

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0300 of 19 February 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

JORDAHL Anchor channel JTA W40/22+ and W50/30+

Anchor channels

JORDAHL GmbH Nobelstraße 51 12057 Berlin DEUTSCHLAND

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of 25 pages including 3 annexes which form an integral part of this assessment

EAD 330008-02-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0300

Page 2 of 25 | 19 February 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 19 February 2018

Specific Part

1 Technical description of the product

The JORDAHL Anchor Channel JTA W40/22+ and W50/30+ is a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. JORDAHL channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistances under static and quasi- static loads and displacements	See Annex C1 to C8
Characteristic resistances under fatigue cyclic loads	See Annex C10 to C12

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C9

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

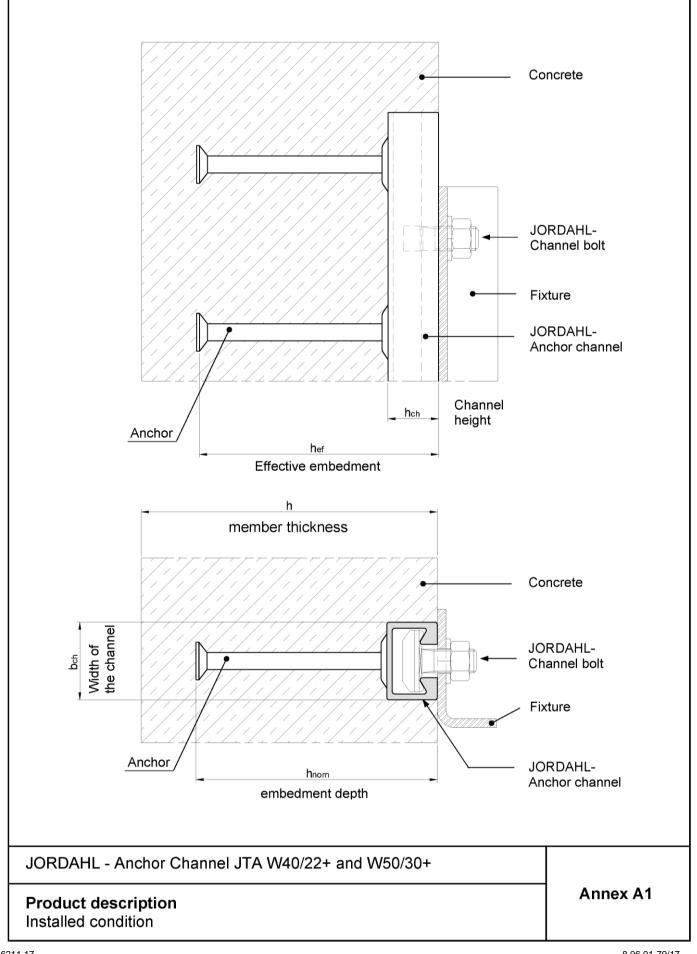
In accordance with EAD No. 330008-02-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

European Technical Assessment ETA-17/0300

Page 4 of 25 | 19 February 2018

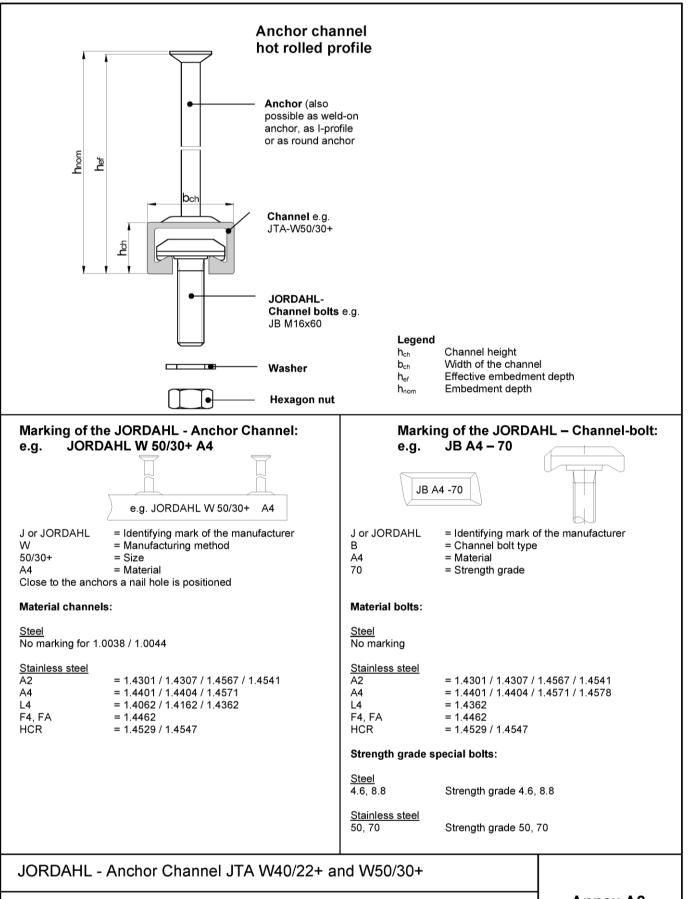
English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 19 February 2017 by Deutsches Institut für Bautechnik

