

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0784 of 23 April 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

MULTI-MONTI-plus

Screw anchor of size 6, 7.5, 10, 12, 16 and 20 mm for use in cracked and uncracked concrete

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Schrauben GmbH & Co. KG Werk Schramberg

14 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-15/0784 issued on 19 May 2016

European Technical Assessment ETA-15/0784

Page 2 of 14 | 23 April 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z11324.18 8.06.01-565/16

European Technical Assessment ETA-15/0784

Page 3 of 14 | 23 April 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Screw anchor MULTI-MONTI-plus is an anchor in size 6, 7.5, 10, 12, 16 and 20 mm made of galvanised steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading categories C1 and C2	See Annex C 2
Displacements under tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z11324.18 8.06.01-565/16

European Technical Assessment ETA-15/0784

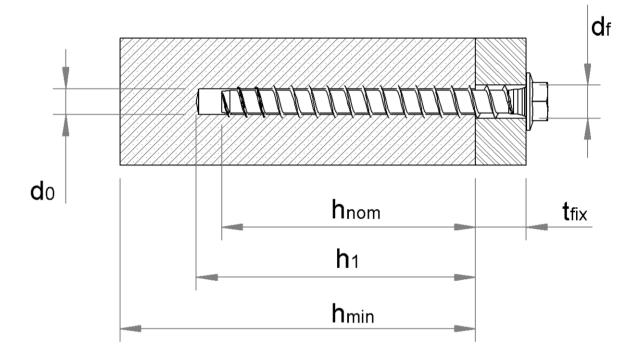
Page 4 of 14 | 23 April 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 April 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Tempel

Z11324.18 8.06.01-565/16

Installed condition

MMS-plus SS (Head version hexagon with washer size 6, 7.5, 10, 12, 16 and 20)

 $d_0 = nominal borehole diameter$ $<math>h_{nom} = nominal anchorage depth$

 h_1 = borehole depth

h_{min} = minimum thickness of concrete member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

MULTI-MONTI-plus

Product description Product in the installed state

Annex A 1

MULTI-MONTI-plus

Table A1: Material and screw types

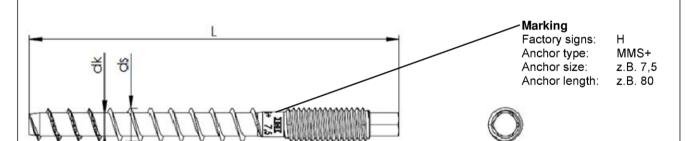
Туре	Marking / Material													
	screw anchor / steel 1)													
1, 2,	Size MMS-plus			6	7,5	10	12	16	20					
3, 4, 5, 6,	nominal value of the characteristic yield strength	f _{yk}	[N/mm²]	640	640	640	640	640	640					
7, 8, 9, 10,	nominal value of the characteristic tensile strength	f _{uk}	[N/mm²]	800	800	800	800	800	800					
11	elongation at rupture	A ₅	[%]			≤	8							
	1) galvanized steel according EN 10263	-4:200	01 (multi-laye	red coati	ng systems	are possib	ole)							
	1) MULTI-MONTI-plus S, with and without washer (alternative design with cone under the head)													
	2) MULTI-MONTI-plus SS, with Hexagon Head and washer (alternative design with cone under the head)													
	3) MULTI-MONTI-plus P, PanHead, with small Pan Head													
	4) MULTI-MONTI-plus MS, mounting bar-anchor, with large Pan Head													
			ME LE	5)	MULTI-MO	ONTI-plus	F, with Cou	untersunk						
V.			THE SECOND SECON	6)	MULTI-MO thread and				k, under head					
1				7)	MULTI-MO head threa (alternative	nd and sing	gle- or mult	ti-start thre	ad					
				8)	MULTI-MO	ONTI-plus	ST, ancho	r with metr	ic stud					
	9) MULTI-MONTI-plus I, anchor with metric stud for mounting of nuts (pre-assembled with sleeve)													
			0	10)	MULTI-MO	NTI-plus '	V, anchor	with metric	stud					
		M		11)	thread and	l single- or ameters c	multi-star ompared to	thread,	I, under head					

Product description
Dimensions and screw types

Annex A 2

Table A2: Dimensions and head markings

Size MMS-plus			6		7,5		10		12		16		20		
		h _{nom}		h_{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}			
Embedment depth in concrete [mm]		35	45	35	55	50	65	75	90	100	115	140			
Thread diameter	ds	[mm]	6,65		7,75		10,5		12,6		16,7		21,2		
Bolt diameter	d _k	[mm]	4	4,3		5,45		7,3		9,05		9,05		,3	17,4
Lanath	L≥	[mm]	35		3	35		50		75		00	140		
Length	L≤	[mm]	50	00	50	00	500		600		800		800		


