

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0194 of 31 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection System VMZ dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1, D Werk 2, D

17 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601

European Technical Assessment ETA-17/0194

Page 2 of 17 | 31 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z20784.18 8.06.01-865/13

European Technical Assessment ETA-17/0194

Page 3 of 17 | 31 May 2018

English translation prepared by DIBt

Specific part

1 Technical description of the product

The Injection System VMZ dynamic is a torque controlled bonded anchor consisting of a cartridge with injection mortar VMZ or VMZ Express, an anchor rod with expansion cones and external connection thread, a centring ring (only for through-setting installation), a conical washer, a hexagon nut with spherical contact surface and a locknut. For the pre-setting installation a conical washer with a bore is used. Alternatively the hexagon nut with spherical contact surface can be replaced by a spherical disc with hexagon nut.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (Assessment method A)	Performance	
Characteristic fatigue resistance under cyclic tension loading		
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ $(n = 1 \text{ to } n = \infty)$		
Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,p,0,n}$ $\Delta N_{Rk,sp,0,n}$ $\Delta N_{Rk,cb,0,n}$ $(n=1 \text{ to } n=\infty)$	See Annexes C 1 and C 2	
Characteristic combined pull- out /concrete cone fatigue resistance		
$\Delta N_{Rk,p,0,n}$ $(n=1 \text{ to } n=\infty)$		
Characteristic fatigue resistance under cyclic shear loading		
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ $(n = 1 \text{ to } n = \infty)$	See Annexes C 1 and C 2	
Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ $(n = 1 \text{ to } n = \infty)$		
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ $(n = 1 \text{ to } n = \infty)$		

Z20784.18 8.06.01-865/13

European Technical Assessment ETA-17/0194

Page 4 of 17 | 31 May 2018

English translation prepared by DIBt

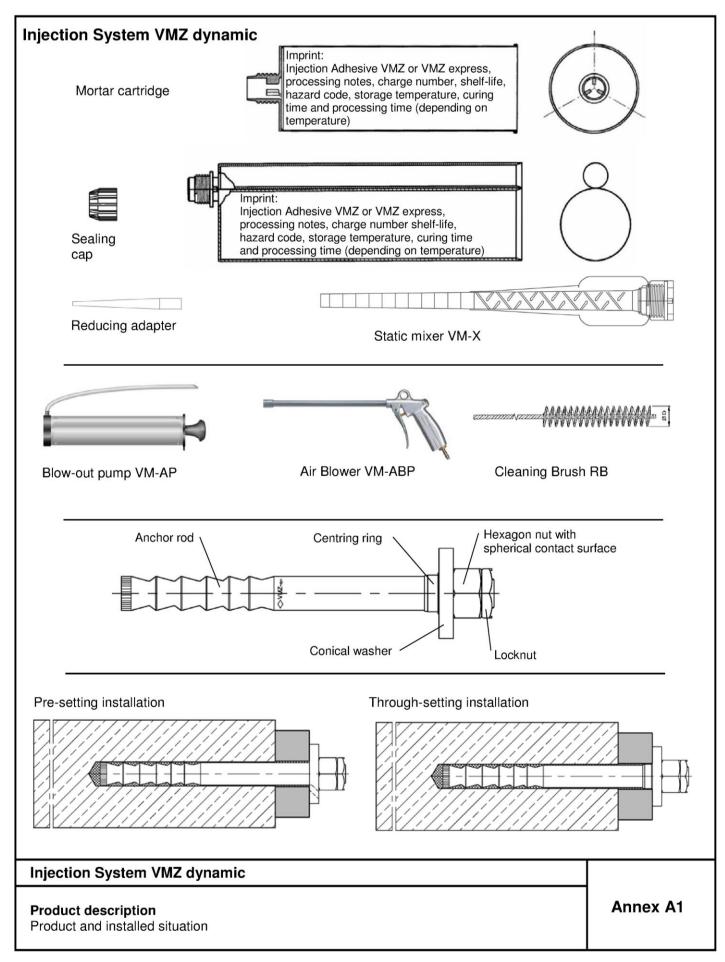
Essential characteristic (Assessment method A)	Performance				
Characteristic fatigue resistance under cyclic combined tension and shear loading					
Characteristic steel fatigue resistance a_{sn} $(n = 1 \text{ to } n = \infty)$	See Annexes C 1 and C 2				
Load transfer factor for cyclic tension and shear loading					
Load transfer factor ψ_{FN}, ψ_{FV}	See Annexes C 1 and C 2				

