

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0784 of 16 January 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

HSU-R

Fastener for the rear fixing of facade panels made of selected natural stones according to EN 1469:2015

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

13 pages including 3 annexes which form an integral part of this assessment

EAD 330030-00-0601

European Technical Assessment ETA-16/0784

Page 2 of 13 | 16 January 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z56745.17 8.06.01-190/16

European Technical Assessment ETA-16/0784 English translation prepared by DIBt

Page 3 of 13 | 16 January 2018

Specific Part

1 Technical description of the product

The HSU-R is a fastener of sizes M6 and M8 which consists of a cone bolt with an external thread on one end and a cone with an attached expansion sleeve on the other end. It is used in combination with a flange nut or a spring washer and nut.

The product description is given in Annex A. The material values, dimensions and tolerances of the components of the fastener not indicated in the annexes shall correspond to the values laid down in the technical documentation¹.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fasteners of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1
Fastener distances and spacing	See Annex B 3 and C 1
Durability	Corrosion Resistance Class (CRC) III accoding to EN 1993-1-4:2015

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	No performance assessed	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330030-00-0601 the applicable European legal act is: [97/161/EG]. The system to be applied is: 2+

Z56745.17 8.06.01-190/16

The technical documentation comprises all information of the holder of this ETA necessary for the production, installation and maintenance of the fastener; these are in particular design drawings. The part to be treated confidentially is deposited with Deutsches Institut für Bautechnik and, as far as this is relevant to the tasks of the approved bodies involved in the procedure of attestation of conformity, shall be handed over to the approved body.

European Technical Assessment ETA-16/0784

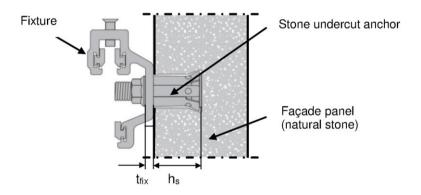
Page 4 of 13 | 16 January 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 16 January 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Aksünger

Z56745.17 8.06.01-190/16

Installed condition

Product description:

Hilti undercut anchor HSU-R with flange nut HSU-R FN or with commercial standard spring washer and nut

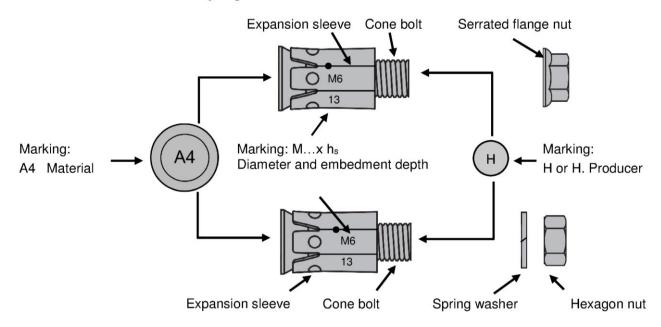


Table A1: Materials

Designation	Material
HSU-R Cone bolt with expansion sleeve	Stainless steel A4 according to EN 10 088: 2014
HSU-R FN Serrated flange nut	Stainless steel A4-80, according to EN 10 088: 2014
Spring washer	Stainless steel A4-80, according to EN 10 088: 2014
Hexagon nut	Stainless steel A4-80, according to EN 10 088: 2014

Sto	ne undercut anchor HSU-R	
Insta	duct description alled condition and marking erials	Annex A1

Specifications of intended use

Anchorages subject to:

Static and quasi-static loading.

Base material:

- Façade panels made of natural stone in accordance with EN 1469:2015.
- · Natural stone free of open seams and mechanically active cracks and alterations.
- · Natural stone classified in accordance with Table B1.
- Characteristic values of the panels correspond to Table B2.

Table B1: Stone groups

Stone group		Natural stone type	Boundary conditions	
High-quality intrusive rocks (plutonic rocks)		granite, granitite, tonalite, diorite, monzonite, gabbro, other magmatic plutonic rocks	None	
II	Metamorphic rocks with "hard stone characteristics"	quarzite, granulite, gneiss, migmatite	None	
Ш	High-quality extrusive rocks (volcanic rocks)	basalt and basaltlava without harmful ingredients (e.g. sun burner basalt)	Minimum density ρ: basalt: 2,7 kg/dm³ basaltic lava: 2,2 kg/dm³	
IV	Sedimentary rocks with "hard stone characteristics"1)	Sandstone and limestone	Minimum density ρ: sandstone: 2,1 kg/dm³	

¹⁾ For façade panels made of natural stones with planes of anisotropies, the difference between the flexural strength determined parallel to the planes of anisotropy and perpendicular to the edges of the planes of anisotropy shall not be more than 50 %.

