

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0464 vom 11. Januar 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Hilti WDVS- Dübel HTH

Schraubdübel zur Befestigung von außenseitigen Wärmedämm-Verbundsystemen mit Putzschicht in Beton und Mauerwerk

HILTI Corporation
Feldkircherstraße 100
9494 SCHAAN
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

Hilti manufacturing plant

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330196-01-0604

ETA-15/0464 vom 08. Juni 2017

Europäische Technische Bewertung ETA-15/0464

Seite 2 von 15 | 11. Januar 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z1658.18 8.06.04-3/18

Europäische Technische Bewertung ETA-15/0464

Seite 3 von 15 | 11. Januar 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Hilti WDVS- Schraubdübel HTH mit Schraubwendel besteht aus einer Dübelhülse aus Polypropylen (Neuware) und einer zugehörigen Spezialschraube aus galvanisch verzinktem Stahl.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 25 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Zugbeanspruchung	siehe Anhang C 1
Rand- und Achsabstände	siehe Anhang B 3
Verschiebungen	siehe Anhang C 2

3.2 Energieeinsparung und Wärmeschutz (BWR 6)

Wesentliches Merkmal	Leistung
Punktbezogener Wärmedurchgangskoeffizient	siehe Anhang C 2

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330196-01-0604 gilt folgende Rechtsgrundlage: [97/463/EG].

Folgendes System ist anzuwenden: 2+

Z1658.18 8.06.04-3/18

Europäische Technische Bewertung ETA-15/0464

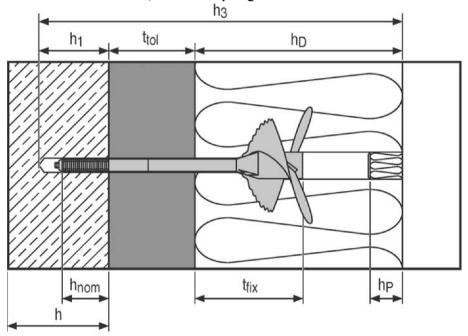
Seite 4 von 15 | 11. Januar 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 11. Januar 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt

Z1658.18 8.06.04-3/18

Hilti WDVS-Dübel HTH

Anwendungsbereich: Verankerung von geklebten Wärmedämm-Verbundsystemen in Beton, Mauerwerk, haufwerksporigem Leichtbeton und Porenbeton

Legende:

n = vorhandene Dicke des Bauteils (Wand)

h₁ = Bohrlochtiefe zum tiefsten Punkt

h₃ = Gesamtlänge des Bohrlochs von der Dämmstoffoberfläche zum tiefsten Punkt

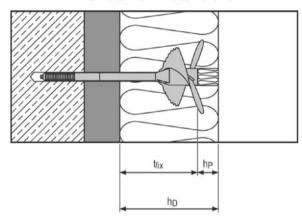
h_{nom} = Gesamtlänge des Kunststoffdübels im Verankerungsuntergrund

h_D = Dämmstoffdicke

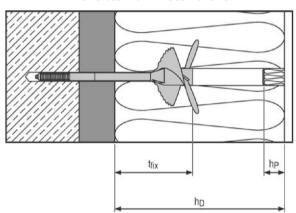
h_P = Dicke des Verschlussstopfens t_{fix} = Befestigungslänge im Dämmstoff

ttol = Dicke der Ausgleichs- oder nichttragenden Schicht

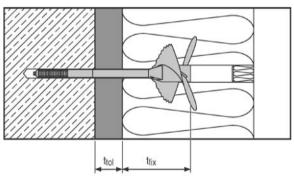
Hilti WDVS-Dübel HTH

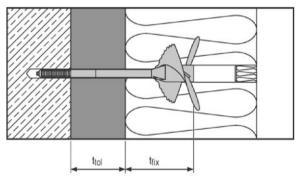

Produktbeschreibung
Einbauzustand HTH

Anhang A 1



Anwendung bei verschiedenen Dämmstoffdicken


Kleinste Dämmstoffdicke

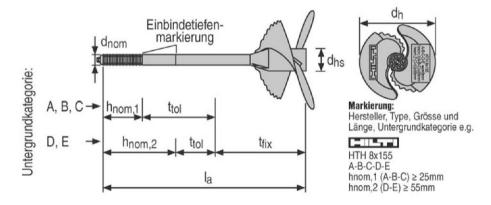


Größte Dämmstoffdicke

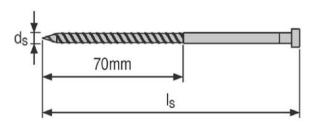
Anwendung bei verschieden dicken Ausgleichs- und nichttragenden Schichten