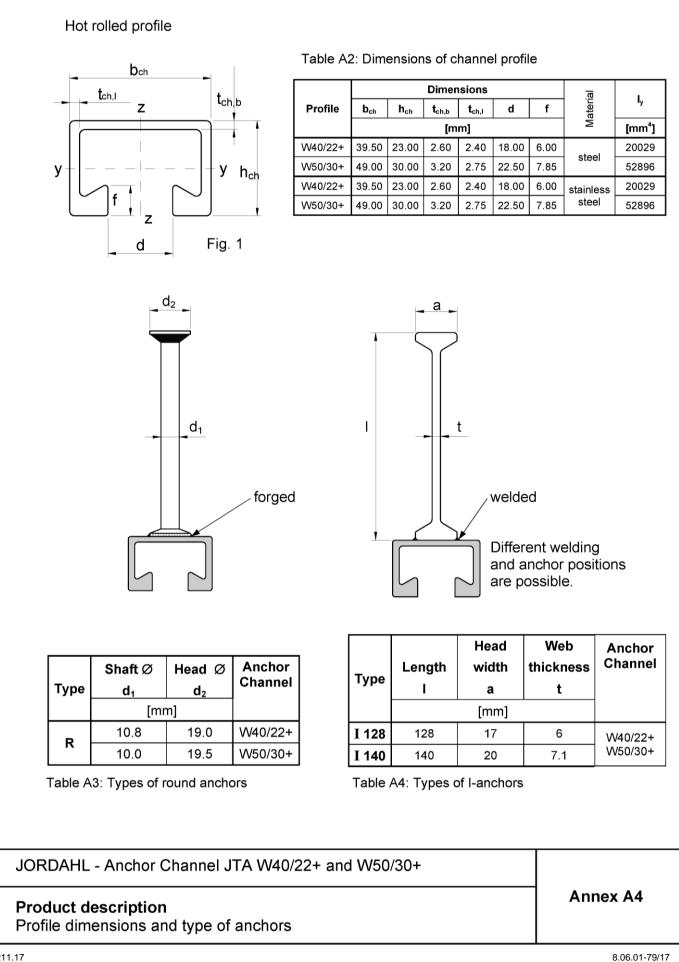
BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Müller Page 5 of European Technical Assessment ETA-17/0300 of 19 February 2018



