

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0118 of 31 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Novatech Injection system Anchor for concrete

Bonded fastener for use in concrete

Novatech International nv Industrielaan 5b 2250 OLEN BELGIEN

Novatech Plant 1

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-18/0118

Page 2 of 25 | 31 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z34772.18 8.06.01-45/18

European Technical Assessment ETA-18/0118

Page 3 of 25 | 31 May 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Novatech Injection Anchor for concrete" is a bonded anchor consisting of a cartridge with injection mortar Anchor or Anchor Nordic and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z34772.18 8.06.01-45/18

European Technical Assessment ETA-18/0118

Page 4 of 25 | 31 May 2018

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

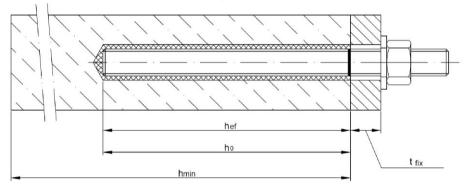
In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

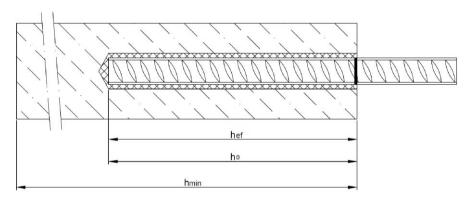
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

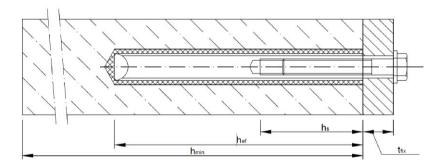
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 31 May 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider


Z34772.18 8.06.01-45/18


Installation threaded rod M8 up to M30

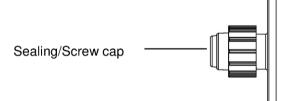
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

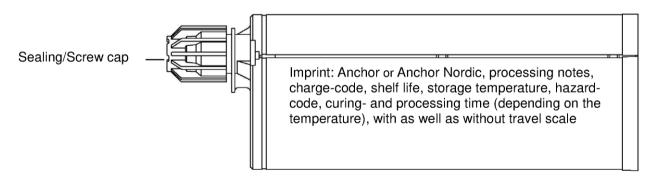
t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

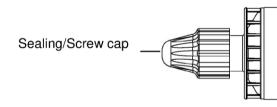
 $h_0 = depth of drill hole$


 h_{min} = minimum thickness of member

Novatech Injection system Anchor for concrete	
Product description Installed condition	Annex A 1

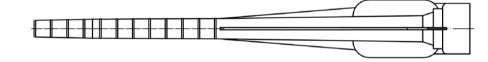

Cartridge: Anchor or Anchor Nordic

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

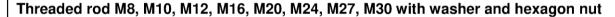


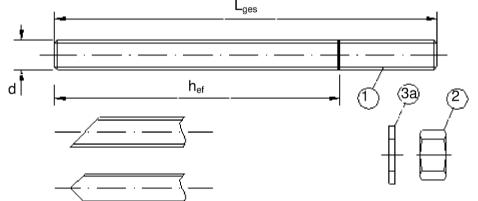
Imprint: Anchor or Anchor Nordic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

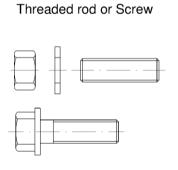


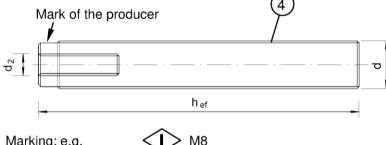
165 ml and 300 ml cartridge (Type: "foil tube")


Imprint: Anchor or Anchor Nordic, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale


Static Mixer

Novatech Injection system Anchor for concrete Product description Injection system Annex A 2

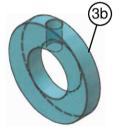


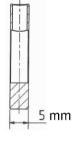


Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Internal Internal threaded anchor rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20


Marking: e.g.