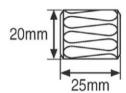
Legende:

h_D = Dämmstoffdicke


 h_P = Dicke des Verschlussstopfens t_{fix} = Befestigungslänge im Dämmstoff

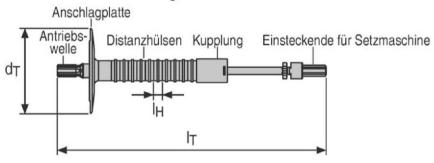
 t_{tol} = Dicke der Ausgleichs- oder nichttragenden Schicht


Hilti WDVS-Dübel HTH Produktbeschreibung Unterschiedliche Einbaubedingungen Anhang A 2


Dübelhülse HTH

Schraube HTH

Verschlussstopfen HTH


Hinweis: Alternativ darf auch PU-Schaum (Spezifikationen siehe Tabelle A4) verwendet werden

Hilti WDVS-Dübel HTH Produktbeschreibung Ahmessungen und Markierungen der HTH-Dübelhülse Spreizelement und Verschlussstopfen

Setzwerkzeuge

Setzwerkzeug D8-SW 1 oder Setzwerkzeug D8-SW 2

Setzwerkzeug HTH-SW 1 oder Setzwerkzeug HTH-SW 2

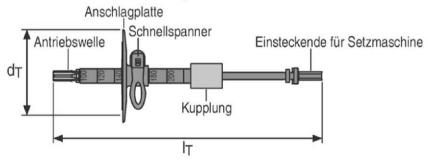


Tabelle A1 Abmessungen des Setzwerkzeugs D8-SW 1 und D8-SW 2

Setzwerkzeugtyp		D8-SW 1	D8-SW 2		
Durchmesser der Anschlagplatte	d _⊤ [mm]	1	00		
Setzwerkzeuglänge	ℓ _⊤ [mm]	310 477			
Länge der Abstandshülsen (Dämmstoffdickenabstufung)	ℓ _H [mm]	10			
Casianata Dämmataffdiakan	h _{D,min} [mm]	100 ¹⁾	200		
Geeignete Dämmstoffdicken	h _{D,max} [mm]	200	360		

Diese Angabe gilt für t_{fix} = 80 mm (für t_{fix} = 110 mm: $h_{D,min}$ = 130 mm).

Tabelle A2 Abmessungen des Setzwerkzeugs HTH-SW 1 und HTH-SW 2

Setzwerkzeugtyp		HTH-SW 1	HTH-SW 2		
Durchmesser der Anschlagplatte	d _⊤ [mm]	100			
Setzwerkzeuglänge	ℓ_{T} [mm]	310 477			
	h _{D,min} [mm]	100 ¹⁾	200		
Geeignete Dämmstoffdicken	Abstufung [mm]	1	0		
	h _{D,max} [mm]	200	360		

Diese Angabe gilt für t_{fix} = 80 mm (für t_{fix} = 110 mm: $h_{D,min}$ = 130 mm).

Hilti WDVS-Dübel HTH	
Produktbeschreibung Setzwerkzeug	Anhang A 4

Tabelle A3 Dübeltypen und Abmessungen HTH

Dübeltyp			HTH 8x125	HTH 8x155	HTH 8x215
	Dübelhülsendurchmesser	d _{nom} [mm]		8	
Kunststoff-	Dübelhülsenlänge	ℓ_{a} [mm]	125	155	215
hülse	Durchmesser des Helixzentrums	d _{hs} [mm]		17	
	Durchmesser der Helix	d _h [mm]	75		
Sobraubo	Schraubendurchmesser	d _s [mm]		5,35	
Schraube	Schraubenlänge	ℓ_{s} [mm]	94	124	184

Tabelle A4 Material HTH

Element	Werkstoff
Dübelhülse	Polypropylen (Neuware), Farbe: schwarz
Schraube	Stahl, galvanisch verzinkt ≥ 5 μm, f _{yk} = 480 N/mm², f _{uk} = 600 N/mm²
Verschlussstopfen	EPS oder Mineralwolle
PU-Schaum	Polyurethan, Wärmeleitfähigkeit ≤ 0,045 W/(m·K) Anmerkungen: Verwendung von Schaum nur in Abstimmung mit dem WDV-System- Anbieter

Hilti WDVS-Dübel HTH	
Produktbeschreibung Abmessungen und Werkstoffe	Anhang A 5

Angaben zum Verwendungszweck

Beanspruchung der Verankerung:

• Der Dübel darf nur zur Übertragung von Windsoglasten und nicht zur Übertragung der Eigenlasten des Wärmedämmverbundsystems herangezogen werden.

