	
Partial safety	factor	γ _{Ms,V} 1)	[-]	1,5		
Installation w	ithout Hilti filling s	et				
Characteristic	c resistance	$V_{Rk,s,seis}$	[kN]	17,7	34,4	
Partial safety	factor	$\gamma_{Ms,V}^{1)}$	[-]	1	,5	
Concrete pry	y-out failure		•			
Pry-out factor	r	k ₈	[-]	2,0		
Concrete ed	ge failure		•			
Effective leng	th of anchor	$I_f = h_{ef}$	[mm]	67,1	91,8	
Outside diam	eter of anchor	d _{nom}	[mm]	10	14	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C5
Performances Characteristic resistance under seismic actions, performance category C2	7

Table C5: Characteristic resistance under fire exposure

Anchor HUS3	3			6						
Туре				H C A I P PS						
Nominal embed	lment depth	h _{nom}	[mm]	55						
Steel failure fo	r tension and	shear lo	ad (F _{Rk,s}	$_{,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$						
	R30	$F_{Rk,s,fi}$	[kN]	1,6						
	R60	F _{Rk,s,fi}	[kN]	1,2						
	R90	F _{Rk,s,fi}	[kN]	0,8						
Characteristic	R120	F _{Rk,s,fi}	[kN]	0,7						
resistance	R30	M^0 Rk,s,fi	[Nm]	1,4						
	R60	M^0 Rk,s,fi	[Nm]	1,1						
	R90	M ⁰ Rk,s,fi	[Nm]	0,7						
	R120	M^0 Rk,s,fi	[Nm]	0,6						
Pull-out failure)		'							
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5						
	R120	$N_{Rk,p,fi}$	[kN]	1,2						
Concrete cone	failure		,							
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	1,8						
	R120	N ⁰ Rk,c,fi	[kN]	1,5						
Edge distance			'							
R30 to	R120	C _{cr,fi}	[mm]	2 h _{ef}						
In case of fire a	ttack from mor	e than on	e side, tl	ne minimum edge distance shall be ≥ 300 mm.						
Anchor spacin	g									
	R30 to R120	S _{cr,fi}	[mm]	2 C _{cr,fi}						
Concrete pry-c	out failure									
	R30 to R120	k ₈	[-]	1,5						
The anchorage given value.	depth has to b	e increas	ed for we	et concrete by at least 30 mm compared to the						

Hilti screw anchor HUS3	Annex C6
Performances Characteristic resistance under fire exposure	7 G

Table C6: Characteristic resistance under fire exposure

Anchor HUS3-H and HUS3-HF				8			10		14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embed	lment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Steel failure fo	r tension and	shear loa	d (F _{Rk,s,}	fi = N _{Rk,s}	s,fi = V _{Rk,s}	s,fi)						
R30 F _{Rk,s,fi} [k			[kN]	3,2	3,5	3,8	6,1	6	,2	10,4	10,6	
	R60	$F_{Rk,s,fi}$	[kN]	2,4	2,6	2,8	4,6	4	,7	7,8	8	,1
	R90	$F_{Rk,s,fi}$	[kN]	1,6	1,6	1,9	3,1	3	,2	5,3	5	,5
Characteristic	R120	F _{Rk,s,fi}	[kN]	1,2	1,2	1,5	2,4	2	,5	4,0	4	,3
resistance	R30	M^0 Rk,s,fi	[Nm]	3,8	4,1	4,4	9,1	9	,2	20,4	20),6
	R60	M^0 Rk,s,fi	[Nm]	2,8	3,0	3,4	6,9	7	,0	15,4	15	5,7
	R90	M^0 Rk,s,fi	[Nm]	1,9	1,9	2,3	4,6	4	,8	10,4	10),7
	R120	M^0 Rk,s,fi	[Nm]	1,5	1,4	1,7	3,5	3	,7	7,9	8,3	
Pull-out failure)											
Characteristic resistance	R30 R60 R90	NRk,p,fi	[kN]	1,5	2,3	3,0	2,4	4,0	4,9	3,1	4,8	7,8
resistance	R120	$N_{Rk,p,fi}$	[kN]	1,2	1,8	2,4	1,9	3,2	3,9	2,5	3,8	6,3
Concrete cone	failure				l							
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	3,0	6,4	14,4
	R120	N^0 Rk,c,fi	[kN]	1,4	2,1	3,2	1,6	3,8	5,3	2,4	5,1	11,5
Edge distance						•						
	R30 to R120	C _{cr,fi}	[mm]					2 h _{ef}				
In case of fire a	ttack from more	e than one	e side, th	ne minim	um edge	e distanc	e shall b	e ≥ 300	mm.			
Anchor spacin	ıg											
	R30 to R120	Scr,fi	[mm]					2 Ccr,fi				
Concrete pry-	out failure											
	R30 to R120	k ₈	[-]	[-] 1,0 2,0 1,0 2,0								
The anchorage	depth has to b	e increase	ed for we	et concre	ete by at	least 30	mm con	npared to	the give	en value.		

Hilti screw anchor HUS3	Annex C7
Performances Characteristic resistance under fire exposure	7Q. Q.