Page 6 of European Technical Assessment ETA-17/0300 of 19 February 2018

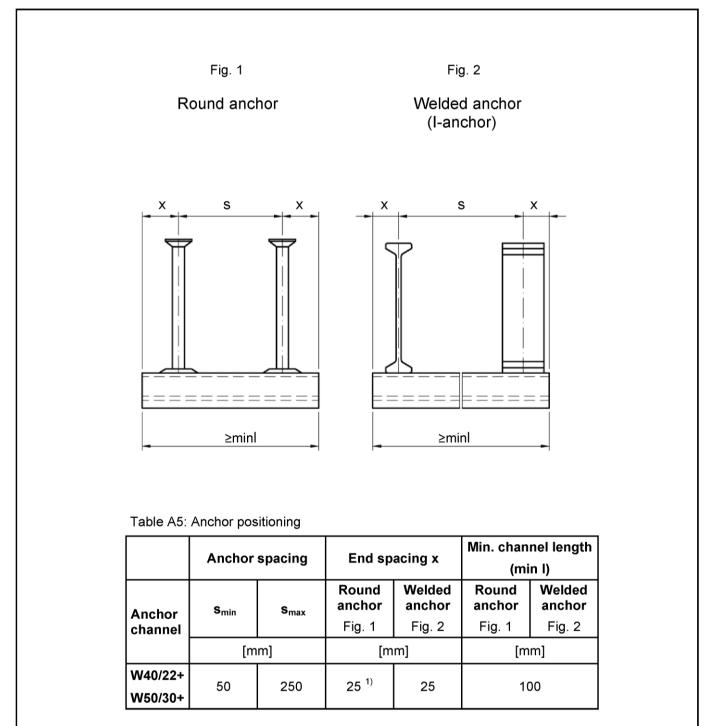
English translation prepared by DIBt

Product description Marking and materials Annex A2


Page 7 of European Technical Assessment ETA-17/0300 of 19 February 2018

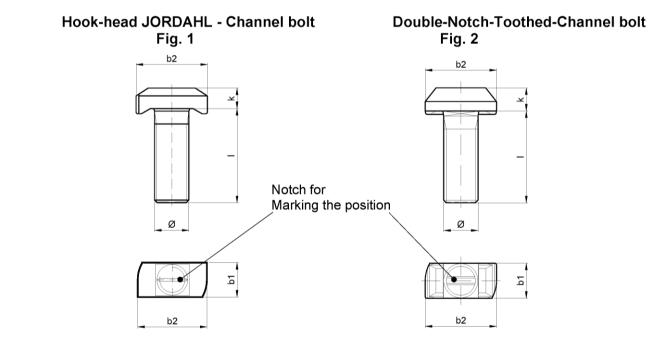
1	2	3	4	5	6	
			Intend	ed use		
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exprosure	High corrosion exposure	
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions (e.g. accommodations, bureaus , schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 4)	Anchor channels may also be used in structures subject to internal conditions with usual humidity (e.g. kitchen, bath- and laundry in residential buildings, exceptional permanently damp conditions and application under water)	Anchor channels may also be used in structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc. acc. column 6) exist.	Anchor channels may also be used in structures subject to exposure in particular agressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution e.g. in desulphurization plants or road tunnels where deicing materials are used)	
			Mate	erials		
1	Channel profile	Steel 1.0038; 1.0044 EN 10025:2005 hot-dip galv. ≥ 55μm ⁴⁾	Steel 1.0038; 1.0044 EN 10025:2005 hot-dip galv. ≥ 55μm ⁴⁾ Stainless steel 1.4301, 1.4307, 1.4567, 1.4541; EN 10088:2005	Stainless steel 1.4401; 1.4404; 1.4571; 1.4062, 1.4162,1.4362, 1.4462 EN 10088:2005	Staiplose steel	
2	Anchor	Steel 1.0038; 1.0214; 1.0401; 1.1132; 1.5525 EN 10263:2001, EN 10269:2013 hot-dip galv. ≥ 55μm ⁴⁾	Steel 1.0038; 1.0214; 1.0401; 1.1132; 1.5525 EN 10263:2001, EN10269:2013 hot-dip galv. ≥ 55μm ⁴⁾ Stainless steel 1.4301, 1.4307, 1.4567, 1.4541; EN 10088:2005 ⁶⁾	Stainless steel 1.4401; 1.4404; 1.4571; 1.4578; 1.4362; 1.4462 EN 10088:2005 Steel 1.0038 ¹⁾	Stainless steel 1.4529; 1.4547 EN 10088:2005	
3	Jordahl - Channel bolts with shaft and thread acc. to EN ISO 4018	Steel, strength grade 4.6/8.8 in dependance on EN ISO 898-1:2013 electroplated ≥ 5μm ²⁾⁵⁾	Steel, strength grade 4.6/8.8 in dependance on EN ISO 898-1:2013 hot-dip galv. ≥ 50μm ³⁽⁵⁾ Stainless steel, strength grade 50, 70 1.4301, 1.4307, 1.4567, 1.4541 EN ISO 3506-1:2009	Stainless steel strength grade 50, 70 1.4401; 1.4404; 1.4571; 1.4362, 1.4578, 1.4462 EN ISO 3506-1:2009	Stainless steel strength grade 50, 70 1.4529; 1.4547 EN ISO 3506-1:2009	
4	Washer, EN ISO 7089 and EN ISO 7093-1 production class A, 200HV	Steel EN 10025:2005 electroplated $\ge 5\mu m^{2}$	Steel EN 10025 hot-dip galv. ≥ 50μm ³⁾ Stainless steel, Steel grade A2, A3 EN ISO 3506-1:2009	Stainless steel Steel grade A4, A5, 1.4462 EN ISO 3506-1:2009	Stainless steel 1.4529; 1.4547 EN ISO 3506-1:2009	
5	Hexagonal nuts EN ISO 4032	Steel, strength grade 5/8 EN ISO 898-2:2012 electroplated ≥ 5μm ²⁾	Steel, strength grade 5/8 EN 898-2:2012 hot-dip galv. ≥ 50µm ³⁾ Stainless steel, strength grade 70, 80 Steel grade A2, A3 EN ISO 3506-2:2009	Stainless steel strength grade 70, 80 Steel grade A4, A5, 1.4462 EN ISO 3506-2:2009	Stainless steel strength grade 70, 80 1.4529; 1.4547 EN ISO 3506-2:2009	
	Electroplated a Hot-dip galvan Hot-dip galvan Properties acco	N 10025:2005, only for well loc. to EN ISO 4042:1999 ized acc. to EN ISO 10684: ized on the basis of EN ISC ording to EN ISO 898-1:201 anchors only in combinatio	2004 + AC:2009 0 1461:2009, but coating th 13 only in threaded part of t	ickness ≥ 55 μm he channel bolt	1 1992-1-1:2004 + AC:2010	
ЭF	RDAHL - Ancl	hor Channel JTA V	W40/22+ and W50	/30+		

Page 8 of European Technical Assessment ETA-17/0300 of 19 February 2018



Page 9 of European Technical Assessment ETA-17/0300 of 19 February 2018

English translation prepared by DIBt



 $^{1)}$ The end spacing of round anchors for channel lengths \geq 150mm may be increased from 25 mm to 35 mm

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Product description Anchor positioning and channel length Annex A5

Marking of the JORDAHL - Channel bolt head acc. to Annex A2

Table A6: Dimensions of the JORDAHL - Channel bolts

		Channel bolt type		Length					
Anchor channel	Fig.		b ₁	b ₂	k	Ø	ľ		
				[n	nm]		[mm]		
			14.0	32.0	8.0	10	20-150		
W40/22+	1	JC	14.0	14.0	14.0	32.0	8.0	12	20-250
VV4U/22+			17.032.016.832.7	32.0	8.0	16	30-300		
	2	JKC		32.7	8.0	16	40-80		
	1	JB	17.0	41.5	9.0	10	25-100		
					10.0	12	30-300		
W50/30+			17.0	41.5	11.0	16	30-300		
VV50/30+			20.5	41.5	12.0	20	30-300		
	2	2 ЈКВ	17.0	41.5	12.0	16	40-80		
	2		20.5	41.5	13.5	20	45-80		

Table A7: Strength grade

с	hannel bolts	Ste	el ¹⁾	Stainless Steel ¹⁾		
St	rength grade	4.6	8.8	50	70	
f uk	[N/mm²]	400	800	500	700	
f _{yk}	[w/mm-]	240	640	210	450	
Finish		z.p.,	h.d.g.			

