

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0094 of 27 April 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

WEBER.THERM TA7

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Saint-Gobain PPC Italia S.p.A. Via Ettore Romagnoli, 6 20146 MILANO ITALIEN

Saint-Gobain PPC Italia S.p.A.

13 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

European Technical Assessment ETA-18/0094

Page 2 of 13 | 27 April 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0094

Page 3 of 13 | 27 April 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The WEBER. THERM TA7 consists of an anchor sleeve with an enlarged shaft made of polypropylene (virgin material), an insulation plate made of glass fibre reinforced polyamide (virgin material) (VITEXTHERM CL / 250-390) and a special compound nail consisting of two parts, one made of glass fibre reinforced polyamide for the shaft element and the other part made of galvanised steel.

The specific nail for the anchor type WEBER. THERM TA7 / 250 – 390 is made of galvanized steel which is used together with a separate plastic cylinder made of glass fibre reinforced polyamide.

The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates DT 90, DT 110 and DT 140.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

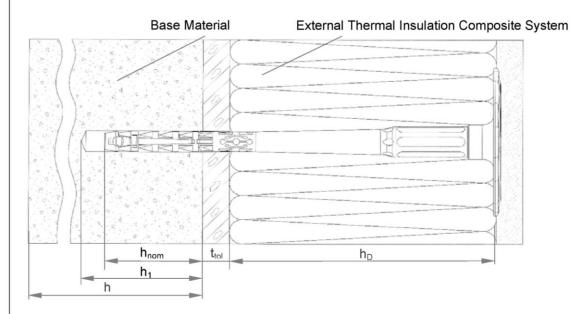
European Technical Assessment ETA-18/0094

Page 4 of 13 | 27 April 2018

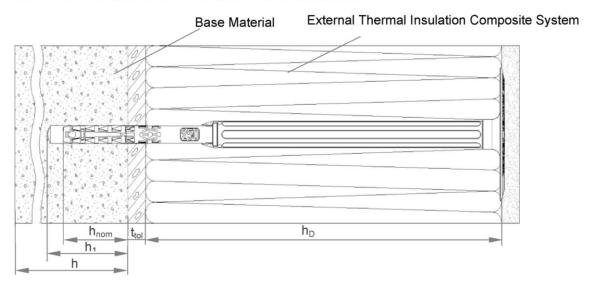
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 27 April 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department beglaubigt:

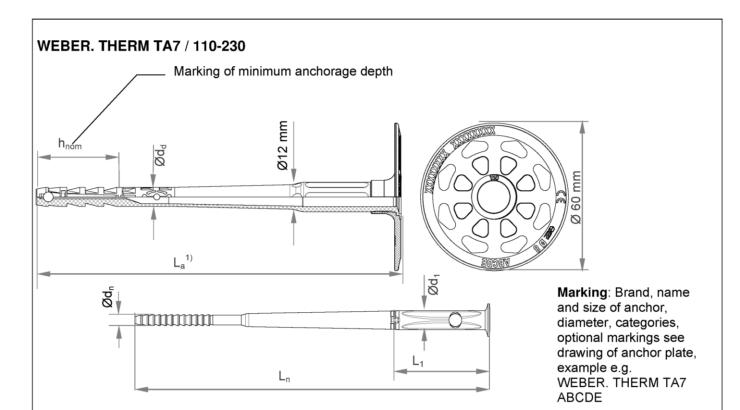

E. Aksünger

WEBER. THERM TA7 / 110 - 230 - flush mounted

WEBER. THERM TA7 / 250-390 - flush mounted

Legend

h_{nom} = Overall plastic anchor embedment depth in the base material


 h_1 = Depth of drilled hole to deepest point

h = Thickness of member (wall) $h_D = Thickness of insulation material$

t_{tol} = Thickness of equalizing layer or non-load bearing coating

WEBER. THERM TA7	Annex A1
Product description Installed anchor – flush-mounted	Aillex A1

¹⁾ Various length of the anchors are possible

e.g. for WEBER. THERM TA7 / 110-230:

110 mm $\geq L_a \leq$ 230 mm

 $L_a = L_n + 4 \text{ mm}$

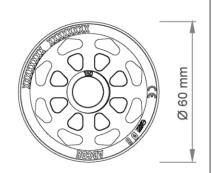
Determination of maximum thickness of insulation: $h_D = L_a - h_{nom} - t_{tol}$

e.g. for WEBER. THERM TA7 8x150: $L_a = 148 \text{ mm}, h_{nom} = 35 \text{ mm}, t_{tol} = 10 \text{ mm}$

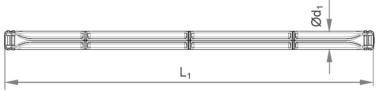
$$h_D = 148 - 35 - 10 \approx 100$$

Table A2.1: Dimensions

Anchor type	Anchor sleeve		Spec	cific compound	nail
	Ø d _d [mm]	h _{nom} [mm]	Ø d _n [mm]	L ₁ [mm]	Ø d₁ [mm]
WEBER. THERM TA7 / 110-230	8	35/55 ²⁾	4,5	40	8


²⁾ Only for use cat. E

WEBER. THERM TA7	
Product description Dimensions WEBER. THERM TA7 / 110-230	Annex A2


WEBER. THERM TA7 / 250 – 390

Marking: Brand, name and size of anchor, diameter, categories, optional markings see drawing of anchor plate, example e.g. WEBER. THERM TA7, ABCDE

Various lengths of the anchors are possible:

e.g. for WEBER. THERM TA7 / 250 - 390:

250 mm $\geq L_{a1} + L_{a2} \leq 390$ mm

 $L_a = L_{a1} + L_{a2} = L_n + 160,5 \text{ mm}$

Determination of maximum thickness of insulation: $h_D = L_a - h_{nom} - t_{tol}$

e.g. for WEBER. THERM TA7 8x330: $L_a = 328$ mm, $h_{nom} = 35$ mm, $t_{tol} = 10$ mm

 $h_D = 328 - 35 - 10 \approx 280 \text{ mm}$

Table A3.1: Dimensions

Anchor type	Shaft	Anchor sleeve			Nail	Plastic cylinder		
	L _{a1} [mm]	Ø d _d [mm]	h _{nom} [mm]	L _{a2} [mm]	Ø d _n [mm]	L _n [mm]	L ₁ [mm]	Ø d ₁ [mm]
WEBER. THERM TA7 / 250–390	161	8	35/55 ¹⁾	87 - 247	4,5	(L _{a1} +L _{a2}) – 160,5	157	8

1) Only for use cat. E

WEBER. THERM TA7

Product description

Dimensions WEBER. THERM TA7 / 250-390

Annex A3

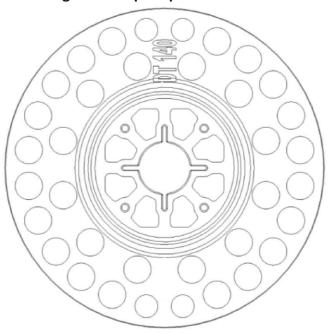

Z27138.18

Table A4.1: Material

Designation	Material
Anchor sleeve	PP (virgin material), colour: grey
Shaft WEBER. THERM TA7 / 250 - 390	PA6 (virgin material)GF, colour: grey
Plastic cylinder WEBER. THERM TA7 / 250 – 390	PA6 (virgin material) GF
Specific nail WEBER. THERM TA7 / 250 – 390	Steel gal Zn A2G or A2F according to EN ISO 4042 : 1999
Specific compound nail WEBER. THERM TA7 / 110 – 230	PA6 GF (plastic part of compound nail) Steel gal Zn A2G or A2F according to EN ISO 4042 : 1999
Anchor plate	PA6 (virgin material) GF colour: grey, orange, red, green, yellow, blue
Slip-on plate	PA6 (virgin material) GF colour: grey, orange, red, green, yellow, blue