Use conditions (Environmental conditions):

According to EN 1993-1-4:2015 dependent on Corrosion Resistancy Class (see ETA sect 3.1).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and façade design.
- · Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
- Anchorages under static or quasi-static loading are designed in accordance with: EOTA Technical Report TR Design of fasteners for façade panels made of natural stone.

Stone undercut anchor HSU-R	
Intended use	Annex B1
Specifications	

English translation prepared by DIBt

Installation:

- The undercut drill holes are prepared at the factory or on site under workshop conditions. In case of drilling on site, supervision of the person responsible for technical matters of the site or a skilled representative thereof is required.
- The undercut drill holes are drilled with a special drill bit according to Table B4. The drill bit should be used with a special HSU ADT/MDT drilling machine. Other suitable drilling machines may also be used.
- The drill dust shall be removed from the drill hole.
- In case of an aborted drill hole, the newly drilled hole must be placed with a minimum spacing of twice the depth of the aborted drill hole.
- The geometry of the drill holes shall be checked in 1% of all drillings. The following dimensions are to be checked and documented following the manufacturer's instructions and using the gauge in accordance with Table B3.
 - Diameter of the drill hole do.
 - Depth of the drill hole h₁,
 - Diameter d₁
 - Height of the undercut h₂.

If the tolerances in accordance with Table B3 are not met, the drill hole geometry shall be checked in 25 % of the performed drillings. No subsequently checked drill hole may exceed the tolerances, otherwise all drill holes shall be controlled. Drill holes not meeting the tolerances shall not be used for anchor installation.

Note: Checking the drill hole geometry of 1% of the drill holes means that on one out of 25 slabs with four drill holes in each slab (100 drill holes) one drill hole shall be checked. If the tolerances given in Table B3 are not met, then the control shall be increased to 25 % of the drillings e.g. one drill hole on each of the 25 slabs.

• During transport and storage on site the façade panels are protected from damages. The façade panels shall not be mounted with jerking motions to avoid damage to the panels. If necessary, lifting devices can be used. Façade panels or reveal slabs with incipient cracks shall not be installed.

Stone undercut anchor HSU-R	
Intended use Specifications	Annex B2

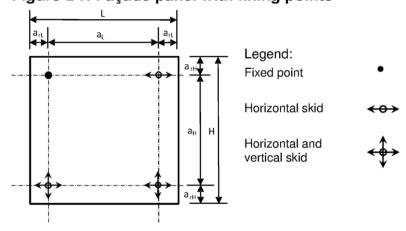


Table B2: Properties of natural stone panels

Nominal panel thickness (stone group	I / II (Tab. B1))	h_{nom}	[mm]	$20 \le h_{nom} \le 70$
Minimum panel thickness (stone group I / II (Tab. B1))		h _{min} 1)	[mm]	h _s + 5 mm
Nominal panel thickness (stone group	III / IV (Tab. B1))	h _{nom}	[mm]	25 $(30)^{2} \le h_{nom} \le 70$
Minimum panel thickness (stone grou	p III / IV (Tab. B1))	h _{min} 1)	[mm]	h _s + 10 mm
Maximum panel size		Α	[m²]	3,0
Maximum side length		H und L	[m]	3,0
Number of anchors (rectangular arrangement)		N	[-]	4
Minimum edge distance ³⁾		ar⊣,min, ar∟,min	[mm]	50
Maximum edge distance		a rH,max, a rL,max	[mm]	0,25 · L and 0,25 · H
Minimum spacing ³⁾		a∟ and aн	[mm]	8 · h₅
Minimum characteristic flexural strength in accordance with EN 12372				
Padang Cristallo G603, China	stone group I	O 5%	[N/mm²]	12,4
Nero Assoluto, Zimbabwe	stone group I	O 5%	[N/mm²]	26,3
Jura Limestone (yellow), Germany	stone group IV	O 5%	[N/mm²]	14,1

¹⁾ Minimum panel thickness is equal to the lower limit of tolerance.

Figure B1: Façade panel with fixing points

Stone undercut anchor HSU-R	
Intended use Specifications	Annex B3

²⁾ For sandstone, limestone and basaltic lava: panel thickness ≥ 30 mm, if the panel manufacturer warranted lowest expected value (5 % fractile) of the flexural strength is < 8 N/mm².

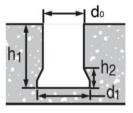

³⁾ For small fitting or fill-in pieces the minimum edge distance or spacing shall be chosen according to the geometrical boundary conditions. In case of design under static loading using FEM, smaller edge distances are allowed.