Head marking

Factory signs: H
Anchor type: MMS+
Anchor size: z.B. 7,5
Anchor length: z.B. 80

Bolt marking

MULTI-MONTI-plus

Product description

Dimensions and head marking

Annex A 3

English translation prepared by DIBt

Specifications of intended use

Use of the anchoring:

- Static and guasi static loads: all sizes
- Seismic category C1:
 - MMS-plus all Versions, size 10 with maximum embedment depth (h_{nom}), size 12 with both embedment depth (h_{nom}) and size 16 and 20 with maximum embedment depth (h_{nom})
- Seismic category C2:
 - MMS-plus all Versions, size 16 and 20 with maximum embedment depth (h_{nom})
- Fire exposure: all sizes

Base Materials:

- Reinforced or non-reinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- Cracked and uncracked concrete

Conditions of use (Environmental conditions):

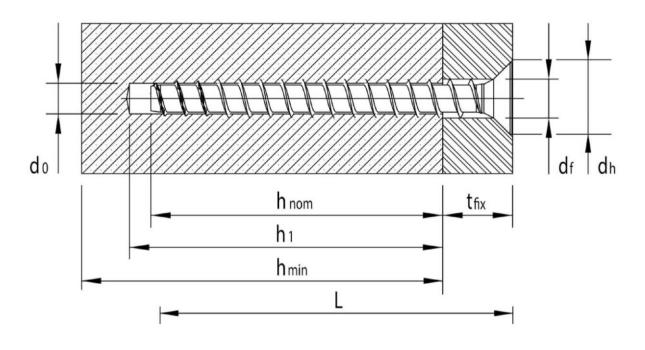
Structures subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- The design of the anchoring under static or quasi-static actions and fire exposure have to be carried out in accordance with FprEN 1992-4:2017 and EOTA Technical Report TR055
- The design under shear load according to FprEN 1992-4:2017, section 6.2.2 applies to all in appendix B2, table B1 specified diameter of clearance hole in the fixture

Installation:

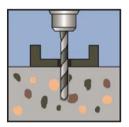
electronic copy of the eta by dibt: eta-15/0784

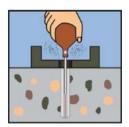

- Hole drilling by hammer-drilling only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- After installation further turning of the anchor must not be possible
- The head of the anchor is attached to the fixture and is not damaged, respectively the required embedment depth is reached.

MULTI-MONTI-plus	
Intended Use Specification	Annex B 1

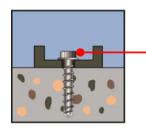
Table B1: Installation parameters MMS-plus

Size MMS-p	Size MMS-plus						,5	1	0	1	2	1	6	20				
				hn	om	hn	om	hn	om	h _{nom}		h _{nom}		h _{nom}				
Embedment d	epth in concre	te	[mm]	35	45	35	55	50	65	75	90	100	115	140				
Norminal drill	diameter	d₀	[mm]	5		(3	8	3	1	0	1	4	18				
Drill bit cutting	Drill bit cutting-Ø		[mm]	5,40		6,	40	8,4	45	10	,45	14	,50	18,50				
Borehole dept	Borehole depth h₁≥ [mm]		[mm]	40	50	40	65	60	75	85	100	115	130	160				
Diameter of cl	earhole in	d _f ≤	[mm]	7	7		9	12	12,5		,5	1	9	23				
Diameter Countersunk d _h		d _h	[mm]	11,5		15	5,5	19,5		24			-					
	Min. thickness of the concrete member		[mm]	100		100		100	115	125 150		150		180				
cracked and	min. spacing	S _{min}	[mm]	3	0	3	35		5	4	0	6	0	80				
uncracked concrete	min. edge distance	C _{min}	[mm]		0		0	35			0		0	80				
Pecommende	d installation to	no.	[Nm]	Imp	act scr	ew drive	er, max	. power	output	T _{max} ac	cording	manufa	acturer	information				
Recommende	Recommended installation tool		[MIII]	75	100	12	20	25	50	2	50	60	00	800				
A	Torque moment for threaded version T_{inst} [Nm] (MMS-plus V)		[Nm]			1	15		20		20		20		0	55	70	140


MULTI-MONTI-plus	
Intended Use Installation parameters	Annex B 2


Installation Instractions

Note the information of the approval!