¹⁾ Materials according to Annex A3, Table A1

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Product description JORDAHL - Channel bolts, dimensions and strength grade

Annex A6

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.
- Fatigue cyclic loads.
- Fire exposure for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity) (anchor channels and channel bolts according to Annex A3, Table A1, column 3 6).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath, and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A3, Table A1, column 4 - 6)
- Structures subject to external atmospheric exposure (incl. industrial and marine environment) or exposure to permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc.) exist. (anchor channels and channel bolts according to Annex A3, Table A1, column 5 – 6)
- Structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating
 immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools
 or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing
 materials are used))

(anchor channels and channel bolts according to Annex A3, Table A1, column 6)

Design:

- Anchor channels are designed under the responsibility on an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and T-bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels" or FprEN 1992-4:2016
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading".
- The characteristic resistances are calculated with the minimum effective embedment depth.

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

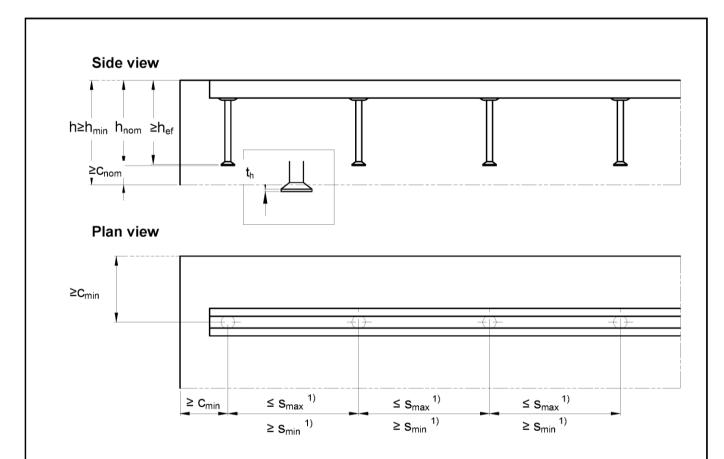
Intended use

Specifications

Annex B1

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table A5 are generated including end spacing and minimum channel length and only to be used in dry internal conditions. (Annex A3, Table A1, column 3). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the manufacturer's specifications given in Annexes B6 and B7
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor profiles are protected from penetration of concrete into the internal space of the channel.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B7) rectangular to the channel axis.
- The required installation torques given in Annex B4 must be applied and must not be exceeded.


Intended use Specifications

Annex B2

Page 13 of European Technical Assessment ETA-17/0300 of 19 February 2018

English translation prepared by DIBt

Table B1: Minimum effective embedment depth, edge distance and member thickness for hot rolled profiles

Anchor c	hannel		W40/22+	W50/30+	
Min. effective embedment depth	min h _{ef}		$1 \min h_{1}$		106
Min. edge distance	C _{min}	_	50	75	
Min. member thickness	h _{min}	[mm]	$h_{ef} + t_{h}^{2} + c_{nom}^{3}$		
Min. member thickness with c _{nom} = 10mm	h _{min}		106	123	

 $^{1)}$ s_{min}, s_{max} acc. to Annex A5, Table A5 $^{2)}$ t_h = anchor head thickness $^{3)}$ c_{nom} acc. EN 1992-1-1:2004 + AC:2010 and c_{nom} \geq 10mm