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

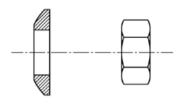
Issued in Berlin on 31 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Z20784.18 8.06.01-865/13

Z34329.18


electronic copy of the eta by dibt: eta-17/0194

Alternatively: Conical washer with bore

radial angular Alternatively:

ts

Spherical disc with hexagon nut (hexagon nut with spherical contact surface is omitted)

(alternatively: marking on the anchor rod)

Anchor version: Marking:

galvanized no marking

Α4 Α4 **HCR HCR**

Marking of length	ı	J	K	L	М	N	0	Р	Q
Length of anchor min ≥	139,7	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3
Length of anchor max <	152,4	165,1	177,8	190,5	203,2	215,9	228,6	241,3	254,0

Marking of length	R	S	Т	U	٧	W	Х	Υ	Z	>Z
Length of anchor min ≥	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
Length of anchor max <	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

Injection System VMZ dynamic

Product description

Components, Marking

Annex A2

Table A1: Materials

Part	Designation	Steel, zinc plated	Stainless steel (A4)	High corrosion resistant steel (HCR)		
1	Anchor rod	Steel, acc. to EN 10087:1998, galvanized and coated	High corrosion resistant steel 1.4529, acc. to EN 10088:2014, coated			
2	Centring ring	Plastic				
3	Conical washer	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel 1.4529, acc. to EN 10088:2014		
3a	Spherical disc	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel 1.4529, acc. to EN 10088:2014		
4	Hexagon nut with spherical contact surface	Steel, galvanized	ISO 3506, Property class 70, stainless steel	ISO 3506, Property class 70, high corrosion resistant steel		
4a	Hexagon nut		1.4401 or 1.4571, acc. to EN 10088:2014	1.4529 or 1.4565, acc. to EN 10088:2014		
5	Locknut	Steel, galvanized	Stainless steel, 1.4401, 1.4571 or 1.4362, acc. to EN 10088:2014	High corrosion resistant steel 1.4565, 1.4529 or 1.4547, acc. to EN 10088:2014		
6	Mortar Cartridge	Vinylester resin, styrene-free				

Table A2: Dimensions

Part	Anchor size				100 M12	125 M16	170 M20
		Thread		-	M12	M16	M20
		Effective anchorage depth	h _{ef} ≥	[mm]	100	125	170
1	Anchor rod	Shaft diameter	d _k =	[mm]	12,5	16,5	22,0
		Longth	L _{min}	[mm]	143	180	242
		Length	L _{max}	[mm]	531	565	623
2	Centring ring	External diameter	D_z	[mm]	14	18	23,5
3	O and and assessment	Thickness	ts	[mm]	6	7	8
3	Conical washer	External diameter	d _a ≥	[mm]	30	38	50
3a	Spherical disc	External diameter	d _s =	[mm]	24	30	36
4	Hexagon nut with spherical contact surface	Width across nut	SW	[mm]	18 / 19	24	30
4a	Hexagon nut	Width across nut	SW	[mm]	19	24	30
5	Locknut	Width across nut	SW	[mm]	19	24	30

Injection System VMZ dynamic	
Product description Materials and Dimensions	Annex A3

Specifications of intended use

Anchorages subject to:

Fatigue cyclic loading

Note: Static and quasi-static action according to ETA-04/0092

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibers according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- Cracked and uncracked concrete
- Temperature Range -40 °C to +80 °C:
 maximum short term temperature +80 °C and maximum long term temperature +50 °C