Table B3: Installation parameters

Size			М6	М8
Embedment depth	hs	[mm]	$(10 \le h_s \le 25) +0.4 / -0.1$	
Drill hole depth	h₁	[mm]	h _s +	0,5
Diameter of drill hole	d_0	[mm]	11 +0,4 / -0,2	13 +0,4 / -0,2
Diameter of undercut	d ₁	[mm]	$13,5 \pm 0,3$	15,5 ± 0,3
Height of undercut	h ₂	[mm]	4,5 ±0 ,5	4,5 ± 0,5
Installation torque moment	T_{inst}	[Nm]	6	10
Width across flats	SW	[mm]	10	13
Max. diameter of clearance hole in fixture	df	[mm]	7	9
Max. fixture thickness	t _{fix}	[mm]	10	8

Figure B2: Geometry of drill hole

Stone undercut anchor HSU-R	
Intended use Installation parameters	Annex B4

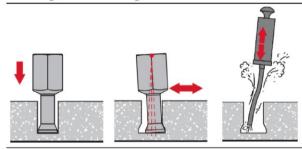
Drill bit HSU CDB...

Hilti gauge HSU IG...

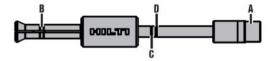
Hilti setting tool HSU ST-G...

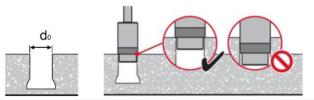
Table B4: Drilling and setting tools

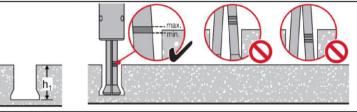
Anchor	Drilling	Drill hole check	Installation
		11/13.5	
HSU-R M6	HSU CDB M6	HSU IG 11/13.5	HSU ST-G M6
HSU-R M8	HSU CDB M8	HSU IG 13/15.5	HSU ST-G M8


Stone undercut anchor HSU-R	
Intended use Drill bit, gauge and setting tool	Annex B5

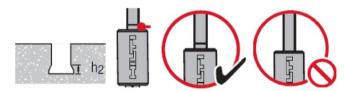
English translation prepared by DIBt




Drilling and cleaning of the undercut drill hole


Checking dimensions of drill hole with gauge

A) Drill hole diameter do


B) Drill hole depth h₁

C) Diameter of the undercut d₁

D) height of the undercut h2

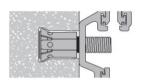
Stone undercut anchor HSU-R

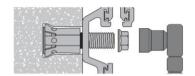

Intended use

Installation instructions

Annex B6

Installation of the undercut anchor


Checking of the embedment depth



Checking of red ring visibility (proof of correct expansion)

Installation of the fixture

Stone undercut anchor HSU-R

Intended use

Installation instructions

Annex B7

Table C1: Characteristic resistance

Size		M6			М8			
Designation of natural st	one		Padang Cristallo G603	Nero Assoluto	Jura Limestone (yellow)	Padang Cristallo G603	Nero Assoluto	Jura Limestone (yellow)
Country of origin			China	Zimbabwe	Germany	China	Zimbabwe	Germany
Petrographic description		Granite	Gabbro	Limestone	Granite	Gabbro	Limestone	
Panel thickness	h	[mm]	30	25	35	30	25	35
Edge distance	ar	[mm]	100	150	150	100	150	150
Embedment depth	hs	[mm]	13	13	15	15	15	21
Characteristic resistance								
Tension load	$N_{Rk^{1),2)}$	[kN]	4,0	11,6	5,4	6,0	17,0	8,9
Shear load	$V_{Rk^{1),2)}$	[kN]	6,6	11,8	7,3	6,9	21,4	9,6
Partial safety factor	γм	[-]	1,8					
Combined tension and shear load:								
	X		1,2	1,0	1,0	1,0	1,0	1,0

¹⁾ Reduction factor α based on stone class is already included in these values. Reduction factor α in accordance with Technical Report Design of fasteners for façade panels made of natural stone.

Table C2: Characteristic resistance for steel failure

Size		М6	М8
Characteristic resistance under tension load	N _{Rk,s} [kN]	16,1	29,3
Partial safety factor	γ _{Ms,N} 1) [-]	1	,5
Characteristic resistance under shear load	V _{Rk,s} [kN]	9,7	17,6
Partial safety factor	γMs,V ¹⁾ [-]	1,	25

¹⁾ In absence of national regulations.

Stone undercut anchor HSU-R	
Performances	Annex C1
Characteristic resistance in natural stone and steel resistance	

²⁾ For other natural stones according to Table B1, the resistance is determined in accordance with EAD 33-0030-06.01 and Technical Report Design of fasteners for façade panels made of natural stone.