

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-18/0278 vom 12. Juli 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

PROFAST Injektionssystem V-PRO 200 für Beton

Verbunddübel zur Verankerung in Beton

PROFAST Ankersysteme B.V.B.A. PO Box 27 3900 OVERPELT BELGIEN

PROFAST Ankersystemen B.V.B.A. - Manufacturing plant 5

24 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-00-0601

Europäische Technische Bewertung ETA-18/0278

Seite 2 von 24 | 12. Juli 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z44413.18 8.06.01-127/18

Europäische Technische Bewertung ETA-18/0278

Seite 3 von 24 | 12. Juli 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "PROFAST Injektionssystem V-PRO 200 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel V-PRO 200 und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen Ø8 bis Ø32 mm oder einer Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 2, C 4 und C 6
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 3, C 5 und C 7
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 8 bis C 10
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2	Siehe Anhang C 2. C 3, C 6, C 7, C 8 und C 9

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z44413.18 8.06.01-127/18

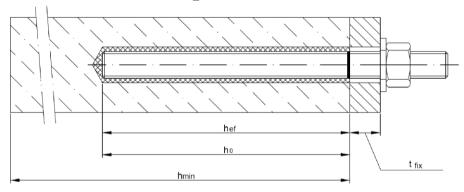
Europäische Technische Bewertung ETA-18/0278

Seite 4 von 24 | 12. Juli 2018

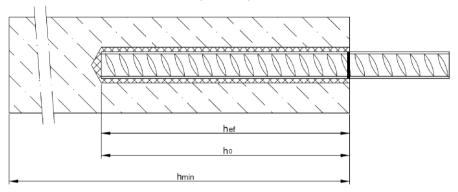
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

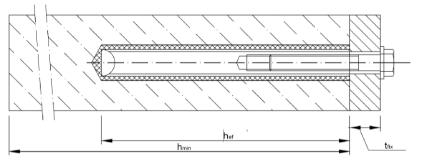
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 12. Juli 2018 vom Deutschen Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt


Z44413.18 8.06.01-127/18


Einbauzustand Ankerstange M8 bis M30

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindestange IS-M6 bis IS-M20

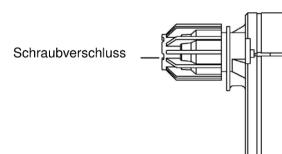
 t_{fix} = Dicke des Anbauteils

h_{ef} = effektive Setztiefe

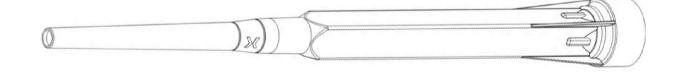
 $h_0 = Bohrlochtiefe$

h_{min} = Mindestbauteildicke

PROFAST Injektionssystem V-PRO 200 für Beton Produktbeschreibung Einbauzustand Anhang A 1


Kartusche: V-PRO 200

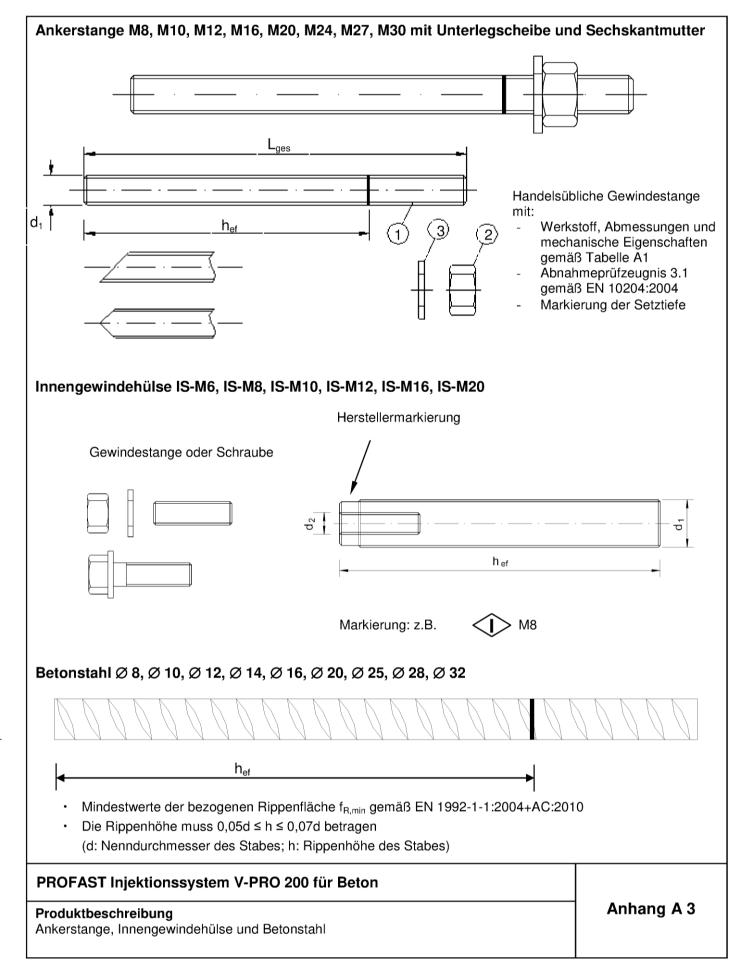
150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml Kartusche (Typ: Koaxial)