Marking Internal thread Mark

M8 Thread size (Internal thread) A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Novatech Injection system Anchor for concrete

Product description

Threaded rod, internal threaded rod and filling washer

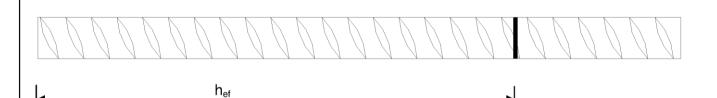
Annex A 3

Page 8 of European Technical Assessment ETA-18/0118 of 31 May 2018

English translation prepared by DIBt

	Designation	Material		
	l, zinc plated (Steel acc. to EN 10			
	plated ≥ 5 µm acc. to EN ISO 4042: SO 10684:2004+AC:2009 or sherar			40 μm acc. to EN ISO 1461:2009 and
. 1 1 1	SO 10084.2004+AC.2009 01 SHEIRIN		4.6	f_{uk} =400 N/mm ² ; f_{vk} =240 N/mm ² ; $A_5 > 8\%$ fracture elongation
				f_{uk} =400 N/mm ² ; f_{vk} =320 N/mm ² ; A_5 > 8% fracture elongation
4	Anaharrad	Property class	4.8	f_{uk} =500 N/mm ² ; f_{vk} =300 N/mm ² ; A_5 > 8% fracture elongation
1	Anchor rod	acc. to EN ISO 898-1:2013	5.6	f_{uk} =500 N/mm ² ; f_{vk} =400 N/mm ² ; A_5 > 8% fracture elongation
		214 100 000 1.2010	5.8	f_{uk} =800 N/mm ² ; f_{vk} =640 N/mm ² ; A_5 > 8% fracture elongation
			8.8	7 7 7
_	l	Property class	4	for anchor rod class 4.6 or 4.8
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for anchor rod class 5.6 or 5.8
		EN 150 898-2:2012	8	for anchor rod class 8.8
3а	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip gal	vanised or sherardized
3b	Filling washer			
	l	Property class	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod	acc. to EN ISO 898-1:2013	8.8	f_{uk} =800 N/mm ² ; f_{vk} =640 N/mm ² ; A_5 > 8% fracture elongation
Stai	ı nless steel A2 (Material 1.4301 / 1		oder 1	.4541. acc. to EN 10088-1:2014)
nd	(,
tai	nless steel A4 (Material 1.4401 / 1	.4404 / 1.4571 / 1.4362	or 1.45	578, acc. to EN 10088-1:2014)
		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod ¹⁾³⁾	acc. to	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; $A_5 > 8\%$ fracture elongation
		EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8\%$ fracture elongation
	410)	Property class	50	for anchor rod class 50
2	Hexagon nut 1)3)	acc. to	70	for anchor rod class 70
		EN ISO 3506-1:2009	80	for anchor rod class 80
3а	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)			/ 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014
3b	Filling washer ⁴⁾			_
4	Laterral three ded and a short and 1)2)	Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod 1)2)	acc. to EN ISO 3506-1:2009	70	$f_{uk}=700 \text{ N/mm}^2$; $f_{yk}=450 \text{ N/mm}^2$; $A_5 > 8\%$ fracture elongation
liak	ı ı corrosion resistance steel (Mate		acc to	
9.		Property class		f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
1	Anchor rod ¹⁾	acc. to	70	f_{uk} =700 N/mm²; f_{vk} =450 N/mm²; A_5 > 8% fracture elongation
•	/ monor rod	EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; $A_5 > 8\%$ fracture elongation
		Property class	50	for anchor rod class 50
2	Hexagon nut 1)	acc. to	70	for anchor rod class 70
		EN ISO 3506-1:2009	80	for anchor rod class 80
3а	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.45		c. to EN 10088-1: 2014
3b	Filling washer			
	lista was al Alawa si alia alia ana alia alia ana alia alia	Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; $A_5 > 8\%$ fracture elongation
4	Internal threaded anchor rod 1) 2)	acc. to EN ISO 3506-1:2009	70	$f_{uk}=700 \text{ N/mm}^2$; $f_{vk}=450 \text{ N/mm}^2$; $A_5 > 8\%$ fracture elongation
1)	Property class 70 for anchor rods up to		anchor	1 20
		wer and internal tilleaded	andito	Toda up to Tarivito,
2)	Property class 70 for anchor rods up to l for IG-M20 only property class 50 Property class 70 only for stainless stee	M24 and Internal threaded		