Use conditions (Environmental conditions): according to ETA-04/0092

- Structures subject to dry internal conditions (VMZ dynamic zinc plated, A4 or HCR).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal conditions, if no particular aggressive conditions exist (VMZ dynamic A4 or HCR).
- Structures subject to external atmospheric exposure or exposure in permanently damp internal conditions or particular aggressive conditions ((VMZ dynamic HCR).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to
 - o EOTA TR 061:2018 (Design method I and II) or
 - o FprEN 1992-4:2016

Installation:

- Anchor shall only be used as a complete fastening unit delivered in series. Components of the anchor must not be replaced.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the site manager.
- In case of aborted hole: new drilling at a distance of at least two times the depth of the aborted hole or at a smaller distance, if the aborted drill hole is filled with high strength mortar.
- The installation temperature of anchor components shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below 0 °C. Curing time must be observed prior to loading the anchor.
- Drilling by hammer drill bit or compressed air drill (use of vacuum drill bit is admissible)
- The filling of the annular gap can be omitted if it is ensured that the anchor is only loaded in axial direction.

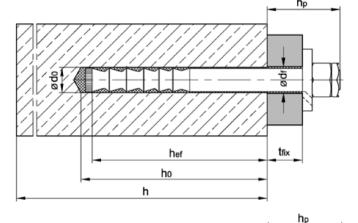
Injection System VMZ dynamic	
Intended use Specifications	Annex B1

Table B1: Installation parameters

Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20		
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]		100 125		170			
Nominal diameter of drill hole	d ₀ =	[mm]	14		14		14 18		24
Depth of drill hole 1)	$h_0 \geq$	[mm]	105		105 133		180		
Diameter of cleaning brush	D≥	[mm]	15,0		15,0 19,0		25,0		
Installation torque	$T_{inst} =$	[Nm]		30 50		50	80		
Diameter of clearance hole in the fixture	$d_f =$	[mm]	15			19	25		
Fixture thickness 2)	$t_{\text{fix,min}} \geq$	[mm]	12		12 16		16	20	
Fixture trickness	$t_{\text{fix,max}} \leq$	[mm]			200				
Overstand	$h_p =$	[mm]	31 + t _{fix}	24 + t _{fix}	39 + t _{fix}	30 + t _{fix}	48 + t _{fix}		

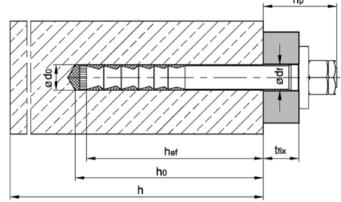
¹⁾ If the present fixture thickness is lower than the maximum fixture thickness of the anchor, the depth of drill hole should be increased accordingly.

$$t_{\text{fix,min,red}} = (0.5 {+} 0.5 {\cdot} \Delta V_{\text{R,red}} \, / \, \Delta V_{\text{R}}) {\cdot} \, \, t_{\text{fix,min}}$$


where $\Delta V_R = \Delta V_{Rk,s,0,n}$

- Design method I (Table C1)

where $\Delta V_R = \Delta V_{Rk,s,\infty}$


- Design method II (Table C2)

Pre-setting installation

Through-setting installation

electronic copy of the eta by dibt: eta-17/0194

Injection System VMZ dynamic

Intended use

Installation parameters

Annex B2

 $^{^{2)}~}t_{\text{fix,min}}~\text{may be replaced by}~t_{\text{fix,min,red}},~\text{if a reduced fatigue resistance}~\Delta V_{\text{R,red}}~\text{in transverse direction is considered:}$

Table B2: Minimum thickness of concrete and minimum spacing and edge distance

Anchor size			100 M12	125 M16	170 M20
Minimum thickness of concrete member	h _{min}	[mm]	130	170 160 ¹⁾	230 220 ¹⁾
Cracked concrete					
Minimum spacing	S _{min}	[mm]	50	60	80
Minimum edge distance	C _{min}	[mm]	70	80	110
Uncracked concrete					
Minimum spacing	S _{min}	[mm]	80	60	80
Minimum edge distance	C _{min}	[mm]	75	80	110

The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through the ground of the drill hole shall be closed with high strength mortar. The full bonded length her shall be achieved and any potential loss of injection mortar shall be compensated.