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Intended use

Installation parameters of anchor channels

Annex B3

electronic copy of the eta by dibt: eta-17/0300

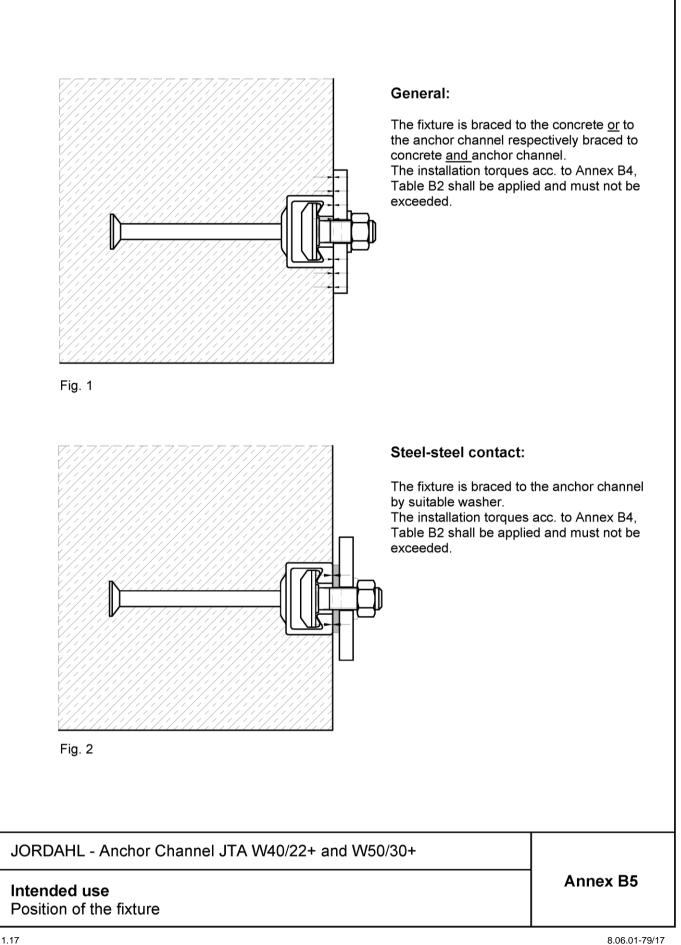
Table B2	2: Minimum spa	cing and insta	llation torque o	f JORDAH	L – Chann	el bolts			
				Installati	on torque T _i	5) nst			
			General ²⁾		Steel-Stee	l contact ³⁾			
Anchor channel	JORDAHL Channel bolt Ø	Min. spacing s _{min,cbo} of the Channel bolt	Steel 4.6; 8.8 Stainless steel 50; 70 ¹⁾	Steel 4.6 ¹⁾	Stainless Steel 50 ¹⁾	Steel 8.8 ¹⁾	Stainless Steel 70 ¹⁾		
	[mm]	[mm]			[Nm]	i			
	10	50	15	15	13	40	30		
W40/22+	12	60	25	25	24	70	50		
	16	80	45	65	60	180	130		
	10	50	15	15	13	40	30		
ME0/20 -	12	60	25	25	24	70	50		
W50/30+	16	80	60	65	60	180	130		
	20	100	75	130	115	360	250		

¹⁾ Materials according to Annex A2 and Annex A3, Table A1

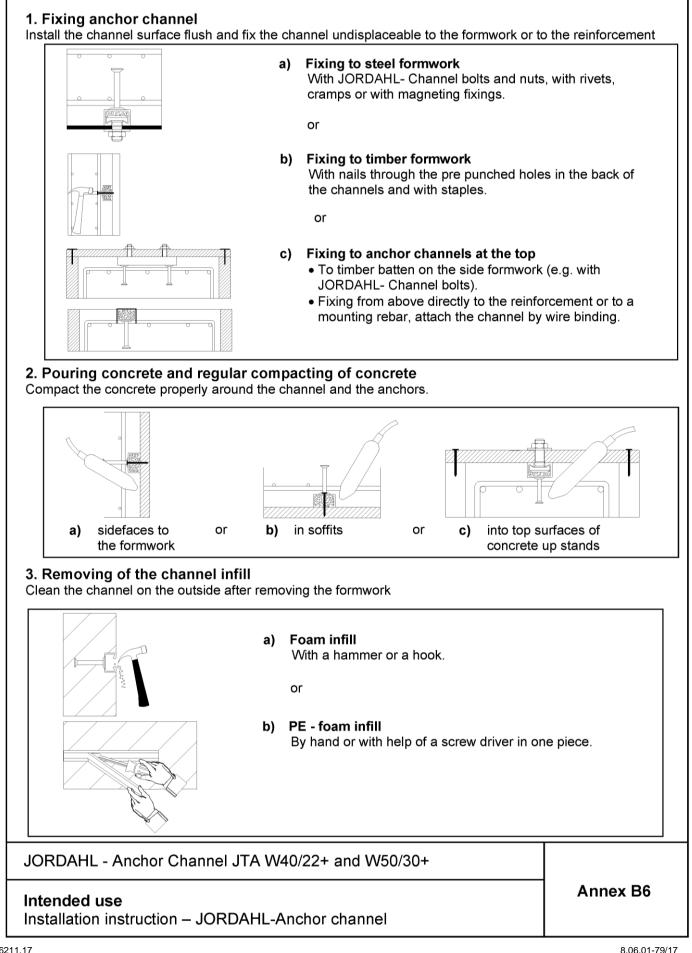
²⁾ Acc. to Annex B5, Fig. 1 ³⁾ Acc. to Annex B5, Fig. 2