Novatech Injection system Anchor for concrete


Product description

Materials threaded rod and internal threaded rod

Annex A 4

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material		
Reinforcing bars				
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$		

Novatech Injection system Anchor for concrete

Product description Materials reinforcing bar Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The Anchorages are designed in accordance to:
 - FprEN 1992-4:2017 and Technical Report TR055

Installation:

electronic copy of the eta by dibt: eta-18/0118

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Novatech Injection system Anchor for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod											
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30		
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35		
Effective explores a depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120		
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33		
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37		
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200		
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30	0 mm ≥ 1	00 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150		

Table B2:	Installation	parameters	for	rebar
-----------	--------------	------------	-----	-------

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d_{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 [mm] =$	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	$h_{ef,max}$ [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing s _{min} [mm]		40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Internal diameter of anchor d ₂ [6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective affichorage depth	$h_{ef,max}$ [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Novatech Injection system Anchor for concrete	
Intended Use Installation parameters	Annex B 2

Table B4	l: Paraı	meter clea	ning and	setting	tools	3				
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA		$\begin{array}{c c} d_b & d_{b,min} \\ Brush - \varnothing & Brush - \varnothing \end{array}$		Piston plug	Installation direction and us		
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1	→	1
M8			10	RBT10	12	10,5	-	-	-	-
M10	8	IG-M6	12	RBT12	14	12,5	-	-	-	-
M12	10	IG-M8	14	RBT14	16	14,5	-	-	-	-
	12		16	RBT16	18	16,5	-	-	-	-
M16	14	IG-M10	18	RBT18		18,5	VS18			
	16		20	RBT20		20,5	VS20			
M20	20	IG-M12	24	RBT24		24,5	VS24	h _{ef} >	h _{ef} >	
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm		all

32

35

40

RBT32

RBT35

RBT40 41,5

34

37

32,5

35,5

40,5

25

28

32

IG-M20

M27

M30

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm
Drill hole depth (h₀): < 10 d_{nom}
Only in non-cracked concrete

VS32

VS35

VS40

250 mm

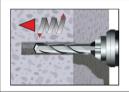
250 mm

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

Drill bit diameter (d₀): 18 mm to 40 mm

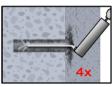
Steel brush RBT


Drill bit diameter (d₀): all diameters

Novatech Injection system Anchor for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

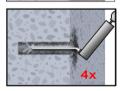
Drilling of the bore hole



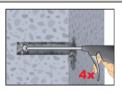
1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

In case of aborted drill hole: the drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump 1) (Annex B 3) a minimum of four times.



2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times.
If the bore hole ground is not reached with the brush, a brush extension must be used.

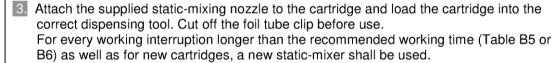
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

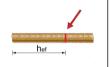
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

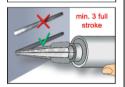
Novatech Injection system Anchor for concrete

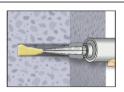
Intended Use

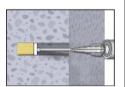
Installation instructions

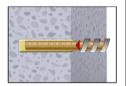

Annex B 4


¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

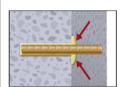

Installation instructions (continuation)




4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

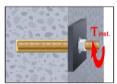

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5 or B6.



- 7. Piston Plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5 or B6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Novatech Injection system Anchor for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Maximum Working time and minimum curing time
	Anchor

Concre	te tem _l	perature	Gelling- / working time	Minimum curing time in dry concrete 1)		
0 °C	to	+4°C	45 min	7 h		
+5 °C	to	+9°C	25 min	2 h		
+ 10 °C	to	+19°C	15 min	80 min		
+ 20 °C	to	+29°C	6 min	45 min		
+ 30 °C	to	+34°C	4 min	25 min		
+ 35 °C	to	+39°C	2 min	20 min		
	+40°C		1,5 min 15 min			
Cartrido	ge tem	perature	re +5°C to +40°C			

¹⁾ In wet concrete the curing time must be doubled.