Create borehole using a Rotary Hammer

clean borehole, e.g. with blowing out

Install of the screw anchor with an impact wrench or by hand

Check: The anchor head is fully supported on the fixture an not damaged

MULTI-MONTI-plus

Intended Use Installation instruction Annex B 3

Table C1 Characteristic values for static and quasi-static loading MMS-plus

Size MMS-plus						6	7	,5	1	0	1	2	1	6	20
					hn	om	h	nom	h	nom	h,	nom	h	om	h _{nom}
Embedmend dept	h in co	oncrete		[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	100	115	140
Steelfailure for To	ensio	n- and She	ear resis	tance											
Characteristic resi	stanc	е	$N_{Rk,s}$	[kN]	10	10,8 17,6 32,1 49,9 111,1							1,1	190,2	
Partial safety facto	or		γ _{Ms}	-						1,	50				
Characteristic resi	stanc	е	$V_{Rk,s}$	[kN]	4	4,1 6,1 13,7 24,1 50,2),2	85,3		
Partial safety factor γ _{Ms}										1,	25				
k ₇ ²⁾ -										0	,8				
Characteristic resi	stanc	е	M ⁰ _{Rk,s}	[Nm]	6	,7	14	1,1	34	1,5	66	6,8	20	7,6	464,3
Pullout															
Characteristic resi	stanc	e in	l N	FI-NII	5,5	۰	4	_ 2)		2)		2)		2)	_ 2)
uncracked concre	0/25	$N_{Rk,p}$	[kN]	5,5	8	4	_ ~	_		_		_		-	
Characteristic resi	stanc	e in	N.	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
cracked concrete	C20/2	5	N _{Rk,p}	[KIN]	'	1 1,5 2 4 0 9 12 10 20 30							30	44	
Increasing factor f	or	C30/37			1,22										
concrete		C40/50	Ψ。	-	1,41										
		C50/60			1,58										
Concrete cone fa	ilure	and splitti	ng failur	e											
Effective anchorage	ge dep	oth	h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Factor for	crac	ked	k _{cr,N}	-						7	,7				
ractor for	uncr	acked	k _{ucr,N}	-						1′	1,0				
Concrete cone	edge	e distance	C _{cr,N}	[mm]						1.5	h _{ef}				
Concrete cone	spac	ing	S _{cr,N}	[mm]						3	h _{ef}				
Splitting	edge	e distance	C _{cr,sp}	[mm]						1.5	h _{ef}				
Splitting	spac	ing	S _{cr,sp}	[mm]						3	h _{ef}				
Installation safety factor γ _{inst} -					1,0										
Concrete pryout															
k-Factor			k ₈	-	1,0 2,0										
Concrete edge fa	ilure														
Effective length of	fective length of the anchor $I_f = h_{ef}$		[mm]	26	35	26	43	36	50	57	70	77	90	114	
Effective diameter		anchor	d _{nom}	[mm]	į	5	(6	8	В	1	10	1	4	18

Only for non-structural applications

MULTI-MONTI-plus Performance Characteristic values for static and quasi static tensions load Annex C 1

²⁾ Pullout is not decisive

Table C2.1 Characteristic values for seismic actions C1

Size MMS-plus				10	1	2	16	20				
				h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}				
Embedment depth	in concrete		[mm]	65	75	90	115	140				
Steelfailure for To	ension- and	Shear res	istance									
Characteristic resi	otonoo	$N_{Rk,s,eq}$	[kN]	24,1	37	7,4	100,0	142,7				
Characteristic resi	$V_{Rk,s,eq}$	[kN]	9,6	16	5,9	45,2	81,0					
Pullout												
Characteristic resi	stance in	N	FI-NII	6.0	0.0	10.0	21.0	22.0				
cracked concrete		$N_{Rk,p,eq}$	[kN]	6,8	9,0	12,0	21,0	33,0				
Concrete cone fa	ilure											
Effective anchorag	ge depth	h _{ef}	[mm]	50	57	70	90	114				
concrete edg	ge distance	C _{cr,N}	[mm]	1.5 h _{ef}								
cone spa	acing	S _{cr,N}	[mm]	3 h _{ef}								
Installation safety	factor	γ_2	-			1,0						
Concrete pryout	failure											
k-Factor		k	-	1	,0		2,0					
Concrete edge failu	ire											
Effective length of	the anchor	l – h	[mm]	50	E-7	70	90	114				
under shear loadir	under shear loading		_f = h _{ef} [mm] 50		57							
Effective diameter	-Ø	d _{nom}	[mm]	8	1	0	14	18				

