

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0777 of 23 January 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Beck tack staples d=1,51mm, d=1,78mm, d=2,00mm

Dowel-type fasteners with resin coating

Raimund Beck KG, Wire-Staples-Company Raimund-Beck-Straße 1 5270 Mauerkirchen ÖSTERREICH

Wire-Staples-Company

12 pages including 3 annexes which form an integral part of this assessment

EAD 130019-00-0603

European Technical Assessment ETA-17/0777

Page 2 of 12 | 23 January 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z57796.17 8.06.03-320/17

European Technical Assessment ETA-17/0777

Page 3 of 12 | 23 January 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm are dowel type fasteners made of non-alloy steel rods according to EN ISO 16120 or made of stainless steel drawn from austenitic steel rods in accordance with EN 10088-1 for timber constructions. The staples have a special resin coating with a minimum length of 50 % of the legs.

The diameters of the staple legs are $d = 1,51 \text{ mm} \pm 0,03 \text{ mm}$, $d = 1,78 \text{ mm} \pm 0,03 \text{ mm}$ or $d = 2,00 \text{ mm} \pm 0,03 \text{ mm}$. Further dimensions are shown in Annex 1.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm are used in compliance with the specifications and conditions given in Annex 1 to 3.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of staples of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Dimensions	See Annex 1
Characteristic yield moment	See Annex 3
Withdrawal capacity for short-term and medium-term loads	See Annex 3
Withdrawal capacity for long term and permanent loads	See Annex 3
Characteristic head pull-through parameter	See Annex 3
Minimum tensile strength of the wire	See Annex 3
Minimum and maximum thickness of the connected material	See Annex 3
Durability against corrosion	See Annex 2
Durability of the resin coating	See Annex 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Euroclass A1

3.3 Safety and accessibility in use (BWR 4)

The essential characteristics of BWR 4 have been covered by BWR 1.

Z57796.17 8.06.03-320/17

European Technical Assessment ETA-17/0777

Page 4 of 12 | 23 January 2018

English translation prepared by DIBt

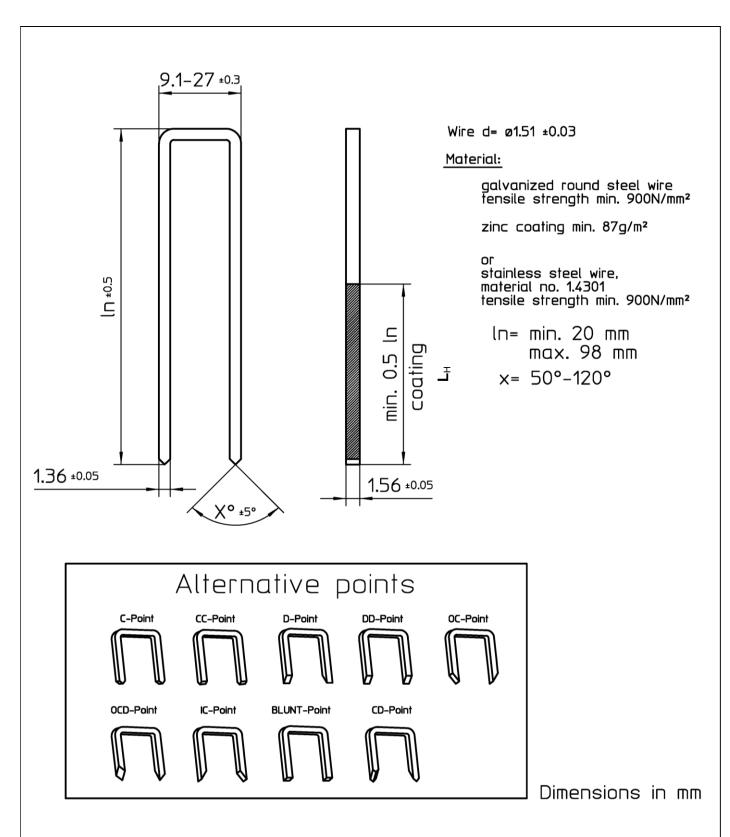
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No.130019-00-0603, the applicable European legal act is: [1997/176/EC(EU)].