Table B6: Maximum Working time and minimum curing time Anchor Nordic

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete 1)		
0 °C to +4°C	10 min	2,5 h		
+5 °C to +9°C	6 min	80 Min		
+ 10 °C	+ 10 °C 6 min			
Cartridge temperature	-20°C to	+10°C		

¹⁾ In wet concrete the curing time must be doubled.

Novatech Injection system Anchor for concrete	
Intended Use Curing time	Annex B 6

Size				М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic tension resistance, Steel failure							<u> </u>		l	
Steel,	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel,								230	280		
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Stainl	ess steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	28
Stainl	ess steel A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Stainl	ess steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Chara	acteristic tension resistance, Partial factor		_		•						
Steel,	Property class 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Steel,	Property class 4.8	γMs,N 1)	[-]				1	,5			
Steel,	Property class 5.6	γMs,N 1)	[-]				2	,0			
Steel,	Property class 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Steel,	Property class 8.8	γ _{Ms,N} 1)	[-]				1	,5			
Stainl	ess steel A2, A4 and HCR, Property class 50	γMs,N 1)	[-]				2,	86			
Stainl	ess steel A2, A4 and HCR, Property class 70	γMs,N 1)	[-]				1,	87			
Stainl	ess steel A4 and HCR, Property class 80	γ _{Ms,N} 1)	[-]				1	,6			
Chara	acteristic shear resistance, Steel failure	•	•								
	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9	14	20	38	59	85	110	13
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without lever	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
out le	Stainless steel A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Vitho	Stainless steel A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
>	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
E	Steel, Property class 5.6 and 5.8	M ^o _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112
lever arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179
h lev	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	112
With	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
Chara	acteristic shear resistance, Partial factor										
Steel,	Property class 4.6	γ _{Ms,V} 1)	[-]				1,	67			
Steel,	Property class 4.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 5.6	γMs,V 1)	[-]				1,	67			
Steel,	Property class 5.8	γ _{Ms,V} 1)	[-]				1,	25			
Steel,	Property class 8.8	γMs,V 1)	[-]								
Stainl	Stainless steel A2, A4 and HCR, Property class 50 $\gamma_{\text{Ms,V}}^{\text{1}}$ [-] 2,38										
Stainless steel A2, A4 and HCR, Property class 70 $\gamma_{Ms,V}^{1)}$ [-] 1,56											
Stainl	ess steel A4 and HCR, Property class 80	γ _{Ms,V} 1)	[-]				1,	33			
Jiaiiii	1) in absence of national regulation	γMs,V	1 1-1				1,				

rods

Characteristic values for steel tension resistance and steel shear resistance of threaded