4) See Annex C1, Fig. 1

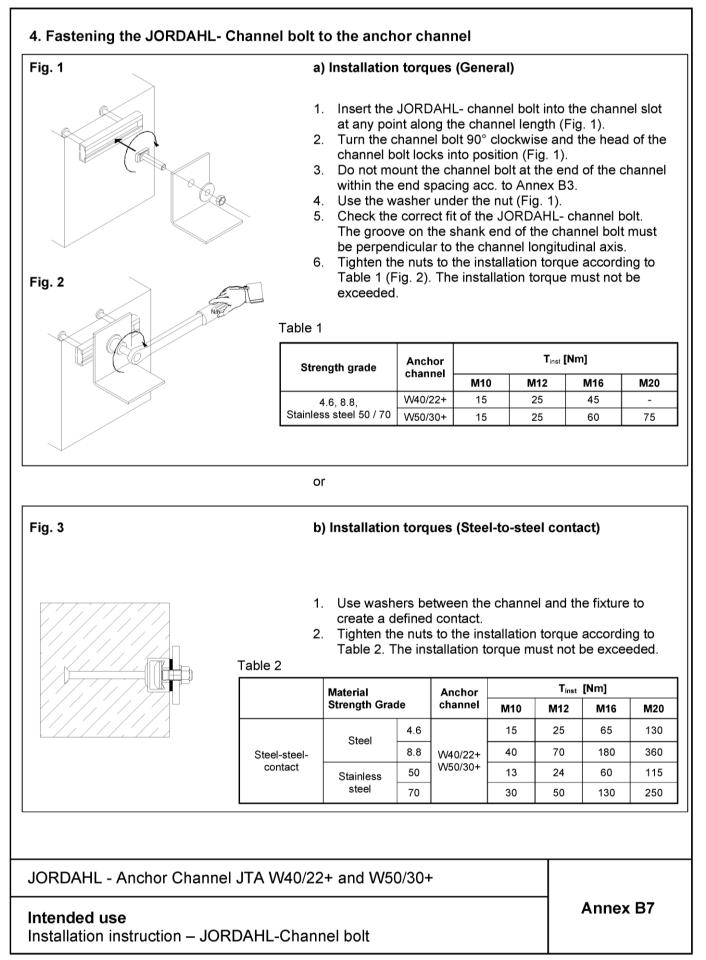
⁵⁾ T_{inst} must not be exceeded


JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Intended use Installation parameters of JORDAHL- Channel bolts Annex B4

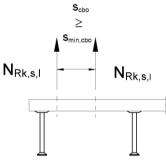

electronic copy of the eta by dibt: eta-17/0300

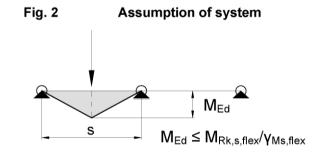
Page 15 of European Technical Assessment ETA-17/0300 of 19 February 2018



Page 18 of European Technical Assessment ETA-17/0300 of 19 February 2018

English translation prepared by DIBt




Table C1: Characteristic resistances under tension loads - Steel failure channel

Anchor channel			W40/22+	W50/30+	
Steel failure, Anchor					
Characteristic resistance round anchors	N _{Rk,s,a}	[kN]	30.0	39.3	
Characteristic resistance I anchors	N _{Rk,s,a}	[kN]	43.2	54.0	
Partial safety factor	γ _{Ms} ¹⁾ 1.8				
Steel failure, Connection channel / anch	or				
Characteristic resistance	N _{Rk,s,c}	[kN]	30	41	
Partial safety factor	γмs	1) ,ca	1	.8	
Steel failure, Local flexure of channel lip	os for s₅≥ s _{sib}				
Spacing of channel bolts for $N_{Rk,s,l}$	S _{I,N}	[mm]	79	98	
Characteristic resistance	N ⁰ _{Rk,s,I}	[kN]	35	41	
Partial safety factor	γм	1) s,I	1.8		

¹⁾ In absence of order national regulations

Fig. 1

Table C2: Flexure resistance of channel

Anchor channel	nor channel			
Steel failure, Anchor				
Characteristic flexure resistance of channel	M _{Rk,s,flex} Steel		1406	2830
	[Nm]	Stainless Steel	1580	3184
Partial safety factor	γms.	1) flex	1	.15

¹⁾ In absence of other national regulations

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Annex C1

Performance Characteristic resistances under tension load – steel failure channel

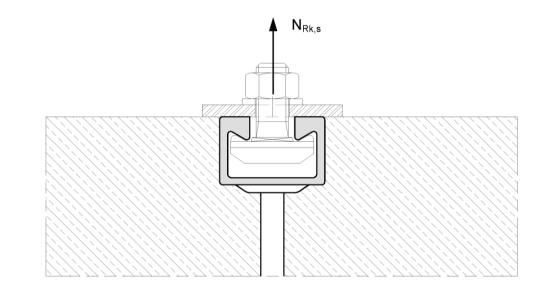


Table C3: Characteristic values for tension loads – Steel failure JORDAHL-Chanr									
Special cha	M 10	M 12	M 16	M 20					
Opecial cit	Special channel bolt Ø				Steel f	ailure			
	N _{Rk,s} ²⁾		4.6	23.2	33.7	62.8	98.0		
		[kN]		8.8	46.4	67.4	125.6	196.0	
Characteristic resistance			50 ¹⁾	29.0	42.2	78.5	122.5		
			70 ¹⁾	40.6	59.0	109.9	171.5		
	3)		4.6	2.00					
Partial safety factor			8.8	1.50					
	γm	γ Ms $^{3)}$			2.8	36			
			70 ¹⁾		1.8	37			