Verankerungsuntergrund:

- Normalbeton (Nutzungskategorie A) nach Anhang C 1
- Vollsteinmauerwerk (Nutzungskategorie B) nach Anhang C 1
- Hohl- oder Lochsteine (Nutzungskategorie C) nach Anhang C 1
- Haufwerksporiger Leichtbeton (Nutzungskategorie D) nach Anhang C 1
- Porenbeton (Nutzungskategorie E) nach Anhang C 1
- Bei anderen Verankerungsuntergründen der Nutzungskategorien A, B, C, D oder E darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach EOTA Technical Report TR 051 Fassung Dezember 2016 ermittelt werden.

Temperaturbereich:

0°C bis +40°C (max. Kurzzeittemperatur +40°C und maximale Langzeittemperatur +24°C)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerung und des Mauerwerks erfahrenen Ingenieurs mit den Teilsicherheitsbeiwerten $\gamma_M = 2,0$ und $\gamma_F = 1,5$, sofern keine anderen nationalen Regelungen vorliegen.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Position der Dübel ist in den Konstruktionszeichnungen anzugeben.
- Die Dübel sind nur zur Mehrfachbefestigung von WDVS anzuwenden.

Einbau:

- Bohrlocherstellung entsprechend der in Anhang C 1 angegebenen Bohrverfahren
- Einbau der Dübel durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Temperatur beim Setzen des Dübels von 0°C bis +40°C
- UV-Belastung durch Sonneneinstrahlung des ungeschützten unverputzten Dübels ≤ 6 Wochen

Hilti WDVS-Dübel HTH

Verwendungszweck
Spezifikationen

Anhang B 1

Tabelle B1 Montagekennwerte bei Anwendung in <u>Beton</u> und <u>Vollsteinmauerwerk</u> (Nutzungskategorie A, B)

Dübeltyp				HTH 8x125	HTH 8x155	HTH 8	3x215
Bohrernenndurchmesser	d_0	=	[mm]		8		
Bohrerschneidendurchmesser	d_{cut}	\leq	[mm]		8,45		
Tiefe des Bohrlochs bis zum tiefsten Punkt (im Verankerungsuntergrund)	h ₁	≥	[mm]		45		
Gesamtlänge des Dübels im Verankerungsuntergrund	h _{nom,1}	≥	[mm]	25			
Befestigungslänge	\mathbf{t}_{fix}	=	[mm]	80	80	80	110
Dicke der Ausgleichs- oder	$\mathbf{t}_{tol,min}$	=	[mm]	0	0	50	20
nichttragenden Schicht	t _{tol,max}	=	[mm]	20	50	110 ¹⁾	80 ¹⁾
Gesamtlänge des Bohrlochs	h ₃	\geq	[mm]	h _D +65	h _D +95	h _D +155	h _D +125

Falls t_{tol,max} grösser als 50 mm ist, muss sichergestellt werden, dass das Material t_{tol} ausreichend tragfähig ist, um das Eigengewicht des WDVS zu tragen. Davon kann ausgegangen werden, wenn t_{tol} aus Putz, Altdämmung oder der Schale von Mantelbetonsteinen besteht.

Tabelle B2 Montagekennwerte bei der Anwendung in dünnen Betonelementen (z.B. Wetterschalen) und in <u>Hohl- oder Lochsteinen</u> (Nutzungskategorie C)

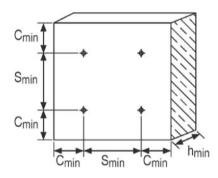
Dübeltyp				HTH 8x125	HTH 8x155	HTH 8	8x215
Bohrernenndurchmesser	d _o	=	[mm]		8		
Bohrerschneidendurchmesser	d_{cut}	\leq	[mm]		8,45		
Tiefe des Bohrlochs bis zum tiefsten Punkt (im Verankerungsuntergrund)	h ₁	≥	[mm]		45		
Gesamtlänge des Dübels im Verankerungsuntergrund	h _{nom,1}	≥	[mm]	25			
Befestigungslänge	t_{fix}	=	[mm]	80	80	80	110
Dicke der Ausgleichs- oder	t _{tol,min}	=	[mm]	0	20 ¹⁾	80 ¹⁾	50 ¹⁾
nichttragenden Schicht	t _{tol,max}	=	[mm]	20	50	110 ²⁾	80 ²⁾
Gesamtlänge des Bohrlochs	h ₃	≥	[mm]	h _D +65	h _D +95	h _D +155	h _D +125

¹⁾ t_{tol. min} darf geringer sein, wenn die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche ermittelt wird.