8.06.01-45/18

Annex C 1

Performances

electronic copy of the eta by dibt: eta-18/0118

English translation prepared by DIBt

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	esistance	$N_{Rk,s}$	[kN]	see Table C1							
Onaracteristic terision re	SSISTATION	N _{Rk,s, eq}	[kN]				1,0 •	$N_{Rk,s}$			
Partial factor		γMs,N	[-]				see Ta	ıble C1			
Combined pull-out and	d concrete failure										
Characteristic bond resi	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	0°C/24°C flooded bore hole		[N/mm ²]	7,5	8,5	8,5	8,5	No Perf	ormance	Determine	d (NPE
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5			Determine	_`
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	No Perf	ormance	Determine	d (NPE
Characteristic bond resi	stance in cracked concre	te C20/25	T		1						
	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	•	$ au_{Rk,eq}$	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5 3,7			Determine	
		τ _{Rk,eq}	[N/mm²]	2,5	2,5	3,7	-,-			Determine	_ `
Tanan anatuna namaa II.	dry and wet concrete	T _{Rk,cr}	[N/mm ²]	2,5 1,6	3,5 2,2	4,0 2,7	4,0 2,7	4,0 2,7	4,0 2,8	4,5 3,1	3,1
Temperature range II: 80°C/50°C		τ _{Rk,eq}	[N/mm²]	2,5	3.0	4,0	4,0			Determine	
	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	1,6	1,9	2,7	2,7			Determine	,
		τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:	dry and wet concrete	τ _{Rk,eq}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C		τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0			Determine	
	flooded bore hole	$ au_{Rk,eq}$	[N/mm²]	1,3	1,6	2,0	2,0	No Perf	ormance	Determine	d (NPI
		C25/30	0				1,	02			
		C30/3	1,04								
Increasing factors for co (only static or quasi-stat		C35/4	1,07								
Ψ_{c}	io delicito)	C40/50						08			
		C45/55				1,09					
		C50/60	0				1,	10			
Concrete cone failure		1.		1							
Non-cracked concrete		k _{ucr,N}	[-]				11	1,0			
Cracked concrete		k _{cr,N}	[-]				7	,7			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr,N}	[mm]	2 C _{Cr,N}							
Splitting		5,,		1							
- р	h/h _{ef} ≥ 2,0						1.0	h _{ef}			
	11/11 _{ef} = 2,0						1,0	' Hef			
Edge distance	2,0> h/h _{ef} > 1,3		[mm]		$5-\frac{h}{}$	h					
Edge distance	2,0>11/11 _{ef} > 1,3	C _{cr,sp}	[mm]			•	$2 \cdot h_{ef} \left[2 \right]$	$-\frac{1}{h_{ef}}$)		
	h/h _{ef} ≤ 1,3	1					2 /				
	11/11ef = 1,5				2,4 h						
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp			
Installation factor (dry and wet concrete)		γinst	[-]	1,0				1,2			
Installation factor (flooded bore hole)					1,4 No Performance Determi			Determine	d (ND		
motanation factor (11000)	ed Dole Hole)	γinst	[-]			,-+		No Pen	omance	Defermine	iu (INPL
Novatech Inject	ion system Anch	or for concr	ete								
								-	۸nn	ex C	2
Performances											_

Table C3: Characteristic values seismic action (pe					tatic,	quasi-	static	actior	n and	
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure without lever arm										
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]				see Ta	ıble C1			
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]				0,70	V ⁰ _{Rk,s}			
Partial factor	γMs,V	[-]				see Ta	ible C1			
Ductility factor	k ₇	[-]				1	,0			
Steel failure with lever arm	•	•	•							
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	see Table C1							
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]	No Performance Determined (NPD)							
Partial factor	γ _{Ms,V}	[-]				see Ta	ıble C1			
Concrete pry-out failure										
Factor	k ₈	[-]				2	,0			
Installation factor	γinst	[-]				1	,0			
Concrete edge failure	•									
Effective length of fastener	I _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$							
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27 30						30	
Installation factor	γinst	[-]	1,0							
Factor for annular gap	α_{gap}	[-]	0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Novatech Injection system Anchor for concrete	
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	Annex C 3