¹⁾ Materials according to Annex 2 and Annex 3, Table A1

²⁾ In conformity to EN ISO 898-1:2013

³⁾ In absence of other national regulations

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Annex C2

Characteristic values for tension loads-Steel failure JORDAHL-Channel bolts

Performance

Anchor channel				W40/22+	W50/30+
Pullout failure					
Characteristic resistance in	Round anchors	N	FI-NIT	17.3	19.8
cracked concrete C12/15	Welded anchors	- N _{Rk,p}	[kN]	19.8	24.8
Characteristic resistance in			FILN 11	24.2	27.7
uncracked concrete C12/15	Welded anchors	IN _{Rk,p}	נגואן	27.7	34.7
	C20/25			1.0	67
	C25/30	7		2.0	08
	C30/37			2.50	
Increasing factor of $N_{Rk,p}$	C35/45		[-]	2.92	
	C40/50	Ψο		3.33	
	C45/55			3.75	
	C50/60			4.17	
	C55/67	7		4.58	
	≥ C60/75			5.00	
Partial safety factor		$\gamma_{Mp} = \gamma_{Mc}^{1)}$		1.5	
Concrete cone failure					
Product faktor k₁		k _{cr,}	N	8.0	8.2
		k _{ucr}	,N	11.5	11.7
Characteristic edge distance		C _{cr,N}	[mm]	195	216
Characteristic spacing		S _{cr,N}	[mm]	390	432
Partial safety factor		γ _{Mc} ¹⁾ [-] 1.5		5	
Splitting					
Characteristic edge distance	Characteristic edge distance		Imml	273	318
Characteristic spacing		S _{cr,sp}	[mm]	546	636
Partial safety factor		γ _{Msp} ¹⁾	[-]	1.	5

¹⁾ In absence of other national regulations

Table C5: Displacements under tension loads

Anchor channel	W40/22+	W50/30+		
Tension load	N _{Ek}	[kN]	11.9	15.6
Short time displacement	δ_{N0}	[mm]	0.4	0.5
Long time displacement	δ _{N∞}	[mm]	0.8	1.0

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Perfomance

Characteristic resistances under tension loads - Concrete failure and displacements

Page 21 of European Technical Assessment ETA-17/0300 of 19 February 2018

English translation prepared by DIBt

Anchor channel			W40/22+	W50/30+
Steel failure, Failure of anchor				
Characteristic resistance round anchors	$V_{Rk,s,a}$	[kN]	30.0	59
Characteristic resistance I anchors	$V_{Rk,s,a}$	[kN]	43.2	59
Partial safety factor	γ _{Ms} ¹⁾		1	.5
Steel failure, Failure of connection betwee	n anchor and channel		•	
Characteristic resistance	V _{Rk,s,c}	[kN]	30	59
Partial safety factor	γ _{Ms,ca} 1)		1.8	
Steel failure, , Local failure by flexure of ch	annel lips			
Characteristic spacing of channel bolts for $V_{Rk,s,l}$	S _{I,V}	[mm]	79	98
Characteristic resistance	V ⁰ _{Rk,s,I}	[kN]	35	59
Partial safety factor	γ _{Ms,I} 1)		1	.8
Pry out failure				
Product factor		k ₈	2	.0
Partial safety factor		ү мс ¹⁾	1	.5
Concrete edge failure				
Product	cracked concrete	$k_{cr,V}$	7.5	
factor k ₁₂	uncracked concrete	$\mathbf{k}_{ucr,V}$	10.5	
Partial safety factor		ү мс ¹⁾	1	.5

¹⁾ In absence of other national regulations

Table C7: Displacements under shear loads

Anchor channel	W40/22+	W50/30+		
Shear load	V_{Ek}	[kN]	11.9	15.6
Short time displacement	δ_{V0}	[mm]	0.6	0.6
Long time displacement	δ _{V∞}	[mm]	0.9	0.9

Table C8: Characteristic resistances under combined tension and shear load

Anchor channel	W40/22+	W50/30+				
Steel failure: Local failure by flexure of channel lips and failure by flexure of channel						
Product factor	k 13	2.0	1.0 ¹⁾			
Steel failure: Failure of anchor and connection between anchor and channel						
Product factor	k 14	2.0	1.0 ²⁾			

 $^{(1)}$ k₁₃ can be taken as 2,0 if V_{Rd,s,l} is limited to N_{Rd,s,l} $^{(2)}$ k₁₄ can be taken as 2,0 if V_{Rd,s,c}, is limited to N_{Rd,s,c}

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Performance

Characteristic resistances under shear load - Steel failure of anchor channel, concrete failure, displacements Characteristic resistances under combined tension and shear load

Page 22 of European Technical Assessment ETA-17/0300 of 19 February 2018

English translation prepared by DIBt

				M 10	M 12	M 16	M 20
JORDAHL-Channe	JORDAHL-Channel Bolts Ø			Steel failure			
				13.9	20.2	37.7	58.8
a	2)	, _{Rk,s} ²⁾ [kN]	8.8	23.2	33.7	62.8	98.0
Characteristic resistance	V _{Rk,s} ⁻ /		50 ¹⁾	17.4	25.3	47.1	73.5
			70 ¹⁾	24.4	35.4	65.9	102.9
			4.6	29.9	52.4	133.2	259.0
			8.8	59.8	104.8	266.4	519.3
Characteristic flexure resistance	M° _{Rk,s}	[Nm]	50 ¹⁾	37.4	65.5	166.5	324.
			70 ¹⁾	52.3	91.7	233.1	454.4
		γ _{Ms} ³⁾			1.	67	
					1.	25	
Partial safety factor	γMs	3 -'	50 ¹⁾		2.	38	
					1.	56	