Hilti WDVS-Dübel HTH	
Verwendungszweck Montagekennwerte – Nutzungskategorien A, B, C	Anhang B 2

²⁾ Falls t_{tol,max} grösser als 50 mm ist, muss sichergestellt werden, dass das Material t_{tol} ausreichend tragfähig ist, um das Eigengewicht des WDVS zu tragen. Davon kann ausgegangen werden, wenn t_{tol} aus Putz, Altdämmung oder der Schale von Mantelbetonsteinen besteht.

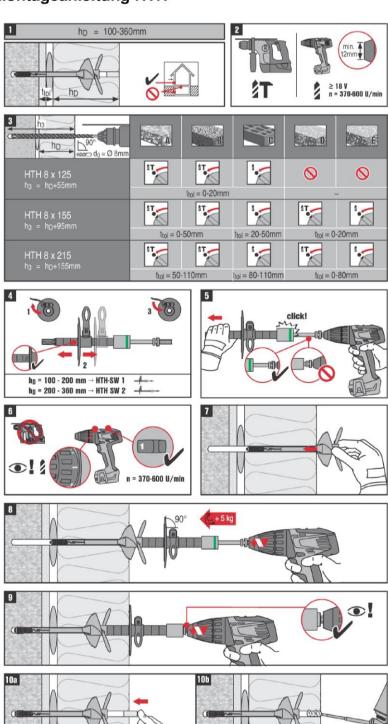
Tabelle B3 Montagekennwerte bei der Anwendung in <u>haufwerksporigem Leichtbeton</u> und <u>Porenbeton</u> (Nutzungskategorie D, E)


Dübeltyp		HTH 8x125	HTH 8x155	нтн а	3x215		
Bohrernenndurchmesser	d_0	=	[mm]		8		
Bohrerschneidendurchmesser	d_{cut}	\leq	[mm]			8,45	
Tiefe des Bohrlochs bis zum tiefsten Punkt (im Verankerungsuntergrund)	h ₁	>	[mm]			75	
Gesamtlänge des Dübels im Verankerungsuntergrund	h _{nom,2}	≥	[mm]	-	55		
Befestigungslänge	t_{fix}	=	[mm]		80	80	110
Dicke der Ausgleichs- oder	$\mathbf{t}_{tol,min}$	=	[mm]		0	0	0
nichttragenden Schicht t _{tol,max}	=	[mm]		20	80 ¹⁾	50	
Gesamtlänge des Bohrlochs	h ₃	≥	[mm]		h _D +95	h _D +155	h _D +125

Falls t_{tol,max} grösser als 50 mm ist, muss sichergestellt werden, dass das Material t_{tol} ausreichend tragfähig ist, um das Eigengewicht des WDVS zu tragen. Davon kann ausgegangen werden, wenn t_{tol} aus Putz, Altdämmung oder der Schale von Mantelbetonsteinen besteht.

Tabelle B4 Mindestbauteildicke und minimaler Achs- und Randabstand

				нтн
Mindestbauteildicke _	Beton, Mauerwerk, haufwerksporiger Leichtbeton, Porenbeton	h _{min}	[mm]	100
	Dünne Betonelemente (z.B. Wetterschalen)	h _{min}	[mm]	40
Minimaler zulässiger Achsabstand		S _{min}	[mm]	100
Minimal zulässiger Randabstand		C _{min}	[mm]	100


Schema Mindestbauteildicke, Dübelrandabstände und Dübelachsabstände

Hilti WDVS-Dübel HTH	
Verwendungszweck	Anhang B 3
Montagekennwerte – Nutzungskategorien D, E	
Dübelabstände und Bauteilabmessungen	

Montageanleitung HTH

Hilti WDVS-Dübel HTH

Verwendungszweck Montageanleitung HTH Anhang B 4

Tabelle C1 Charakteristische Zugtragfähigkeit N_{Rk} in Beton, Mauerwerk, haufwerksporigem Leichtbeton und Porenbeton