Characteristic tension resistance, Nix.s [sN] 10 17 29 42 76 123	Anchor size internal th	readed anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel, strength class 5.8	Steel failure1)										
Characteristic tension resistance, Steel, strength class 8.8 N _{RAS} [kN] 16 27 46 67 121 196			N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class 8.8 New New Interest New New Interest New New Interest New New Interest	Partial factor		γMs,N	[-]			1	,5			
Steel, strength class 8.8			Neks	[kN]	16	27	46	67	121	196	
Characteristic tension resistance Ninus [kN] 14 26 41 59 110 124	•			L							
Stainless Steel A4, Strength class 70 Nacs (PN 14 26 41 59 110 124 128 128 13		nistanas	γMs,N	[-]		I	1	,5			
Partial factor			$N_{Rk,s}$	[kN]	14	26	41	59	110	124	
Combined pull-out and concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25		9	γMs,N	[-]			1,87			2,86	
Temperature range 1	Combined pull-out and	l concrete cone failure									
40°C/24°C flooded bore hole τηκωσ κηνειστατικές τηνειστατικές τη	Characteristic bond resis	stance in non-cracked concr	ete C20/25								
40°C/24°C flooded bore hole Trikuer (N/mm²) 8,5 8,5 8,5 No Performance Determined (NPI Temperature range II: dry and wet concrete Trikuer (N/mm²) 9 9 9 9 8,5 6,	Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	12	12	12	12	11	9	
80°C/50°C flooded bore hole Tributer		·		[N/mm²]	8,5	8,5	8,5	No Perforn	nance Determ	ined (NPD)	
80°C/50°C flooded bore hole tributor	Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	9	9	9	9	8,5	6,5	
		flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	No Perforn	nance Determ	ined (NPD)	
	Temperature range III:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120°C/72°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0	No Perforn	nance Determ	ined (NPD)	
	Characteristic bond resis	stance in cracked concrete C	20/25								
Temperature range II 80°C/50°C Trackor Tracko		dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5	
80°C/50°C flooded bore hole Trillic T	40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	5,5	5,5	No Perforn	nance Determ	ined (NPD)	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80°C/50°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	3,0	4,0	4,0	No Perforn	nance Determ	ined (NPD)	
$\begin{tabular}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5	
$\begin{tabular}{ c c c c c } \hline Local Mathematical Mathe$	120°C/72°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	2,5 3,0 3,0 No Performance Determined (N						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C2	25/30			1,	02			
$ \begin{tabular}{ c c c c } \hline V_C \\ $			C	30/37			1,	04			
	Increasing factors for co	ncrete	C	35/45	1,07						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ψ_{c}		C4	10/50	·						
			C4	15/55	1,09						
$\begin{tabular}{c ccccccccccccccccccccccccccccccccccc$			C	50/60			1,	10			
								<u>, </u>			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cracked concrete		k _{cr,N}	[-]							
			C _{cr,N}	[mm]							
Edge distance $\begin{bmatrix} h/h_{ef} \geq 2,0 \\ 2,0 > h/h_{ef} > 1,3 \\ h/h_{ef} \leq 1,3 \end{bmatrix} \underbrace{ \begin{bmatrix} c_{cr,sp} \\ c_{cr,sp} \end{bmatrix}}_{[mm]} \underbrace{ \begin{bmatrix} 1,0 \ h_{ef} \\ 2.5 - \frac{h}{h_{ef}} \end{bmatrix}}_{2,4 \ h_{ef}} \underbrace{ \begin{bmatrix} 2,4 \ h_{ef} \end{bmatrix}}_{2,4 \ h_{ef}} \underbrace{ \begin{bmatrix} $			S _{cr,N}	[mm]			2 (cr,N			
Edge distance	Splitting failure										
		h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation factor (dry and wet concrete) γ_{inst} [-] 1,2	Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]		$2 \cdot h_{\scriptscriptstyle e\!f} \Biggl(2,\! 5 - rac{h}{h_{\scriptscriptstyle e\!f}} \Biggr)$					
Installation factor (dry and wet concrete) γ_{inst} [-] 1,2	h/h _{ef} ≤ 1,3				2,4 h _{ef}						
Installation factor (dry and wet concrete) Yinst [-] 1,2	Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp			
	Installation factor (dry ar	nd wet concrete)	γinst	[-]							
	Installation factor (floods	ed bore hole)	Yinst	[-]		1,4					

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

For IG-M20 strength class 50 is valid

Novatech Injection system Anchor for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

Installation factor

1,0

Anchor size for internal threaded anch	or rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure without lever arm ¹⁾									
Characteristic shear resistance, Steel, strength class 5.8	$V^0_{\text{Rk,s}}$	[kN]	5	9	15	21	38	61	
Partial factor	γMs,V	[-]			1,	25			
Characteristic shear resistance, Steel, strength class 8.8	$V^0_{\text{Rk,s}}$	[kN]	8	14	23	34	60	98	
Partial factor	γMs,V	[-]			1,	25			
Characteristic shear resistance, Stainless Steel A4, Strength class 70 ²⁾	$V^0_{Rk,s}$	[kN]	7	13	20	30	55	40	
Partial factor	γMs,V	[-]			1,56			2,38	
Ductility factor	k ₇	[-]			1	,0			
Steel failure with lever arm ¹⁾									
Characteristic bending moment, Steel, strength class 5.8	$M^0_{Rk,s}$	[Nm]	8	19	37	66	167	325	
Partial factor	γMs,V	[-]			1,	25			
Characteristic bending moment, Steel, strength class 8.8	M ^o _{Rk,s}	[Nm]	12	30	60	105	267	519	
Partial factor	γMs,V	[-]			1,	25			
Characteristic bending moment, Stainless Steel A4, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Partial factor	γMs,V	[-]			1,56			2,38	
Concrete pry-out failure									
Factor	k ₈	[-]			2	2,0			
Installation factor	γinst	[-]	1,0						
Concrete edge failure									
Effective length of fastener	l _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$						
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30	
					·	•			