The system to be applied is: 3

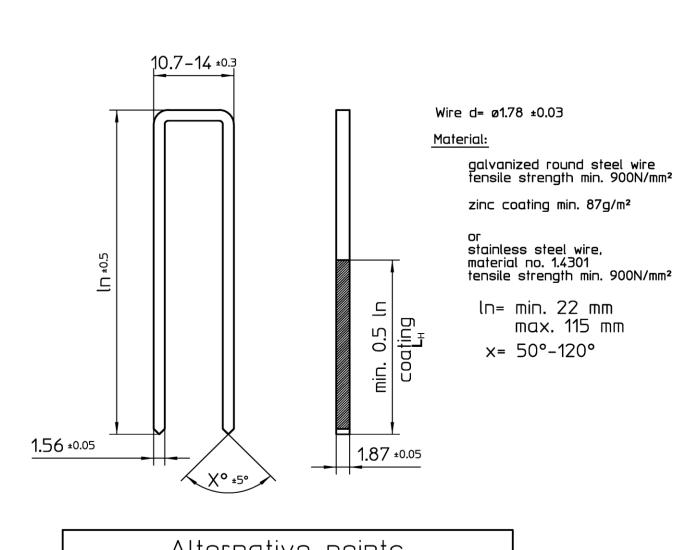
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

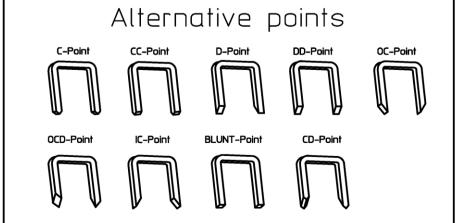
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 23 January 2018 by Deutsches Institut für Bautechnik

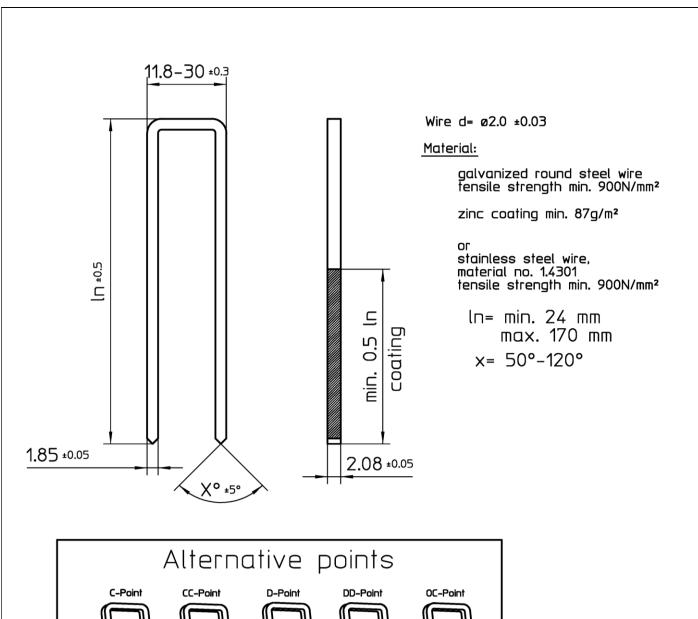
BD Dipl.-Ing. Andreas Kummerow Head of Department

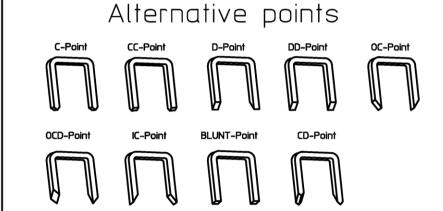
beglaubigt: Baumann


Z57796.17 8.06.03-320/17



Beck tack staples d=1,51mm, d=1,78mm, d=2,00mm	
Technical description of the product	Annex 1.1
Beck tack staples Type "16g" d=1.51mm, galvanised and stainless steel	


Dimensions in mm


8.06.03-320/17

Beck tack staples d=1,51mm, d=1,78mm, d=2,00mm	
Technical description of the product	Annex 1.2
Beck tack staples Type "15g" d=1.78mm, galvanised and stainless steel	

Z57807.17

Dimensions in mm

Beck tack staples d=1,51mm, d=1,78mm, d=2,00mm	
Technical description of the product	Annex 1.3
Beck tack staples Type "14g" d=2.00mm, galvanised and stainless steel	

Page 8 of European Technical Assessment ETA-17/0777 of 23 January 2018

English translation prepared by DIBt

Annex 2 Specifications of intended use

A.2.1 Loading

- Static and quasi-static loads (not relevant to fatigue)
- Short-, medium-,longterm and permanent load duration withdrawal as well as shear

A.2.2 Connection material

EN 15283-2¹⁵

EN 338-2016

EN 13171:2012

Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm are used for load bearing connections of the following material.

Material for base building components

- Solid timber (softwood) according to EN 338¹/EN 14081-1²,
- Glued laminated timber (softwood) according to EN 14080³,
- Glued solid timber according to EN 14080,
- Laminated veneer lumber LVL according to EN 14374⁴.
- Cross-laminated timber according to European technical approvals/assessments or national provisions that apply at the installation site.