Aufdruck: V-PRO 200, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

235 ml, 345 ml bis 360 ml und 825 ml Kartusche (Typ: "side-by-side")

Aufdruck: V-PRO 200, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

Statikmischer


PROFAST Injektionssystem V-PRO 200 für Beton

Produktbeschreibung

Injektionssystem

Anhang A 2

Benennung	Werkstoff					
Stahlteile, galvanisch verzinkt ≥ 5 μm gemäß E	N ISO 4042:1999 oder					
feuerverzinkt ≥ 40 μm gemäß EN ISO 1461:2009	-					
Ankerstange	Stahl gemäß EN 10087:1998 oder EN 1 Festigkeitsklasse 4.6, 4.8, 5.6, 5.8, 8.8 g EN 1993-1-8:2005+AC:2009					
Sechskantmutter, EN ISO 4032:2012	A ₅ > 12% Bruchdehnung Stahl gemäß EN 10087:1998 oder EN 1 Festigkeitsklasse 4 (für Ankerstangen de Festigkeitsklasse 5 (für Ankerstangen de Festigkeitsklasse 8 (für Ankerstangen de gemäß EN ISO 898-2:2012	er Klasse 4.6 oder 4.8) er Klasse 5.6 oder 5.8)				
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Stahl, galvanisch verzinkt oder feuerverz	zinkt				
Innengewindehülse	Stahl, galvanisch verzinkt Festigkeitsklasse 5.6, 5.8 und 8.8 gem.	EN ISO 898-1:2013				
Stahlteile aus nichtrostendem Stahl						
Ankerstange	Werkstoff 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, Festigkeitsklasse 50 EN ISO 3506-1:2009 Festigkeitsklasse 70 (\leq M24) EN ISO 3506-1:2009 A ₅ > 12% Bruchdehnung					
Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4401 / 1.4404 / 1.4571 EN 10088-1:2005, Festigkeitsklasse 50 (für Ankerstangen der Klasse 50) Festigkeitsklasse 70 (≤ M24) (für Ankerstangen der Klasse 70) gemäß EN ISO 3506-2:2009					
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4401, 1.4404 oder 1.4571 gemäß EN 10088-1:2005					
Innengewindehülse	Material 1.4401 / 1.4404 / 1.4571 EN 10 Festigkeitsklasse 70 (für Ankerstange d EN ISO 3506-1:2009					
Stahlteile aus hochkorrosionsbeständigem Sta	hl					
Ankerstange	Werkstoff 1.4529 / 1.4565, EN 10088-1:: Festigkeitsklasse 50 EN ISO 3506-1:200 Festigkeitsklasse 70 (\leq M24) EN ISO 35 A ₅ > 12% Bruchdehnung Werkstoff 1.4529 / 1.4565 EN 10088-1:2	09 06-1:2009				
Sechskantmutter, EN ISO 4032:2012	Festigkeitsklasse 50 (für Ankerstangen of Festigkeitsklasse 70 (≤ M24) (für Ankerstangen of Gemäß EN ISO 3506-2:2009	der Klasse 50)				
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4529 / 1.4565 gemäß EN 10	0088-1:2005				
Innengewindehülse	Material 1.4529 / 1.4565, EN 10088-1:20 Festigkeitsklasse 70 (für Ankerstange d EN ISO 3506-1:2009					
Betonstahl						
Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klas f_{yk} und k gemäß NDP oder NCL gemäß $f_{uk} = f_{tk} = k \cdot f_{yk}$					
PROFAST Injektionssystem V-PRO 200 fü	r Beton					
Produktbeschreibung Werkstoffe		Anhang A 4				

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: M8 bis M30, Betonstahl Ø8 bis Ø32, IS-M6 bis IS-M20.
- Seismische Einwirkung für Anforderungsstufe C1: M8 bis M30 (außer feuerverzinkte Gewindestangen), Betonstahl Ø8 bis Ø32.
- Seismische Einwirkung für Anforderungsstufe C2: M12 (außer feuerverzinkte Gewindestangen)

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013.
- Ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IS-M6 bis IS-M20.
- Gerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IS-M6 bis IS-M20.