Drawing of the slip-on plates

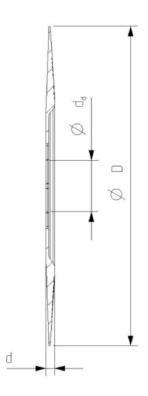


Table A4.2: Slip-on plate, diameters and material

Slip-on plate	Ø D [mm]	Ø d₀ [mm]	d [mm]	Material
DT 90 / 110 / 140	90 / 110 / 140	22,5	3,9	PA6 GF

WEBER. THERM TA7	
Product description	Annex A4
Material	
Slip-on plates combined with WEBER. THERM TA7	

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

 The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the external thermal insulation composite system (ETICS).

Base materials:

- Normal weight concrete (use category A), according to Annex C1.
- · Solid masonry (use category B), according to Annex C1.
- Hollow or perforated masonry (use category C), according to Annex C1.
- Lightweight aggregate concrete (use category D), according to Annex C1.
- · Autoclaved aerated concrete (use category E), according to Annex C1.
- For other base materials of the use categories A, B, C, D and E the characteristic resistance of the anchor may be determined by job site tests acc. to EOTA Technical Report TR 051 Edition December 2016.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$ in absence of other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchors is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of ETICS.

Installation:

electronic copy of the eta by dibt: eta-18/0094

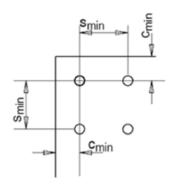
- Hole drilling by the drill modes according to Annex C1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks.

WEBER. THERM TA7

Intended use Specifications

Annex B1

Table B2.1: Installation parameters / flush mounted

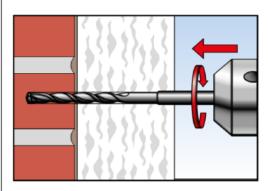

Anchor type				WEBER. THERM TA7
Drill hole diameter	d_0	=	[mm]	8
Cutting diameter of drill bit	d_cut	≤	[mm]	8,45
Depth of drilled hole to deepest point	h ₁	≥	[mm]	45/65 ¹⁾
Overall plastic anchor embedment depth in the base material	h _{nom}	2	[mm]	35/55 ¹⁾

¹⁾ Only for use cat. "E"

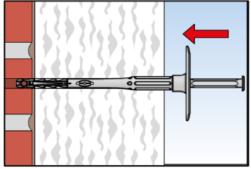
Table B2.2: Minimum distances and spacing

				WEBER. THERM TA7
Minimum thickness of member	\mathbf{h}_{min}	=	[mm]	100
Minimum spacing	S _{min}	=	[mm]	100
Minimum edge distance	c_{min}	=	[mm]	100

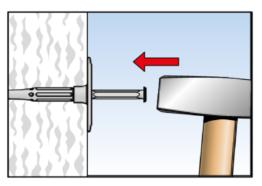
Scheme of distance and spacing

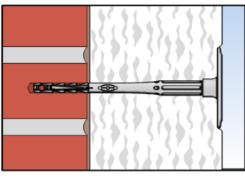


WEBER. THERM TA7	
Intended use	Annex B2
Installation parameters	
Minimum distances and spacing	



