

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0450 of 29 January 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

LFM-8, LFM-10, LFN-10

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Klimas Sp. z o.o. Kuznica Kiedrzynska ul. Wincentego Witosa 135/137 42-233 MYKANÓW POLEN

Klimas Werk 1 Klimas plant 1

16 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

European Technical Assessment ETA-17/0450

Page 2 of 16 | 29 January 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0450

Page 3 of 16 | 29 January 2018

English translation prepared by DIBt

Specific part

1 Technical description of the product

The nailed-in anchor LFM-8 / LFM-10 / LFN-10 consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of virgin polyethylene and an accompanying specific nail of virgin polyamide or of galvanised steel. The serrated expanding part of the anchor is slotted.

The anchor may in addition be combined with the anchor plates TDX-P-90/TDX-90 and TDX-P-140/TDX-140.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1, C 2
Edge distances and spacing	See Annex B 2
Plate stiffness	See Annex C 3
Displacements	See Annex C 4

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

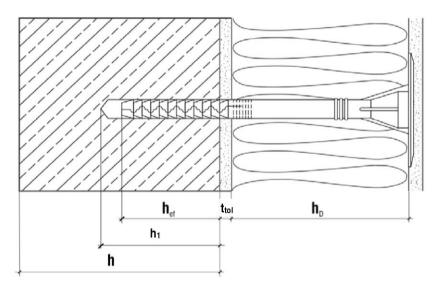
European Technical Assessment ETA-17/0450

Page 4 of 16 | 29 January 2018

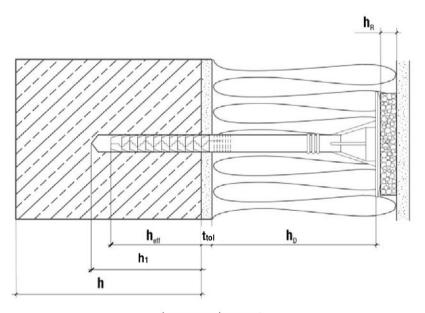
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 29 January 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Ziegler

LFM-8 / LFM-10 / LFN-10

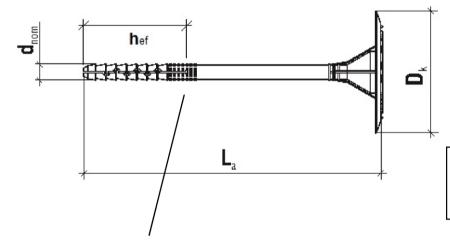
surface mount

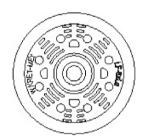
immerged mount

Legend: h_D = thickness of insulation material

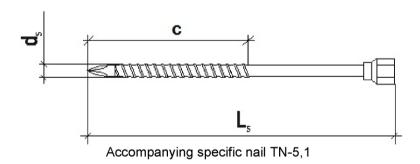
h_{ef} = effective anchorage depth h = thickness of member (wall)

h₁ = depth of drilled hole to deepest point


t_{tol} = thickness of equalizing layer or non-load-bearing coating


h_R = thickness of insulation cover

Product description Installed condition – surface mount, immerged mount Annex A 1

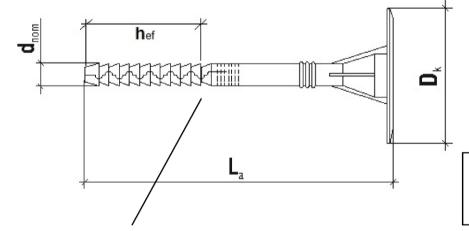

LFM-8

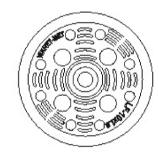
Marking: Identifying Mark (Wkret-Met) Anchor sleeve – LF Anchor size - 8xLa

Marking of effective anchorage depth

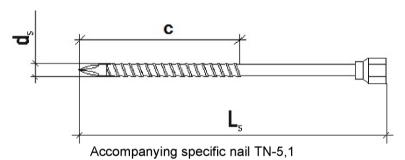
Table A1: Dim	ensions						
Anchor Specific Sleeve nail							
Туре	D _k	d_{nom}	h _{ef}	min L _a max L _a	d _s	С	min L _s max L _s
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
LFM-8	60	8	50	100 200	5,1	60-90	105 205