Table B3: Processing time and curing time until the application of the load, VMZ

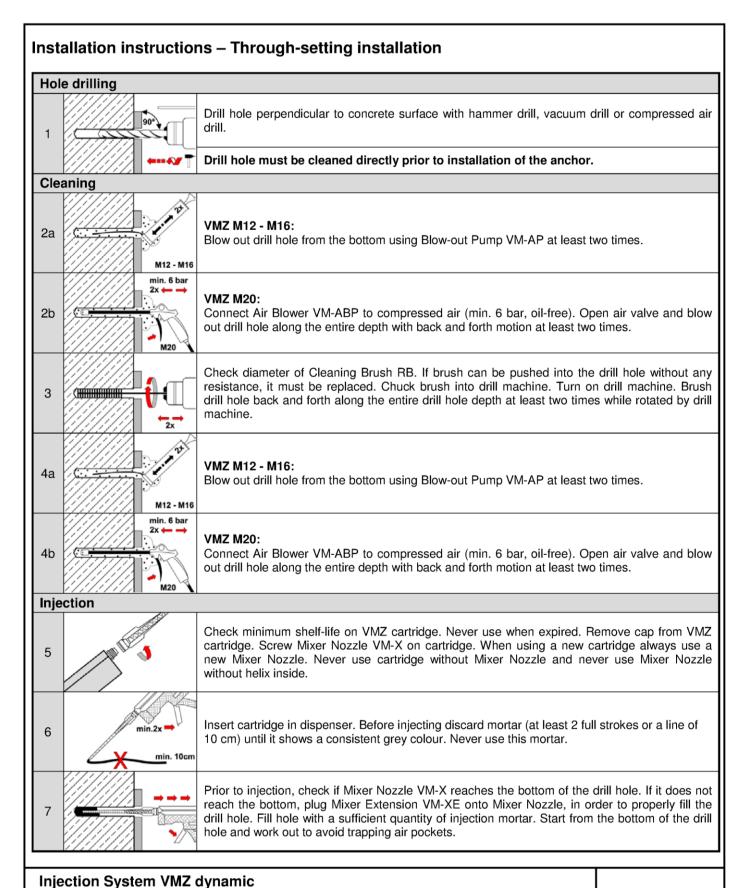

Temperature [°C]	Maximum processing	Minimum curing time			
in the drill hole	time	dry concrete	wet concrete		
+ 40 °C	1,4 min	15 min	30 min		
+ 35 °C to + 39 °C	1,4 min	20 min	40 min		
+ 30 °C to + 34 °C	2 min	25 min	50 min		
+ 20 °C to + 29 °C	4 min	45 min	1:30 h		
+ 10 °C to + 19 °C	6 min	1:20 h	2:40 h		
+ 5 °C to + 9 °C	12 min	2:00 h	4:00 h		
0 °C to + 4 °C	20 min	3:00 h	6:00 h		

Table B4: Processing time and curing time until the application of the load, VMZ express

Temperature [°C]	Maximum processing	Minimum cu	uring time
in the drill hole	time	dry concrete	wet concrete
+ 30 °C	1 min	10 min	20 min
+ 20 °C to + 29 °C	1 min	20 min	40 min
+ 10 °C to + 19 °C	3 min	40 min	80 min
+ 5 °C to + 9 °C	6 min	1:00 h	2:00 h
0 °C to + 4 °C	10 min	2:00 h	4:00 h

Injection System VMZ dynamic	
Intended use Minimum thickness of concrete, spacing and edge distances, processing and curing time	Annex B3