Temperaturbereich:

- I: 40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)
 II: 40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C)
- III: 40 °C bis +160 °C (max. Langzeit-Temperatur +100 °C und max. Kurzzeit-Temperatur +160 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen und guasi-statischen Lasten erfolgt nach:
 - FprEN 1992-4:2017 und Technical Report TR 055

Einbau:

- Trockener oder nasser Beton.
- Bohrlochherstellung durch Hammer- oder Pressluftbohren.
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Schrauben und Gewindestangen (inkl. Mutter und Unterlegscheibe) müssen dem Material und der Festigkeitsklasse der Innengewindehülse entsprechen.

PROFAST Injektionssystem V-PRO 200 für Beton	
Verwendungszweck Spezifikationen	Anhang B 1
Spezilikationen	

Z45924.18 8 06 01-127/18

Tabelle B1: Montagekennwerte für Gewindestangen										
Dübelgröße		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Durchmesser Gewindestange	$d_1 = d_{nom} [mm] =$	8	10	12	16	20	24	27	30	
Bohrernenndurchmesser	$d_0 [mm] =$	10	12	14	18	22	28	30	35	
Effective Management of	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effektive Verankerungstiefe	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600	
Durchgangsloch im anzuschließenden Bauteil 1)	d _f [mm] =	9	12	14	18	22	26	30	33	
Drehmoment	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300	
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀			
minimaler Achsabstand	s _{min} [mm]	40	50	60	75	95	115	125	140	
minimaler Randabstand	c _{min} [mm]	35	40	45	50	60	65	75	80	

für Anwendungen unter Seismischer Einwirkung darf das Durchgangsloch im Anbauteil maximal d₁ + 1mm betragen oder alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil mit Mörtel kraftschlüssig zu verfüllen.

Tabelle B2: Montagekennwerte für Betonstahl

Größe Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom} [mm] =$	8	10	12	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀ [mm] =	12	14	16	18	20	25	32	35	40
Effektive	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Verankerungstiefe	h _{ef,max} [mm] =	160	200	240	280	320	400	500	560	640
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 3 ≥ 100					h _{ef} + 2d ₀)		
minimaler Achsabstand	s _{min} [mm]	40	50	60	70	75	95	120	130	150
minimaler Randabstand	c _{min} [mm]	35	40	45	50	50	60	70	75	85

Tabelle B3: Montagekennwerte für Innengewindehülsen

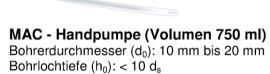
Größe Innengewindehülse		IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20
Innendurchmesser der Hülse	d ₂ [mm] =	6	8	10	12	16	20
Außendurchmesser der Hülse 2)	$d_1 = d_{nom} [mm] =$	10	12	16	20	24	30
Bohrernenndurchmesser	$d_0 [mm] =$	12	14	18	22	28	35
Effektive Verankerungstiefe	h _{ef,min} [mm] =	60	70	80	90	96	120
Ellektive veralikerungstiele	h _{ef,max} [mm] =	200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f [mm] =	7	9	12	14	18	22
Drehmoment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Einschraublänge Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min} [mm]		30 mm 0 mm h _{ef} + 2d ₀				
minimaler Achsabstand	s _{min} [mm]	50	60	75	95	115	140
minimaler Randabstand	c _{min} [mm]	40	45	50	60	65	80

²⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

PROFAST Injektionssystem V-PRO 200 für Beton	
Verwendungszweck Montagekennwerte	Anhang B 2

²⁾ Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B4: Parameter für Reinigungs- und Setzzubehör