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

[-]

Novatech Injection system Anchor for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

For IG-M20 strength class 50 is valid

electronic copy of the eta by dibt: eta-18/0118

Performances

Anchor size reinforcin	g bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension re	eietanee		$N_{Rk,s}$	[kN]					$A_s \cdot f_{uk}^{-1}$				
Onaracteristic terision re	sistance		$N_{Rk,s, eq}$	[kN]				1,0	0 ⋅ A _s ⋅ f	uk			
Cross section area			A_s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor			γMs,N	[-]					1,4 ²⁾				
Combined pull-out and	d concrete fa	ilure											
Characteristic bond resi	stance in non	-cracked co	oncrete C20	25									
Temperature range I:	dry and wet	concrete	$ au_{Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore	e hole	$\tau_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5			Determine	d (NPD
Temperature range II:	dry and wet		$ au_{ m Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore		$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5			Determine	
Temperature range III:	dry and wet		$ au_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore		$ au_{ m Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0	No Perf	ormance I	Determine	d (NPD
Characteristic bond resi	stance in cra	cked concre		TN1/ CT	4.6	F.5							
_	dry and wet	concrete	$ au_{Rk,cr}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I: 40°C/24°C			$ au_{Rk,eq}$	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40 0/24 0	flooded bore	e hole	$ au_{Rk,cr}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5			Determine	
			$ au_{Rk,eq}$	[N/mm²]	2,5	2,5	3,7	3,7	3,7			Determine	<u> </u>
-	dry and wet	concrete	τ _{Rk,cr}	[N/mm²]	2,5 1,6	3,5 2,2	4,0 2,7	4,0 2,7	4,0 2,7	4,0 2.7	4,0 2,8	4,5 3.1	4,5 3.1
Temperature range II: 80°C/50°C			$ au_{ m Rk,eq}$	[N/mm ²] [N/mm ²]	2.5	3.0	4,0	4,0	4.0	,-	,	Determine	-, -
00 0/00 0	flooded bore	flooded bore hole $\frac{ au_{ m Rk,cr}}{ au_{ m Rk,eq}}$		[N/mm²]	1,6	1,9	2,7	2,7	2,7			Determine	
				[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:	dry and wet concrete		τ _{Rk,cr}	[N/mm²]	1,3	1,6	2,0	2.0	2,0	2.0	2.1	2,4	2.4
120°C/72°C			τ _{Rk,eq}	[N/mm²]	2,0	2,5	3.0	3,0	3,0	,-	,	Determine	,
	flooded bore	e hole	τ _{Rk,eq}	[N/mm²]	1,3	1,6	2,0	2,0	2,0			Determine	`
			C25		.,.	1,0	_,0	_,0	1,02	1101011		- 0101111110	
			C30						1,04				
Increasing factors for co			C35	5/45					1,07				
(only static or quasi-stat Ψc	ic actions)		C40)/50					1,08				
Ψ¢			C45	5/55					1,09				
			C50)/60					1,10				
Concrete cone failure													
Non-cracked concrete			k _{ucr,N}	[-]					11,0				
Cracked concrete			k _{cr,N}	[-]					7,7				
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance			S _{cr,N}	[mm]					2 c _{cr,N}				
Splitting			Ocr,N	[]					Z Ocr,N				
Spirtting	h/h > 0.0								106				
	h/h _{ef} ≥ 2,0		4						1,0 h _{ef}				
Edge distance	[mm]				$2 \cdot h_{\epsilon}$	$_{ef}$ $\left(2,5-\right)$	$\left(\frac{h}{h_{ef}}\right)$						
	h/h _{ef} ≤ 1,3		1						2,4 h _{ef}	• /			
Axial distance	1.2.161 = 1,0		6	[mm]									
		4-1	S _{cr,sp}	[mm]	4.0				2 C _{cr,sp}	^			
Installation factor (dry a		eie)	γinst	[-]	1,0		4.4		1	,2 No Dort		Data was to	4 (NIDD
Installation factor (flood			γinst	[-]			1,4			No Perf	ormance I	Determine	a (NPD