Intended use

Installation instructions - Through-setting installation

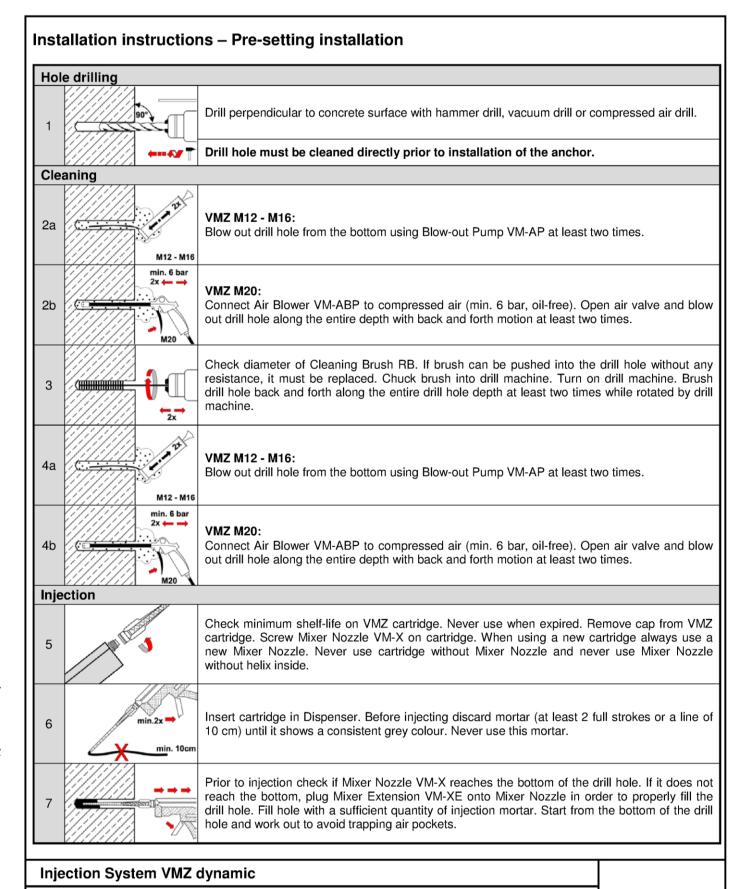
Annex B4

Installation instructions – Through-setting installation (continuation)

Insertion of anchor rod Insert the pre-assembled anchor within processing time by hand, rotating slightly up to the full embedment depth, until the conical washer lies against the fixture. The anchor rod is properly 8 set when the gap between anchor rod and fixture is completely filled. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and start again from step 2. Follow minimum curing time shown in Table B3 and Table B4 as well as on cartridge label. 9 During curing time anchor rod must not be moved or loaded. Remove excess mortar after curing time. 10 Remove locknut. 1. Tinst 1. Apply installation torque T_{inst} according to Table B1 by using torque wrench. 2. Screw on locknut until hand tight then tighten ½ turn using a screw wrench.

Injection System VMZ dynamic

Intended use


Installation instructions – Through-setting installation (continuation)

Annex B5

Intended use

Installation instructions – Pre-setting installation

Z34329.18 8.06.01-865/13

Annex B6

Installation instructions – Pre-setting installation (continuation)

Insertion of anchor rod Mark the embedment depth on the anchor rod. Insert the anchor rod by hand, rotating slightly up within processing time. The anchor rod is properly set when excess mortar seeps from the 8 hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and start again from step 2. Follow minimum curing time shown in Annex B3 (Table B3 and Table B4) as well as on 9 cartridge label. During curing time anchor rod must not be moved or loaded. 10 Remove excess mortar after curing time. ① Tinst ③ ΒΜ [፷]} \$**U** 1. Fixture, washer and nut (without centring ring) can be mounted. 11 2. Apply installation torque T_{inst} according to Annex B2 (Table B1) by using torque wrench. 3. Screw on locknut until hand tight then tighten \(^{1}/_{4}\) to \(^{1}/_{2}\) turn using a screw wrench. Annular gap between anchor rod and fixture must be filled with injection mortar through the 12 bore of the conical washer using the adapter plugged onto the static mixer. The annular gap is properly filled when excess mortar seeps out.