Table C2.2 Characteristic values for seismic actions C2

Size MMS-	plus			16	20
				h _{nom}	h _{nom}
Embedment	depth in concrete		[mm]	115	140
Steelfailure	for Tension- and	Shear res	sistance		
Characterist	·	$N_{Rk,s,eq}$	[kN]	100,0	142,7
Characterist	ic resistance	$V_{Rk,s,eq}$	[kN]	27,6	57,2
Pullout					
Characteristi cracked con	ic resistance in crete	$N_{Rk,p,eq}$	[kN]	14,0	18,1
Concrete co	one failure				
Effective and	chorage depth	h _{ef}	[mm]	90	114
concrete	edge distance	C _{cr,N}	[mm]	1.5	h _{ef}
cone	spacing	S _{cr,N}	[mm]	3	h _{ef}
Installation s	afety factor	γ ₂	-	1,	,0
Concrete pr	yout failure				
k-Factor		k	-	2	,0
Concrete edg	je failure				
Effective len	gth of the anchor	l - b	[mm]	00	114
under shear loading		$I_f = h_{ef}$	[mm]	90	114
Effective dia	meter-Ø	d _{nom}	[mm]	14	18

MULTI-MONTI-plus	
Performance Characteristic value for seismic actions C1 and C2	Annex C 2

Table C3 Characteristic values under fire exposure

Size MMS-plus	S			(ĵ	7	,5	1	0	1	2	1	6	20
				h	h _{nom}		h _{nom}		h _{nom}		h _{nom}		iom	h _{nom}
Embedment dep	th in concrete		[mm]	35	45	35	55	50	65	75	90	100	115	140
Characteristic r	d shear													
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,4	2,3	3,0	3,9	5,0	7,5	11,0
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,4	1,4	2,1	2,1	4,5	4,5	7,7
	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	1,0	1,5	1,5	3,3	3,3	5,6
Characteristic	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2	2,6	2,6	4,5
resistance	R30	M ⁰ _{Rk,s,fi}	[Nm]	0	,5	1,1 2,7		,7	5,3		16,4		36,6	
	R60	M ⁰ _{Rk,s,fi}	[Nm]	0,3		0,6		1	,5	2,8		8,9		19,8
	R90	M ⁰ _{Rk,s,fi}	[Nm]	0	0,2		0,4		1,1		,0	6	,4	14,2
	R120	M ⁰ _{Rk,s,fi}		0,2		0	0,3		0,9		,6	5,1		11,4
Edge distance														
	R30 bis R120	C _{cr,fi}	[mm]						2	h _{ef}				
Spacing														
	R30 bis R120	S _{cr,fi}	[mm]						2 (Cr,fi				

MULTI-MONTI-plus	
Performance Characteristic values under fire exposure	Annex C 3

electronic copy of the eta by dibt: eta-15/0784

Table C4 Displacements under tension loads

Size MMS-plus			6		7,5		10		12		16		20
		h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}	
Embedment depth in concrete [mm]		35	45	35	55	50	65	75	90	100	115	140	
Tension load uncracked concrete	N	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8	16,2	20,1	29,3
Disalesement	δ_{N0}	[mm]	0,11	0,11	0,06	0,12	0,06	0,07	0,05	0,19	0,09	0,09	0,09
Displacement	δ _{N∞} [n	[mm]	0,30	0,28	0,38	1,03	0,75	0,72	0,74	0,60	0,13	0,13	0,13
Tension load cracked concrete	N	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4	20,0	30,0	20,95
Displacement	δ_{N0}	[mm]	0,01	0,02	0,03	0,04	0,03	0,09	0,05	0,02	0,09	0,09	0,09
Displacement	δ _{N∞}	[mm]	0,14	0,09	0,12	0,11	0,08	0,09	0,07	0,22	1,38	1,38	0,69

Table C5 Displacements under shear loads

Size MMS-plus			6		7,5		10		12		16		20
			h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}		h _{nom}
Embedment depth in concrete [mm]		35	45	35	55	50	65	75	90	100	115	140	
Shear load uncracked concrete	V	[kN]	2,0		4,0		8,0		12,0		22,6		42,8
Dienlessment	$\delta_{\vee 0}$	[mm]	0,14	0,13	0,09	0,11	0,18	0,13	0,	18	2	9	3,4
Displacement	δ _{∨∞}	[mm]	0,20	0,19	0,13	0,16	0,27	0,20	0,	27	4	4	5,1

MULTI-MONTI-plus

Performance
Displacements

Annex C 4