Z34805.18 8.06.01-45/18

Annex C 6

Novatech Injection system Anchor for concrete

seismic action (performance category C1)

Characteristic values of tension loads under static, quasi-static action and

Table C7: Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)												
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]	0,50 • A _s • f _{uk} ¹⁾									
Ondiaciensiic shear resistance	V _{Rk,s, eq}	[kN]				0,3	85 • A _s •	f _{uk} 1)				
Cross section area	As	[mm²]	50	79	113	154	201	214	491	616	804	
Partial factor	γMs,V	[-]					1,5 ²⁾				•	
Ductility factor	k ₇	[-]					1,0					
Steel failure with lever arm												
Characteristic handing manage	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾									
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]	No Performance Determined (NPD)									
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial factor	γMs,V	[-]					1,5 ²⁾					
Concrete pry-out failure	•											
Factor	k ₈	[-]					2,0					
Installation factor	γinst	[-]					1,0					
Concrete edge failure												
Effective length of fastener	If	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$									
Outside diameter of fastener	d _{nom}	[mm]] 8 10 12 14 16 20 25 28 32						32			
Installation factor	γinst	[-]	1,0									
Factor for annular gap	α_{gap}	[-]				(0,5 (1,0)	1)				

 $[\]frac{1}{f_{uk}}$ shall be taken from the specifications of reinforcing bars in absence of national regulation

electronic copy of the eta by dibt: eta-18/0118

Novatech Injection system Anchor for concrete Annex C 7 **Performances** Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

⁽³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C8: Di	splaceme	nts under tensio	n load ¹⁾	(threa	aded ro	od)				
Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Non-cracked conc	rete C20/25					•				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70		
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170					
80°C/50°C				255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70		
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Displacements under shear load¹⁾ (threaded rod) Table C9:

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
For non-cracked concrete C20/25										
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}\text{-}factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked concr	For cracked concrete C20/25									
All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V_\infty}\text{-factor}$	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \quad V; \end{split}$$
V: action shear load

Novatech Injection system Anchor for concrete	
Performances	Annex C 8
Displacements (threaded rods)	

Deutsches Institut für Bautechnik

Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25			-						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070			
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,1	05				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
80°C/50°C			0,2	255				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
120°C/72°C	Temperature range in:				0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C11: Displacement under shear load 1) (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25											
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	Cracked concrete C20/25										
All temperature	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

 $[\]begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0}\mbox{-factor} \ \cdot \mbox{ V}; \\ \delta_{V\infty} = \delta_{V\infty}\mbox{-factor} \ \cdot \mbox{ V}; \end{array}$

V: action shear load

Novatech Injection system Anchor for concrete	
Performances	Annex C 9
Displacements (rebar)	

Table C12: Dis	splacements	s under tension	load ¹⁾ (lı	nternal t	hreaded	anchor	rod)			
Anchor size Interna	al threaded an	chor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Non-cracked concret	e C20/25 under	static and quasi-stati	c action		•					
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Cracked concrete C2	0/25 under stati	c and quasi-static ac	tion							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,090			0,070				
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,105			0,105				
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,219			0,170				
80°C/50°C $\delta_{N_{\infty}}$ -factor [mm/(N/mm ²)			0,255	0,245						
Temperature range III: δ_{N0} -factor [mm/(N/mm ²)]		[mm/(N/mm²)]	0,219			0,170				
120°C/72°C	[mm/(N/mm²)]	0,255			0,245					

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \tau;$

Table C13: Displacements under shear load (Internal threaded anchor rod)

Anchor size Internal threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked an	der static a	nd quasi-s	tatic action	1				
All temperature	δ_{V0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	δ _{V∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-factor} \quad V;$

Novatech Injection system Anchor for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10