¹⁾ Materials according to Annex A2 and A3, Table A1 ²⁾ In conformity to EN ISO 898-1:2013 ³⁾ In absence of other national regulations

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Characteristic values for shear loads steel failure JORDAHL Channel bolts

Page 23 of European Technical Assessment ETA-17/0300 of 19 February 2018

English translation prepared by DIBt

				W40/22+	W50/30+
Special bolt ≥			[mm]	M16	M16
Steel failure: Anchor, Connection channel/anchor, Loca	l flexu	re of channel lip			
Oher Desistence	R90		TL-NI)	2.0	2.5
Char. Resistance	R120	$N_{Rk,s,fi} = V_{Rk,s,fi}$	[kN]	1.2	2.1
Partial safety factor ³⁾		Ύм	1s,fi	1	.0
Concrete cone failure					
Edge distance		C _{cr,N,fi}	[mm]		$) \geq C_{cr,N}$
		C _{min,fi}	[]	2 hef ¹⁾ , max (2	? hef, 300 mm) ^{2;}
Spacing		S _{cr,N,fi}	[mm]	4 h _{ef}	≥ S _{cr} ,N
² Fire exposure from one side only		S _{min,fi}	[]	acc. to Annex	k A5, Table A5
Fire exposure from more than one side In absence of other national regulations Fig. 1		Fig. 2)	2 ⊂ c ^{min} ³)		8
			<u>a</u>	. a	
			<u>a</u>	w40/22+	W50/30+
Table C11: Concrete cover 4) Anchor channels Concrete cover	R90			a W40/22+ 45	W50/30+ 45
Anchor channels Concrete cover (axis distance)	R120	a resistance class c	[mm]	45 60	45 60
Anchor channels	R120		[mm]	45 60	45 60

Characteristic values for tension and shear load under fire exposure, Concrete cover

ole C12: 0	Combinati	ons for anch	or channel	s and specia	l bolts for fati	gue tensic
Anchor	A	nchor		Chan	nel bolts	
channel	Туре	d₁ [mm]	Туре	d	Strength	Finish
		10.8		M12	8.8	
W40/22+	Б		JC	M16	4.6	z.p.
	R			MITO	8.8	h.d.g.
\M/EQ/20+		10.0	ID	M16	4.6	
W50/30+		10.0	JB	M20	8.8	

Table C13:Characteristic resistances under fatigue tension load after n load cycles without
static preload ($N_{Ed} = 0$) -Steel failure for design method I

Anchor channel	Load cycles	W40/22+	W50/30+	
	n	ΔN _{Rk,s;0,n} [kN]		
	≤ 10 ⁴	12.8	16.5	
Characteristic resistances	≤ 10 ⁵	7.7	9.8	
under fatigue tension load without static preload	≤ 10 ⁶	4.7	5.8	
without static preioad	≤ 2 · 10 ⁶	4.0	4.9	
	≤ 5 · 10 ⁶	3.3	4.0	
	≤ 10 ⁸	3.3	4.0	

Table C14: Reduction factor for concrete cone and pullout failure without static preload (N_{Ed} = 0) for design method I

	Load cycles n	η _{c,fat} = η _{p,fat} [-]
Reduction factor for	≤ 10 ⁴	0.736
	≤ 10 ⁵	0.665
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot \Delta N_{Rk,c}^{(1)}$	≤ 10 ⁶	0.600
$\Delta N_{Rk,p,0,n} = \eta_{p,fat} \cdot \Delta N_{Rk,p}^{(1)}$	≤ 2 · 10 ⁶	0.582
	≤ 5 · 10 ⁶	0.559
	≤ 10 ⁸	0.500

¹⁾ N_{Rkc} static resistance according Annex C3 and EOTA TR 047 or FprEN 1992-4:2016

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Performance

Characteristic resistances under fatigue tension load - Design method I

Table C15: Characteristic limit resistances under fatigue tension load – Steel failure for design method II

Anchor channel		W40/22+	W50/30+
Characteristic resistances under fatigue tension load	∆N _{Rk,s,0,} ∞ [kN]	3.3	4.0

 Table C16:
 Characteristic limit resistances under fatigue tension load – Concrete cone and pullout failure for design method II

Characteristic resistances under fatigue tension load	η _{c,fat} [-]
$\Delta N_{Rk,c,0,n} = \eta_{k,c,fat} \cdot N_{Rk,c}^{-1)}$	0.5
$\Delta N_{Rk,p,0,n} = \eta_{k,p,fat} \cdot N_{Rk,p}^{2)}$	0.5

 $^{1)}\,N_{Rk,c}\,static\,resistances\,acc.$ Annex C3 and EOTA TR 047 or FprEN 1992-4:2016

 $^{2)}$ $N_{\text{Rk},\text{p}}$ static resistances acc. Annex C3

In absence of other national regulations the following safety factors $\gamma_{M,fat}$ are recommended for design method I and II (Table C13 to C16) acc. to EOTA TR 050: $\gamma_{M,fat} = 1.35$ (Steel)

 $\gamma_{M,fat} = 1.35$ (Steel) $\gamma_{M,fat} = 1.5$ (concrete)

JORDAHL - Anchor Channel JTA W40/22+ and W50/30+

Performance

Characteristic resistances under fatigue tension load-Design method II