Determination of maximum thickness of insulation h_{D} [mm] for LFM-8:


$$h_D$$
 = $L_a - t_{tol} - h_{ef}$
e.g. h_D = $100 - 10 - 50$


	h_{D}	$= L_a - t_{tol} - h_{ef}$	$(L_a = e.g. 100; t_{tol} = 10)$
g.	h_{D}	= 100 - 10 - 50	
	h_{Dmax}	= 40	

<u>LFM-8 / LFM-10 / LFN-10</u>	
Product description LFM-8 - marking and dimension of the anchor sleeve LF Expansion element TN	Annex A 2

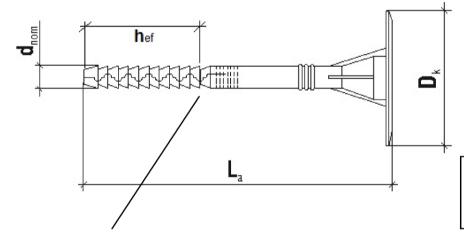


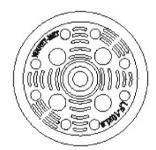
Marking: Identifying Mark (Wkret-Met) Anchor sleeve – LF Anchor size – 10xLa

Marking of effective anchorage depth

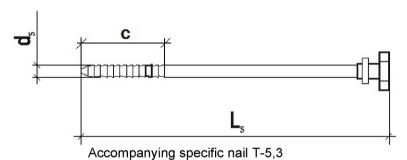
Table A2: Dimensions

Anchor			chor			Specific nail	
Туре	D_k	d _{nom}	h _{ef}	min L _a max L _a	d _s	С	min L _s max L _s
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
LFM-10	60	10	70	140 300	5,1	60-90	145 305


Determination of maximum thickness of insulation h_D [mm] for LFM-10:


$$\begin{array}{lll} & h_D & = L_a - t_{tol} - h_{ef} & (L_a = e.g. \ 140; \ t_{tol} = 10) \\ e.g. & h_D & = 140 - 10 - 70 \\ & h_{Dmax} & = 60 \end{array}$$

<u>LFM-8 / LFM-10 / LFN-10</u>	
Product description LFM-10 - marking and dimension of the anchor sleeve LF Expansion element TN	Annex A 3


LFN-10

Marking: Identifying Mark (Wkret-Met) Anchor sleeve – LF Anchor size – 10xLa

Marking of effective anchorage depth

Table A3: Dimensions

Anchor			chor			Specific nail	
Туре	D_k	d _{nom}	h _{ef}	min L _a max L _a	d _s	С	min L _s max L _s
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
LFN-10	60	10	70	140 300	5,3	85	145 305

 $(L_a = e.g. 140; t_{tol} = 10)$

Determination of maximum thickness of insulation h_D [mm] for LFN-10:

$$\begin{array}{lll} & h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 140 - 10 - 70 \\ & h_{Dmax} & = 60 \end{array}$$

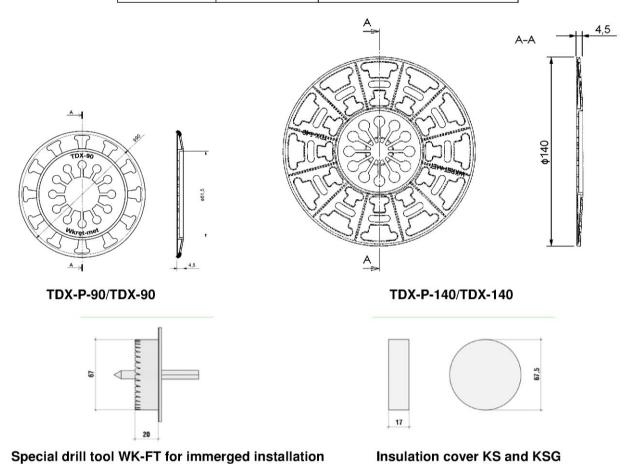

LFM-8 / LFM-10 / LFN-10	
Product description	Annex A 4
LFN-10 - marking and dimension of the anchor sleeve LF Expansion element T	