Verankerungsuntergrund	Nutz kat. ⁴⁾	Roh- dichte- klasse ρ	Druck- festigkeits- klasse f _b	Bemerkungen	Bohr- verfahren	N _{Rk}
		[kg/dm³]	[N/mm²]			[kN]
Beton C12/15 – C50/60 EN 206-1:2000	Α	-	-	-	Hammer- bohren	1,2
Dünne Betonelemente (z.B. Wetterschalen) C16/20 – C50/60 EN 206-1:2000	Α	-	-	Dicke der dünnen Schale h ≥ 40mm	Hammer- bohren	1,2
Mauerziegel, Mz z. B. nach DIN 105-100:2012-01 / EN 771-1:2011	В	2,0	20	Querschnitt bis zu 15% durch Lochung senkrecht zur Lagerfläche reduziert	Hammer- bohren	1,2
Kalksandvollstein, KS z. B. nach DIN V 106:2005-10 / EN 771-2:2011	В	2,0	20	Querschnitt bis zu 15% durch Lochung senkrecht zur Lagerfläche reduziert	Hammer- bohren	1,2
Hochlochziegel, Hlz z.B. nach DIN 105-100:2012-01 / EN 771-1:2011	С	1,2	12	Querschnitt >15% und ≤ 50% durch Lochung senkrecht zur Lagerfläche reduziert ¹⁾	Dreh- bohren	1,2
Hochlochziegel, Hlz z.B. nach DIN 105-100:2012-01 / EN 771-1:2011	С	0,8	12	Querschnitt >15% und ≤ 50% durch Lochung senkrecht zur Lagerfläche reduziert ²), Scherbendichte ≥1,5 kg/dm³	Dreh- bohren	0,6
Kalksandlochstein, KSL z. B. nach DIN V 106:2005-10 / EN 771-2:2011	С	1,4	12	Querschnitt >15% und ≤ 50% durch Lochung senkrecht zur Lagerfläche reduziert ³⁾	Dreh- bohren	1,2
Haufwerksporiger Leichtbeton, LAC, z. B. nach EN 1520:2011 EN 771-3:2011	/ D	0,9	2 4	-	Hammer- bohren	0,6 1,2
Porenbeton, PP z. B. nach EN 771-4:2011	E	0,5	4	-	Dreh- bohren	0,9

gültig bei einer Außenstegdicke ≥ 12 mm

Die unterschiedlichen Montagekennwerte für die Nutzungskategorien A, B, C und Nutzungskategorien D, E und dünne Betonelemente sind zu beachten (siehe Anhang B 2 und B 3)

Hilti WDVS-Dübel HTH	
Leistungen Charakteristische Zugtragfähigkeit	Anhang C 1

²⁾ gültig bei einer Außenstegdicke ≥ 9 mm

gültig bei einer Außenstegdicke ≥ 23 mm

Ansonsten ist der charakteristische Widerstand durch Baustellenversuche zu ermitteln

Tabelle C2 Punktbezogener Wärmedurchgangskoeffizient gemäß EOTA Technical Report TR 025:2016-05

Dübeltyp		Dämmstoffdicke h _D	Punktbezogener Wärmedurchgangskoeffizient χ [W/K]		
		[mm]	mit Verschlussstopfen	mit PUR-Schaum	
HTH 125 HTH 155	t =90mm	100 ≤ h _D ≤ 150	0,001	0,001	
HTH 215	t _{fix} =80mm	150 < h _D ≤ 360	0,000	0,000	
HTH 155 HTH 215	t =110mm	130 ≤ h _D ≤ 150	0,001	0,001	
	t _{fix} =110mm	150 < h _D ≤ 360	0,001	0,001	

Tabelle C3 Verschiebungen

Verankerungsuntergrund	Rohdichte- klasse ρ	Druck- festigkeits- klasse f _b	Zugkraft N	δ _m (N)
	[kg/dm³]	[N/mm²]	[kN]	[mm]
Beton, C12/15 - C50/60 (EN 206-1:2000)	-	-	0,40	< 0,6
Dünne Betonbauteile, C16/20 – C50/60 (EN 206-1:2000)	-	-	0,40	< 0,5
Mauerziegel, Mz (DIN 105-100:2012-01 / EN 771-1:2011)	2,0	20	0,40	< 0,5
Kalksandvollstein, KS (DIN V 106:2005-10 / EN 771-2:2011)	2,0	20	0,40	< 0,5
Hochlochziegel, Hlz (DIN 105-100:2012-01 / EN 771-1:2011)	1,2	12	0,40	< 0,5
Hochlochziegel, Hlz Scherbendichte ≥ 1,5 kg/dm³ (DIN 105-100:2012-01 / EN 771-1:2011)	0,8	12	0,20	< 0,2
Kalksandlochstein, KSL (DIN V 106:2005-10 / EN 771-2:2011)	1,4	12	0,40	< 0,5
Haufwerksporiger Leichtbeton, LAC (EN 1520:2011 / EN 771-3:2011)	0,9	2 4	0,20 0,40	< 0,5 < 0,5
Porenbeton, PP (EN 771-4:2011)	0,5	4	0,30	< 0,7

Hilti WDVS-Dübel HTH	
Leistungen Punktbezogener Wärmedurchgangskoeffizient und Verschiebungen	Annex C 2