Injection System VMZ dynamic

Intended use

Installation instructions – Pre-setting installation (continuation)

Annex B7

Installation instructions – Installation with clearance between concrete and anchor plate (only if the fastener is only loaded in axial direction)

Work steps 1 - 7 as illustrated in Annex B4 Insertion of anchor rod Inserting the pre-assembled anchor within processing time by hand, rotating slightly until the 8 conical washer lies against the fixture. Check, if excess mortar seeps from hole. If the hole is not completely filled, pull our anchor rod, let mortar cure, drill out hole and start again from step 2. 9 The annular gap in the fixture does not have to be filled. Follow minimum curing time shown in Annex B3 (Table B3 and Table B4) as well as on 10 cartridge label. During curing time anchor rod must not be moved or loaded. Remove locknut after curing time has expired and backfilling of anchor plate. 11 1. TINST 2. 1. Apply installation torque T_{inst} according to Annex B2 (Table B1) by using torque wrench. 12 2. Screw on locknut until hand tight then 1/4 to 1/2 turn using a screw wrench.

Injection System VMZ dynamic

Intended use

Installation instructions - Installation with clearance between concrete and anchor plate

Annex B8

Table C1: Characteristic values of the fatigue resistance after n load cycles without static actions ($F_{Elod} = 0$) for design method I according to TR 061

Anchor size / version Steel failure ¹⁾		100 M12		100 M12 A4 100 M12 HCR		125 M16		125 M16 A4 125 M16 HCR		170 M20	
Steer failure	n	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,r}$
Characteristic resistance without static- actions [kN]	1	53,9	34,0	53,9	34,0	83,4	63,0	83,4	63,0	112,1	149,0
	≤ 10 ³	48,3	27,6	52,6	31,3	78,8	54,0	72,5	54,0	92,7	113,5
	≤ 3·10 ³	45,9	23,8	50,9	28,3	77,1	47,2	68,2	47,2	89,9	91,6
	≤ 10 ⁴	41,4	18,6	47,6	23,5	73,1	36,5	62,4	36,5	83,4	65,0
	≤ 3·10 ⁴	35,9	14,1	42,8	18,1	66,3	26,2	56,7	26,2	73,8	43,9
	≤ 10 ⁵	29,1	10,5	36,3	12,8	55,8	18,4	50,5	18,4	60,9	29,0
	≤ 3·10 ⁵	24,2	8,9	30,1	9,8	45,5	15,6	45,7	15,6	50,7	23,2
	≤ 10 ⁶	21,1	8,2	24,9	8,5	37,4	15,0	41,8	15,0	44,9	21,3
	≥ 10 ⁶	20,1	8,2	21,2	8,2	34,0	15,0	37,3	15,0	43,5	21,1
Partial factor	γ _{Ms,fat}	Acc. to TR 061, Eq. (3)									
Exponent for combined loading	$lpha_{ extsf{sn}}$	1,5		1,2		1,5		1,5		1,5	
Concrete failu	re ∆N _{Rk,(c}	/sp/cb),0,n =	η _{k,c,N fat,n}	· N _{Rk,(c/sp/}	$_{cb)}$ and $\Delta ^{v}$	V _{Rk,(c/cp),0,r}	$\eta = \eta_{k,c,V,fa}$	t,n · V _{Rk,(c/}	2) (cp)		
	n	$\eta_{k,c,N,fat,n}$	$\eta_{k,c,V,\text{fat},n}$	$\eta_{k,c,N,\text{fat},n}$	$\eta_{k,c,V,fat,n}$	$\eta_{k,c,N,fat,n}$	$\eta_{k,c,V,fat,n}$	$\eta_{k,c,N,fat,n}$	$\eta_{k,c,V,fat,n}$	η _{k,c,N,fat,n}	η _{k,c,V,fat,r}
	1	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	≤ 10 ³	0,932	0,799	0,932	0,799	0,932	0,799	0,932	0,799	0,932	0,799
Reduction factor η_{fat} for characteristic resistance	≤ 3·10 ³	0,893	0,760	0,893	0,760	0,893	0,760	0,893	0,760	0,893	0,760
	≤ 10 ⁴	0,841	0,725	0,841	0,725	0,841	0,725	0,841	0,725	0,841	0,725
	≤ 3·10 ⁴	0,794	0,700	0,794	0,700	0,794	0,700	0,794	0,700	0,794	0,700
	≤ 10 ⁵	0,750	0,680	0,750	0,680	0,750	0,680	0,750	0,680	0,750	0,680
	≤ 3·10 ⁵	0,722	0,668	0,722	0,668	0,722	0,668	0,722	0,668	0,722	0,668
	≤ 10 ⁶	0,704	0,660	0,704	0,660	0,704	0,660	0,704	0,660	0,704	0,660
	≥ 10 ⁶	0,693	0,652	0,693	0,652	0,693	0,652	0,693	0,652	0,693	0,652
Partial factor	γ _{Mc,fat}	1,5									
Exponent for combined loading	$lpha_{ t c}$		1,5								
Load-transfer factor for fas-	ΨFN	0,79									
tener groups	ΨFV	0,81									