Table C7: Characteristic resistance under fire exposure

Anchor HUS3-C					8		10				
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth	1	h _{nom}	[mm]	50	60	70	55	75	85		
Steel failure for tension a	and shear load	I (F _{Rk,s,fi} =	N _{Rk,s,fi} =	= V _{Rk,s,fi})							
	R30	F _{Rk,s,fi} [kN] 0,5			1,2						
	R60	F _{Rk,s,fi}	[kN]		0,4			1,0			
	R90	$F_{Rk,s,fi}$	[kN]		0,3			0,8			
Observatoristic registeres	R120	F _{Rk,s,fi}	[kN]		0,2			0,6			
Characteristic resistance	R30	M ⁰ Rk,s,fi	[Nm]		0,6			1,7			
	R60	M ⁰ Rk,s,fi	[Nm]		0,5			1,5			
	R90	M ⁰ Rk,s,fi	[Nm]		0,4			1,1			
	R120	M^0 Rk,s,fi	[Nm]	0,3				0,9			
Pull-out failure											
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	2,3	3,0	2,4	4,0	5,0		
	R120	N _{Rk,p,fi}	[kN]	1,2	1,8	2,4	1,9	3,2	4,0		
Concrete cone failure					•						
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	1,8	2,6	4,0	2,0	4,7	6,6		
	R120	N ⁰ Rk,c,fi	[kN]	1,5	2,1	3,2	1,6	3,8	5,3		
Edge distance											
	R30 to R120	C _{cr,fi}	[mm]	2 h _{ef}							
In case of fire attack from r	more than one	side, the r	ninimum	edge d	istance s	hall be ≥	300 mn	n.			
Anchor spacing											
	R30 to R120 s _{cr,fi} [mm] 2 c _{cr,fi}										
Concrete pry-out failure											
	R30 to R120	k ₈	[-]	1,0	2	,0	1,0	2	,0		
The anchorage depth has	to be increased	for wet c	oncrete	by at lea	ast 30 mr	n compa	red to th	e given v	value.		

Hilti screw anchor HUS3	Annex C8
Performances Characteristic resistance under fire exposure	Annox GC

Table C8: Displacements under tension loads

Anchor size H	US3		6				
Туре		H, C, A, I P, PS					
Nominal embedr	h _{nom}	[mm]	55				
	Tension Load	N	[kN]	2,	.4		
Cracked concrete	Displacement	δ_{N0}	[mm]	0,1			
C20/25 to C50/60		διν∞	[mm]	0,6			
		$\delta_{N,seis}$	[mm]				
Non-cracked	Tension Load	N	[kN]	3,6	3,0		
concrete C20/25 to	Displacement	δνο	[mm]	0,2			
C50/60	Displacement	δ _{N∞}	[mm]	0,3			

Table C9: Displacements under tension loads

Anchor size HUS3			8		10			14				
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal emb	edment depth		[mm]	50	60	70	55	75	85	65	85	115
	Tension Load	N	[kN]	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2
Cracked concrete	concrete C20/25 to Displacement	δ_{N0}	[mm]	0,3	0,4	0,3	0,4	0,4	0,4	0,6	0,5	0,5
C20/25 to C50/60		δ _{N∞}	[mm]	0,7	0,7	0,6	0,4	0,4	0,5	0,9	1,2	1,0
		$\delta_{N,\text{seis}}$	[mm]	-	-	0,6	-	-	0,9	-	-	1,3
Non- cracked	Tension Load	N	[kN]	6,6	8,9	11,8	8,7	14,8	20,5	12,9	20,1	32,8
concrete	Displacement	δνο	[mm]	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,3
C20/25 to C50/60	Displacement -	δ _{N∞}	[mm]		0,3			0,2			0,5	

Table C10: Displacements under shear loads

Anchor s	ize HUS3			6		8			10			14	
				h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal en	nbedment depth		[mm]	55	50	60	70	55	75	85	65	85	115
Cracked -	Shear Load	V	[kN]	6,0		8,1			13,3			21,4	
concrete		δ_{V0}	[mm]	1,9	2,5	3,4	2,9	3,8	3,7	3,2	3,6	3,2	2,4
C20/25 to	Displacement	δ∨∞	[mm]	2,8	3,7	5,1	4,4	5,7	5,5	4,9	5,4	6,9	3,5
C50/60	•	δ _{V,sei}	s [mm]	-	-	-	0,6	-	-	0,9	-	-	1,3

Hilti screw anchor HUS3	Annex C9
Performances Displacement values in case of static and quasi-static loading	

Table C11: Displacements under tension load for seismic performance category C2

Anchor size HUS3			10	14
			h _{nom3}	h _{nom3}
Nominal embedment d	85	115		
Displacement DLS	δ _{N,seis (DLS)}	[mm]	0,57	1,43
Displacement ULS	δ _{N,seis} (ULS)	[mm]	2,08	4,32

Table C12: Displacements under shear load for seismic performance category C2

Anchor size HUS3	10	14		
			h _{nom3}	h _{nom3}
Nominal embedment de	epth		85	115
Installation with Hilti filli	ng set (HUS3-H	only)		
Displacement DLS	$\delta_{\text{V,seis (DLS)}}$	[mm]	1,80	2,52
Displacement ULS	δ _{V,seis} (ULS)	[mm]	4,03	6,79
Installation without Hilti	filling set			
Displacement DLS	$\delta_{\text{V,seis (DLS)}}$	[mm]	4,15	4,93
Displacement ULS	$\delta_{\text{V,seis (ULS)}}$	[mm]	6,15	9,14

Hilti screw anchor HUS3	Annex C10
Performances Displacement values in case of seismic performance category C2	7.1.1.6.2.0.10