-	1960																
Gewinde- stangen	Betonstahl	Innen- gewinde- hülse	d₀ Bohrer - Ø	1	iveston (2) min. vertuil-		Installationsrichtur Anwendung vo Verfüllstutzer		von								
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1	-	1							
M8			10	RB10	11,5	10,5	-	-	-	-							
M10	8	IS-M6	12	RB12	13,5	12,5	-	-	-	-							
M12	10	IS-M8	14	RB14	15,5	14,5	-	-	-	-							
	12		16	RB16	17,5	16,5	-	-	-	-							
M16	14	IS-M10	18	RB18	20,0	18,5	IP18		-								
	16		20	RB20	22,0	20,5	IP20]			
M20		IS-M12	22	RB22	24,0	22,5	IP22										
	20		25	RB25	27,0	25,5	IP25	h >	h >								
M24		IS-M16	28	RB28	30,0	28,5	IP28	h _{ef} >	h _{ef} >	all							
M27			30	RB30	31,8	30,5	IP30	250 mm	250 mm								
	25		32	RB32	34,0	32,5	IP32										
M30	28	IS-M20	35	RB35	37,0	35,5	IP35										
	32		40	RB40	43,5	40,5	IP40										

CAC - Empfohlene Druckluftpistole (min 6 bar) Bohrerdurchmesser (d₀): alle Durchmesser

Nur im ungerissenen Beton

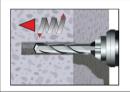
Bohrerdurchmesser (d₀): 18 mm bis 40 mm

Stahlbürste RB

Bohrerdurchmesser (d₀): alle Durchmesser

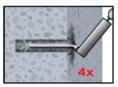
PROFAST Injektionssystem V-PRO 200 für Beton

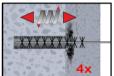
Verwendungszweck


Reinigungs- und Installationszubehör

Anhang B 3

Setzanweisung


Bohrloch erstellen

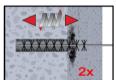

1. Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

MAC: Reinigung für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_s$ (nur ungerissenere Beton!)

2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 3) ausblasen.

2b. Bürstendurchmesser prüfen (Tabelle B4). Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) 4x ausbürsten. Bei tiefen Bohrlöchern Bürstenverlängerung benutzen.



2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 3) ausblasen.

CAC: Reinigung für alle Bohrlochdurchmesser in gerissenem und ungerissenem Beton

2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

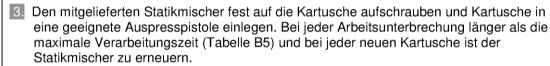
2b. Bürstendurchmesser prüfen (Tabelle B4). Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) 2x ausbürsten. Bei tiefen Bohrlöchern geeignete Bürstenverlängerung benutzen.

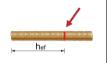
2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

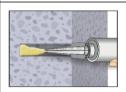
PROFAST Injektionssystem V-PRO 200 für Beton

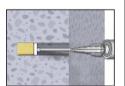
Verwendungszweck

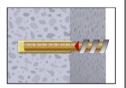

Setzanweisung


Anhang B 4

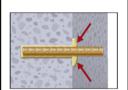
Setzanweisung (Fortsetzung)




 Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.


5. Den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.

6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Bei Verankerungstiefen größer 190 mm passende Mischerverlängerung verwenden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B5) sind zu beachten.



- 7. Verfüllstutzen und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:
 - Horizontalmontage (horizontal Richtung) und Bodenmontage (vertikal Richtung nach unten): Bohrer-Ø d₀ ≥ 18 mm und Setztiefe hef > 250mm
 - Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm

8. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

9. Nach der Installation des Ankers muss der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).

10. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B5).

11. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Tabelle B1 oder B3) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden.

PROFAST Injektionssystem V-PRO 200 für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 5

Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten

Beton	Beton Temperatur		Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton
0 °C	bis	+ 4 °C	25 min	3,5 h	7 h
+ 5 °C	bis	+ 9 °C	15 min	2 h	4 h
+ 10 °C	bis	+ 14 °C	10 min	1 h	2 h
+ 15 °C	bis	+ 19 °C	6 min	40 min	80 min
+ 20 °C	bis	+ 29 °C	3 min	30 min	60 min
+ 30 °C	bis	+ 40 °C	2 min	30 min	60 min
Kartuschentemperatur				+5°C bis +40°C	

PROFAST Injektionssystem V-PRO 200 für Beton	
Verwendungszweck Aushärtezeit	Anhang B 6