The failure in cracked concrete due to combined pull- out /concrete cone failure ΔN_{Rk,p,0,n} in the low-cyclic loading range has been taken into account;

Injection System VMZ dynamic Performance Characteristic fatigue resistance for design method I according to TR 061 Annex C1

N_{Rk,c}, N_{Rk,sp}, N_{Rk,cb}, V_{Rk,c} and V_{Rk,cp} – Characteristic values of resistance to concrete failure under static or quasi-static actions according to ETA-04/0092

Table C2: Characteristic fatigue limit resistance for design according to FprEN 1992-4 and design method II according to TR 061

and design me	zinoa n a		unig to					
Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20	
Tension load								
Steel failure								
Characteristic tension resistance	ΔN _{Rk,s,0,∞}	[kN]	20	21,2	34	37	43	
Partial factor	γMs,N,fat	-			1,35			
Exponent for combined loading	α_{s}	-	1,5	1,2	1,5			
Concrete failure								
	∆N _{Rk,c,0,∞}	[kN]	0,693 N _{Rk,c} 1)					
Characteristic tension resistance	ΔN _{Rk,sp,0,∞}	[kN]	0,693 N _{Rk,sp} 1)					
	ΔN _{Rk,cb,0,∞}	[kN]		0,693 N _{Rk,cb} ¹⁾				
Effective anchorage depth		[mm]		100	125 1			
Partial factor	γ _{Mc,fat}	-			1,5			
Exponent for combined loading	α_{c}	-		1,5				
Load-transfer factor for fastener groups	ΨF,N	-	0,79					
Shear load								
Steel failure without lever arm								
Characteristic shear resistance	ΔV _{Rk,s,0,∞}	[kN]		8,2 15			21	
Partial factor	γMs,V,fat	-		1,35				
Exponent for combined loading	α_{s}	-	1,5	1,2	1,5			
Concrete pry-out failure			•	•				
Characteristic shear resistance	ΔV _{Rk,cp,0,≪}	, [kN]		0,652 V _{Rk,cp} 1)				
Partial factor	γMc,fat	-	1,5					
Concrete edge failure								
Characteristic shear resistance	ΔV _{Rk,c,0,∞}	[kN]	0,652 V _{Rk,c} 1)					
Effective length of anchor	I _f	[mm]		100		125	170	
Diameter of anchor	d_{nom}	[mm]	14		18		24	
Partial factor	γMc,fat	-	1,5					
Exponent for combined loading	α_{c}	-			1,5			
Load-transfer factor for fastener groups	Ψ F ,V	-			0,81			

N_{Rk,c}, N_{Rk,sp}, N_{Rk,cb}, V_{Rk,c} and V_{Rk,cp} – Characteristic values of resistance to concrete failure under static or quasi-static actions according to ETA-04/0092

Injection System VMZ dynamic Performance Characteristic fatigue limit resistance for design according to FprEN 1992-4 and design method II according to TR 061 Annex C2