Table A4: Materials	
Name	Materials
Anchor sleeve	virgin Polyethylene, colour: natural
Specific nail T	virgin Polyamide + GF, colour: black or natural
Specific nail TN	Steel, electro galvanized \geq 5 µm according to EN ISO 4042:1999, white passivated, $f_{yk} \geq$ 420 N/mm ²
Insulation cover	KS: Polystyrene (EPS), colour: white KSG: Polystyrene (EPS), colour: grey

Table A5: Insulation discs, diameters and material

Plate type	Outer diameter [mm]	Material
TDX-P-90	90	Polyethylene, natural or grey
TDX-90	90	Polyamide +GF, natural or grey
TDX-P-140	140	Polyethylene, natural or grey
TDX-140	140	Polyamide + GF, natural or grey

LFM-8 / LFM-10 / LFN-10

Product description
Materials,
Slip on plates with LFM-8 / LFM-10 / LFN-10

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1, C 2
- Solid masonry (use category B), according to Annex C 1, C 2
- Hollow or perforated masonry (use category C), according to Annex C 1, C 2
- Lightweight aggregate concrete (use category D), according to Annex C 1, C 2
- Autoclaved aerated concrete (use category E), according to Annex C 1, C 2
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051 edition December 2016.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$ if there are no other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

<u>LFM-8 / LFM-10 / LFN-10</u>	
Intended use Specifications	Annex B 1

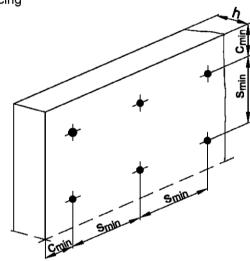
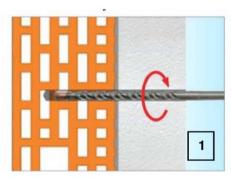
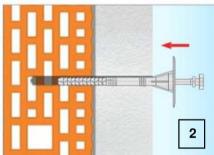


Table B1: Installation parameters for <u>LFM-8</u>				
		LFM-8 A B C D E		
Drill hole diameter	$d_0[mm] =$	8		
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45		
Depth of drilled hole to deepest point	h₁ [mm] ≥	55		
Effective anchorage depth	h _{ef} [mm] ≥	50		

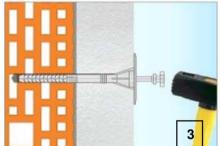
Table B2: Installation parameters for <u>LFM-10 / LFN-10</u>					
		LFM-10 A B C D E	LFN-10 B C E		
Drill hole diameter	d ₀ [mm] =	10	10		
Cutting diameter of drill bit	d _{cut} [mm] ≤	10,45	10,45		
Depth of drilled hole to deepest point	h₁ [mm] ≥	75	75		
Effective anchorage depth	h _{ef} [mm] ≥	70	70		

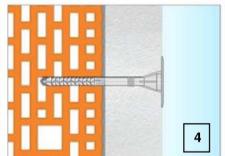
Table B3: Anchor distances and dimensions of members						
Minimum allowable edge distance	$c_{min} \geq [mm]$	100				
Minimum thickness of member h ≥ [mm] 100						

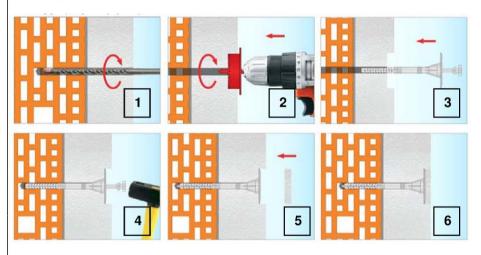

Scheme of distance and spacing



<u>LFM-8 / LFM-10 / LFN-10</u>	
Intended use	Annex B 2
Installation parameters,	
Edge distances and spacing	


Installation instructions


surface mount


- Drill the hole perpendicular to the substrate surface. Clean the drill hole.
- 2) Place the anchor into the drill hole. The bottom side of the plate must be flush with the ETICS.