Material for connected building components

- Oriented Strand Board (OSB) according to EN 300⁵ and EN 13986⁶
- Plywood according to EN 636⁷ and EN 13986,
- Cement-bonded particle boards according to EN 634-28 and EN 13986,
- Fibreboards according to EN 622-2⁹, EN 622-3¹⁰ and EN 13986,
- Laminated veneer lumber LVL according to EN 13986 in connection with EN 14279¹¹,
- Solid-wood panels according to EN 13353¹² and EN 13986,
- Gypsum boards according to EN 520¹³, density ρ ≥ 680 kg/m³ but without Typ D,
 Gypsum boards Typ D with a density of ρ ≥ 800 kg/m³
 - Gypsum boards with mat reinforcement according to EN 15283-114 and Gypsum fibre boards according to
- Fibre-cement flat sheets Product specification and test methods according to EN 12467¹⁶

Timber structures - Strength classes

Thermal insultation products for buildings – Factory made wood fibre (WF) products – Specification according to EN 13171¹⁷

	EN 330.2010	rimber structures - Strength classes
2	EN 14081-1:2016	Timber structures – Strength graded structural timber with rectangular cross section – Part 1: General requirements
3	EN 14080:2013	Timber structures - Glued laminated timber and glued solid timber - Requirements
4	EN 14374:2004	Timber structures - Structural laminated veneer lumber - Requirements
5	EN 300:2006	Oriented strand boards (OSB) – Definition, classification and specifications
6	EN 13986:2004+A1:2015	Wood-based panels for use in construction - Characteristics, evaluation of conformity and marking
7	EN 636:2012+A1:2015	Plywood - Specifications
8	EN 634-2:2007	Cement-bonded particleboards – Specifications – Part 2: Requirements for OPC bonded particleboards for use in dry, humid and external conditions
9	EN 622-2:2004	Fibreboards - Specifications - Part 2: Requirements for hardboards
10	EN 622-3:2004	Fibreboards - Specifications - Part 3: Requirements for medium boards
11	EN 14279:2009	Laminated Veneer Lumber (LVL) – Definitions, classification and specifications
12	EN 13353:2008+A1:2011	Solid wood panels (SWP) – Requirements
13	EN 520:2004+A1:2009	Gypsum plasterboards – Definitions, requirements and test methods
14	EN 15283-1:2008+A1:2009	Gypsum boards with fibrous reinforcement – Definitions, requirements and test methods – Part 1: Gypsum boards with mat reinforcement
15		Part 2: Gypsum fibre boards
13	EN 15283-2:2008+A1:2009	Gypsum boards with fibrous reinforcement – Definitions, requirements and test methods – Part 2:
16		Gypsum fibre boards
17	EN 12467:2012+A1:2016	Fibre-cement flat sheets – Product specification and test methods

Thermal insulation products for buildings - Factory made wood fibre (WF) products - Specification

English translation prepared by DIBt

A.2.3 Use conditions (environmental conditions)

A.2.3.1 Durability against corrosion

Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm made of non-alloy steel rods are galvanized. The mean thickness of the zinc coating is 87 g/m^2 . Steel no. 1.4301 is used for Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm made of stainless steel.

A.2.3.2 Durability of the resin coating

The resin coating I_H of Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm has a minimum length of 50 % of the legs according to Annex 1. The following kinds of resin are used:

ETA-Diamond-Coating.

Data sheets of chemical compositions (as well as the process of application and drying for resin coatings) are deposited at Deutsches Institut für Bautechnik.

The resin coating fulfills the requirements of the EAD 130019-00-0603, clause 2.2.9 "durability of the resin coating".

A.2.3.3 Installation

EN 1995-1-1¹⁸ in conjunction with the respective national annex applies for the installation of constructions with Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm.

The pointside penetration length t₂ of the staples has to be at least 14-d.

For connections of wood fibre insulation material the maximum length of the leg is $I = 85 \cdot d$, the minimum width is b = 20 mm and the maximum thickness of the insulation is 70-d.

English translation prepared by DIBt

Annex 3 Specifications of essential characteristics

A.3.1 Characteristic yield moment according to EN 14592

Table A.3.1 Characteristic yield moment $M_{y,k}$ [Nm] of one leg of Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm

Туре	Nominal diameter	Characteristic yield moment M _{y,k} [Nm]	
	u [mm]	galvanised	stainless steel
"16g" galvanised	4.54	0,67	-
"16g" stainless steel	1,51	-	0,64
"15g"galvanised	4.70	0,83	-
"15g" stainless steel	1,78	-	1,03
"14g" galvanised	0.00	1,24	-
"14g" stainless steel	2,00	-	1,17

A.3.2 Withdrawal capacity for short-term and medium-term loads

The characteristic withdrawal parameter $f_{ax,k}$ of one leg (at an angle of at least 30° between the width of staple crown and the direction of the grain) for material with a characteristic density $\rho_k \ge 350 \text{ kg/m}^3$ as well as for short-term and medium-term withdrawal loads can be taken from Table A.3.2.