Installation instructions


Setting of anchor (flush mounted) by hammer / WEBER. THERM TA7


1.Drill hole by corresponding drilling method

2.Insert anchor manually

3.Set anchor by hammerblows

4. Correctly installed anchor

WEBER. THERM TA7

Annex B3

Intended use Installation instruction

electronic copy of the eta by dibt: eta-18/0094

Deutsches Institut für Bautechnik

English translation prepared by DIBt

Base material	Use cat.1)	Min. com- pressive strength f _b [N/mm ²]	Bulk density p [kg/dm³]	Remarks	Drill method 2)	Characteristic resistance N _{Rk} [kN]
Concrete ≥ C12/15 - C50/60 EN 206-1:2000	А	-	-	-	Н	0,9
Solid clay bricks Mz acc. to EN 771-1:2011	В	12	≥ 2,0		Н	0,9
Calcium silicate solid bricks KS e.g. acc. to EN 771-2:2011	В	12	≥ 1,8	Cross section reduced up to 15% by perforation	Н	0,9
Solid concrete blocks Vbn acc. to EN 771-3:2011	В	20	≥ 2,0	vertically to the resting area	Н	0,75
Lightweight concrete blocks Vbl acc. to EN 771-3:2011	В	8	≥ 1,4		Н	0,6
Vertically perforated clay bricks HIz acc. to EN 771-1:2011	С	12	≥ 1,0	Cross section reduced between 15% and 50% by perforation vertically to the resting area. Exterior web thickness ≥ 15 mm	R	0,6
Hollow calcium silicate brick KSL	С	20	≥ 1,4	Cross section reduced between 15% and 50% by perforation vertically to	Н	0,75
acc. to EN 771-2:2011		12	1,4	the resting area. Exterior web thickness ≥ 23 mm		0,5
Lightweight concrete hollow blocks HbI , acc. to EN 771-3:2011	С	10	≥ 1,2	Cross section reduced between 15% and 50% by perforation vertically to the resting area. Exterior web thickness ≥ 38 mm	Н	0,6
Lightweight aggregate concrete LAC, acc. to EN 1520:2011, EN	D	6 4	≥ 0,8	-	Н	0,6 0,4
771-3:2011 Autoclaved aerated concrete		6	> 0,6			0,33)
blocks, AAC acc. to EN 771-4:2011	E	4	> 0,4	_	R	0,33)

WEBER. THERM TA7	
Performance Characteristic resistance WEBER. THERM TA7	Annex C1

¹⁾ See Annex B1
2) R = Rotary drilling | H = Hammer drilling
3) Only valid for h_{nom} ≥ 55 mm

Table C2.1: Point thermal transmittance according to EOTA Technischer Report TR 025 : 2016 – 05

Anchor type	Thickness of insulation material h _D [mm]	Point thermal transmittance χ [W/K]
WEBER, THERM TA7 / 110-230	60 - 80	0,001
WEBER: ITIERIWI TAT / 110-230	> 80 - 180	0,000
WEBER. THERM TA7 / 250-350	200 - 300	0,000
WEBER. THERM TA7 / 370-390	> 300 - 340	0,001

Table C2.2: Plate stiffness according to EOTA Technischer Report TR 026: 2016 - 05

Anchor type	Size oft he anchor [mm]	Load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]
WEBER. THERM TA7	60	1,7	0,6

Table C2.3: Displacements WEBER. THERM TA7

Base material				
		Tension load F [kN]	Displacements δ [mm]	
Concrete ≥ C12/15 – C50/60 (EN 206-1:2000)		0,30	< 0,3	
Clay brick (EN 771-1:2011), Mz 12		0,30	< 0,5	
Calcium silicate solid brick (EN 771-2:2011), KS 12		0,30	< 0,3	
Vertically perforated clay brick (EN 771-1:2011), HIz 12		0,20	< 0,2	
Hollow calcium silicate brick (EN 771-2:2011), KSL 12		0,15	< 0,2	
Hollow calcium silicate brick (EN 771-2:2011), KSL 20		0,25	< 0,3	
Solid concrete blocks (EN 771-3:2011), Vbn 20		0,25	< 0,3	
Hollow brick lightweight concrete (EN 771-3:2011), Hbl 4		0,20	< 0,2	
Lightweight concrete solid block (EN 771-3:2011), Vbl 8		0,20	< 0,2	
Lightweight aggregate concrete	LAC 4	0,15	-03	
(EN 1520:2011, EN 771-3:2011)	LAC 6	0,20	< 0,3	
Autoclaved aerated concrete blocks	AAC 4	0,10	< 0,2	
EN 771-4:2011	AAC 6	0,13	< 0,3	

WEBER. THERM TA7	
Performance Point thermal transmittance, plate stiffness and	Annex C2
displacements	