- 3) Drive in the specific nail with the hammer.
- 4) Installed condition.

- 1) Drill the hole perpendicular to the substrate surface. Clean the drill hole.
- 2) Drill the recess for immerged installation with the special drilling tool WK-FT.
- 3) Place the anchor into the drill hole. The bottom side of the plate must be flush with the recess in the ETICS.
- 4) Drive in the specific nail with the hammer.
- 5) Insert the insulation cover.
- 6) Installed condition.

LFM-8 / LFM-10 / LFN-10

Intended use

electronic copy of the eta by dibt: eta-17/0450

Installation instructions - surface mount, immerged mount

Annex B 3

Anchor type					LFM-8
Base materials	Bulk density p [kg/dm³]	compressive strength f _b [N/mm²]	General remarks	Drill method	N _{Rk}
Concrete C12/15 (EN 206-1:2000)	≥ 2,25	≥ 15		hammer	0,5
Concrete C20/25 - C50/60 (EN 206-1:2000)	≥ 2,30	≥ 25		hammer	0,75
Clay bricks MZ e.g. according to EN 771-1:2011	≥ 2,0	≥ 20		hammer	0,5
Calcium silicate bricks KS e.g. according to EN 771-2:2011	≥ 2,0	≥ 20		hammer	0,5
Calcium silicate hollow block KSL e.g. according to EN 771-2:2011	≥ 1,6	≥ 12	Vertically perforation more than 15 % and less than 50 %, outer web thickness ≥ 20 mm	rotary	0,4
ertically perforated clay bricks HLZ e.g. according to EN 771-1:2011	≥ 1,2	≥ 12	Vertically perforation more than 15 % and less than 50 %, outer web thickness ≥ 12 mm	rotary	0,1
Vertically perforated clay bricks porotherm 25 e.g. according to EN 771-1:2011	≥ 0,8	≥ 10	Vertically perforation more than 15 % and less than 50 %, outer web thickness ≥ 12 mm	rotary	-
Autoclaved concrete blocks e.g. according to EN 771-4:2011	≥ 0,35	≥ 2		rotary	0,3
Autoclaved concrete blocks e.g. according to EN 771-4:2011	≥ 0,65	≥ 5		rotary	0,6
Lightweight concrete blocks LAC e.g. according to EN 1520:2011 /	≥ 0,88	≥ 5		rotary	0,8

<u>LFM-8 / LFM-10 / LFN-10</u>	
Performances Characteristic resistance LFM-8	Annex C 1

Anchor type					LFM-10	LFN-10
Base materials	Bulk density ρ [kg/dm³]	compressive strength f _b [N/mm²]	General remarks	Drill method	N _{Rk}	N_{Rk}
Constate C42/45 (EN 206 4/2000)				h = m = m = m	[kN]	[kN]
Concrete C12/15 (EN 206-1:2000) Concrete C20/25 - C50/60	≥ 2,25	≥ 15		hammer	0,6	-
(EN 206-1:2000)	≥ 2,30	≥ 25		hammer	0,9	-
Clay bricks MZ e.g. according to EN 771-1:2011	≥ 2,0	≥ 20		hammer	0,5	0,75
Calcium silicate bricks KS e.g. according to EN 771-2:2011	≥ 2,0	≥ 20		hammer	0,5	-
Calcium silicate hollow block KSL e.g. according to EN 771-2:2011	≥ 1,6	≥ 12	Vertically perforation more than 15 % and less than 50 %, outer web thickness ≥ 20 mm	rotary	0,3	0,5
Vertically perforated clay bricks HLZ e.g. according to EN 771- 1:2011	≥ 1,2	≥ 12	Vertically perforation more than 15 % and less than 50 %, outer web thickness ≥ 12 mm	rotary	0,3	0,8
Vertically perforated clay bricks porotherm 25 e.g. according to EN 771-1:2011)	≥ 0,8	≥ 10	Vertically perforation more than 15 % and less than 50 %, outer web thickness ≥ 12 mm	rotary	0,3	0,5
Autoclaved concrete blocks e.g. according to EN 771-4:2011	≥ 0,35	≥ 2		rotary	0,3	0,3
Autoclaved concrete blocks e.g. according to EN 771-4:2011	≥ 0,65	≥ 5		rotary	0,4	0,85
Lightweight concrete blocks LAC e.g. according to EN 1520:2011 / EN 771-3:2011	≥ 0,88	≥ 5		rotary	0,75	_