Tabelle A.3.2 Charakteristic withdrawal parameter $f_{ax,k}$ of one leg Beck staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm

Туре	Nominal diameter d in mm	Withdrawal parameter short- an medium-term load f _{ax,k} in N/mm ²	
		galvanised	stainless steel
"16g" galvanised	1,51	5,8	-
"16g" stainless steel		-	6,5
"15g" galvanised	4.70	6,8	-
"15g" stainless steel	1,78	-	6,0
"14g" galvanised	2,00	5,4	-
"14g" stainless steel		-	5,7

The withdrawal parameter according to Table A.3.2 have been determined for a maximum length of staples in the base building components of $t_2 \le 20 \cdot d$.

A.3.3 Design value of withdrawal capacity for long-term and permanent loads

The design value of withdrawal capacity for long-term and permanent loads for service class 1 and 2 for one staple may be taken to:

$$R_{ax,d} = 70 \text{ N, mit } \gamma_M = 1,3.$$

The design value of withdrawal capacity applies for a characteristic density of $\rho_k \ge 350 \text{ kg/m}^3$.

A.3.4 Maximum thickness of base building components

The maximum thickness t_1 according to Table A.3.3 applies for base building components (made of material according to chapter A.2.2) depending on the density of base building components.

Table A.3.3 Maximum thickness of connected material

Maximum thickness t ₁ in mm	Range of density ρ _k in kg/m³	Material of connected components Examples
80	ρ _k ≤ 400	Solid timber of softwood
60	400 <ρ _k ≤ 650	Wood-based panels and solid timber of hard- and softwood
40	650 <ρ _k ≤ 900	Wood-based panels and gypsum boards
25	900 <ρ _k ≤ 1200	Hardboards, gypsum fibreboards, cement-bonded particlebords
20	1200 <ρ _k ≤ 1600	Highly compressed gypsum fibreboards

The maximum thickness of wood fibre insulation material is $t_1 \le 70$ -d.

A.3.5 Head pull-through capacity of wood and wood-based panels

The characteristic head pull-through parameters $f_{head,k}$ for one staple of Beck tack staples d=1,51mm, d=1,78mm, d=2,00mm for a minimum thickness of material according to Table A.3.4 (for material with a characteristic density of $\rho_k \ge 350 \text{ kg/m}^3$) shall be taken from Table A.3.5:

Table A.3.4 Minimum thickness of wood and wood-based panels

Wood or wood-based panels	Minimum thickness
	t₁ in mm
Solid timber (softwood)	24
Solid wood panels	7d*
Plywood	6*
Oriented Strand Boards OSB	8*
Resin-bonded particleboards	8*
Cement-bonded particleboards	8*

^{*} if staple crown is countersunk it has to be increased by 2 mm

The characteristic head pull-through capacity may be calculated according to equation (1)

 $R_{ax,2,k} = f_{head,k} \cdot b \cdot d \qquad N$ (1

with: $f_{head,k}$: characteristic head pull-through parameter in N/mm²

b: width of staple crown [mm], $b \le 27$ mm

d: nominal diameter of raw staple wire in mm

Table A.3.5 Characteristic head pull-through parameter $f_{head,k}$ for material $\rho_k \ge 350$ kg/m³, b ≤ 27 mm

Туре	Nominal diameter	Width of staple crown	Head pull-through parameter
	d in mm	b in mm	f _{head,k} in N/mm ²
"16g" galvanised	1 51	10,5	37
"16g" stainless steel	1,51	27,0	23
"15g" galvanised, "15g" stainless steel	1,78	11,3	38
"14g" galvanised	2.00	11,6	35
"4g" stainless steel	2,00	26,8	37

electronic copy of the eta by dibt: eta-17/0777

A.3.6 Head pull-through capacity of wood fibre insulation material

The characteristic head pull-through parameter $f_{head,k}$ of Beck tack staples d=2,00 mm for wood fibre insulation material with a mean density of at least 140 kg/m³ and a minimum thickness of the material of 60 mm is $f_{head,k}=10,58$ N/mm² for one staple. The width of the staple crown hast to be at least 20 mm.

A.3.7 Minimum tensile strength of the wire

Table A.3.7 Minimum tensile strength f_u [N/mm²] of the raw wire Beck tack staples d = 1,51 mm, d = 1,78 mm, d = 2,00 mm

Nominal diameter d in mm	1,51	1,78	2,00
Galvanised		900	
Stainless steel		900	