<u>LFM-8 / LFM-10 / LFN-10</u>	
Performances Characteristic resistance LFM-10 / LFN-10	Annex C 2

Table C3: Point thermal transmittance according EOTA Technical Report TR 025:2016-05				
	insulation thickness	point thermal transmittance		
anchor type	h _D [mm]	χ [W/K]		
LFM-8 surface mount	40-200	0,004		
LFM-8 immerged mount	40-200	0,003		
LFM-10 surface mount	80-300	0,004		
LFM-10 immerged mount	80-300	0,003		
LFN-10 surface mount	80-240	0,000		
LFN-10 immerged mount	80-240	0,000		

Table C4: Plate stiffness according EOTA Technical Report TR 026:2016-05					
anchor type	diameter of the anchor plate	load resistance of the anchor plate	plate stiffness		
	[mm]	[kN]	[kN/mm]		
LFM-8	60	1,44	0,3		
LFM-10	60	1,34	0,3		
LFN-10	60	1,33	0,3		

<u>LFM-8 / LFM-10 / LFN-10</u>	
Performances Point thermal transmittance, plate stiffness	Annex C 3

electronic copy of the eta by dibt: eta-17/0450

Table C5: Displacements LFM-8					
Base materials (refer Table C1, C2)	Bulk density p [kg/dm³]	Compressive strength f _b [N/mm²]	Tension load N [kN] LFM- 8	Displacements ^δ (N) [mm]	
Concrete C20/25	≥ 2,25	≥ 30	0,17	0,5	
Concrete C50/60	≥ 2,30	≥ 65	0,25	0,6	
Clay bricks MZ	≥ 2,0	≥ 20	0,17	0,5	
Calcium silicate bricks KS	≥ 2,0	≥ 20	0,17	0,5	
Calcium silicate hollow block KSL	≥ 1,6	≥ 12	0,13	1,0	
Vertically perforated clay bricks HLZ	≥ 1,2	≥ 12	0,03	0,7	
Perforated clay bricks porotherm 25	≥ 0,8	≥ 10	-	-	
Autoclaved concrete blocks	≥ 0,35	≥ 2	0,1	0,3	
Autoclaved concrete blocks	≥ 0,65	≥ 5	0,2	0,8	
Lightweight concrete blocks LAC	≥ 0,88	≥ 5	0,3	1,0	

Table C6: Displacements LFM-10 / LFN-10								
Base materials (refer Table C1, C2)	Bulk density p [kg/dm³]	Compressive strength f _b [N/mm²]	1	on load N N] LFN-10	δ(ements N) m] LFN-10		
Concrete C20/25	≥ 2,25	≥ 30	0,2	-	0,8	-		
Concrete C50/60	≥ 2,30	≥ 65	0,3	-	0,4	-		
Clay bricks MZ	≥ 2,0	≥ 20	0,17	0,25	0,9	1,2		
Calcium silicate bricks KS	≥ 2,0	≥ 20	0,17	-	0,6	-		
Calcium silicate hollow block KSL	≥ 1,6	≥ 12	0,1	0,17	0,5	2,4		
Vertically perforated clay bricks HLZ	≥ 1,2	≥ 12	0,1	0,25	0,3	1,8		
Perforated clay bricks porotherm 25	≥ 0,8	≥ 10	0,1	0,17	0,4	2,5		
Autoclaved concrete blocks	≥ 0,35	≥ 2	0,1	0,1	0,4	1,2		
Autoclaved concrete blocks	≥ 0,65	≥ 5	0,13	0,3	0,7	0,9		
Lightweight concrete blocks LAC	≥ 0,88	≥ 5	0,25	-	1,3	-		

LFM-8 / LFM-10 / LFN-10	
Performances Displacements	Annex C 4