1,25

1;67

1,25

1,25

2,38

1,56

Tak	Tabelle C1: Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquerzugtragfähigkeit von Gewindestangen										
Größe)			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	kteristische Zugtragfähigkeit, Stahlversagen										
Stahl,	Festigkeitsklasse 4.6 und 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Stahl,	Festigkeitsklasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
Stahl,	Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Nichtre	ostender Stahl A4 und HCR, Festigkeitsklasse 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nichtre	ostender Stahl A4 und HCR, Festigkeitsklasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Chara	kteristische Zugtragfähigkeit, Teilsicherheitsbeiwert										
Stahl,	Festigkeitsklasse 4.6	γ _{Ms,N} 1)	[-]				2	,0			
Stahl,	Festigkeitsklasse 4.8	γ _{Ms,N} 1)	[-]				1	,5			
Stahl,	Festigkeitsklasse 5.6	γ _{Ms,N} 1)	[-]				2	,0			
Stahl,	Festigkeitsklasse 5.8	γ _{Ms,N} 1)	[-]	1,5							
Stahl,	Festigkeitsklasse 8.8	γ _{Ms,N} 1)	[-]	1,5							
Nichtr	ostender Stahl A4 und HCR, Festigkeitsklasse 50	γ _{Ms,N} 1)	[-]	2,86							
Nichtr	ostender Stahl A4 und HCR, Festigkeitsklasse 70	γMs,N 1)	[-]	1,87							
Chara	kteristische Quertragfähigkeit, Stahlversagen										
E	Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
eları	Stahl, Festigkeitsklasse 5.6 und 5.8	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Heb	Stahl, Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Ohne Hebelarm	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
	Stahl, Festigkeitsklasse 4.6 und 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
larm	Stahl, Festigkeitsklasse 5.6 und 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
Mit Hebelarm	Stahl, Festigkeitsklasse 8.8	M _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Mit	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50	M _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
	Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70	M _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
Chara	kteristische Quertragfähigkeit, Teilsicherheitsbeiwert					•	•	•	•	•	
Stahl,	Festigkeitsklasse 4.6	γ _{Ms,V} 1)	[-]				1,	67			

γ_{Ms,V} 1)

γ_{Ms,V} 1)

γ_{Ms,V} 1)

γ_{Ms,V} 1)

γ_{Ms,V} 1)

γ_{Ms,V} 1)

[-]

[-]

[-]

[-]

[-]

[-]

Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 50

Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 70

Stahl, Festigkeitsklasse 4.8

Stahl, Festigkeitsklasse 5.6

Stahl, Festigkeitsklasse 5.8

Stahl, Festigkeitsklasse 8.8

PROFAST Injektionssystem V-PRO 200 für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquerzugtragfähigkeit von Gewindestangen	Anhang C 1

¹⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2:	Charakteristische Werte der Zugtragfähigkeit für Gewindestangen unter
	statischer, quasi-statischer Belastung und Erdbebenbelastung
	(Leistungskategorie C1+C2)

(1	<u>-eistungskateg</u>	orie C1+C	(2)								
Dübelgröße Gewinde	stangen			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen											
		$N_{Rk,s}$	[kN]				siehe Ta	abelle C1			
Charakteristische Zugt	ragfähigkeit	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}			
onaramonomo Lugi	agramg.com	N _{Rk,s,eq,C2}	[kN]	N	PD	1,0 • N _{Rk,s}	Ke	ine Leist	ung bes	timmt (N	PD)
Teilsicherheitsbeiwert		γMs,N	[-]				siehe Ta	abelle C1			
Kombiniertes Versag	en durch Herauszieher	und Betonaus	sbruch								
Charakteristische Verb	undtragfähigkeit im unge	erissenen Beton	C20/25								
Temperaturbereich I: 80°C/50°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13
Temperaturbereich II: 120°C/72°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11
Temperaturbereich III: 160°C/100°C	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0
Charakteristische Verb	undtragfähigkeit im geris	senen Beton C	20/25								
Temperaturbereich I:	trockener und feuchter	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5
80°C/50°C	Beton	τ _{Rk,eq,C2}	[N/mm ²]	N	PD	3,6			NPD		
Temperaturbereich II:	trockener und feuchter	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5
120°C/72°C	Beton	τ _{Rk,eq,C2}	[N/mm²]	N	PD	3,1			NPD		
Temperaturbereich III:	trockener und feuchter	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5
160°C/100°C	Beton	τ _{Rk,eq,C2}	[N/mm ²]	N	PD	2,5			NPD		
		C25/3	30				1,	02			
Erhöhungsfaktor für Be	aton	C30/37					1,	04			
(Nur statische oder qua		C35/45					1,	07			
Beanspruchung)		C40/5	50	1,08							
ψ_{c}		C45/5	55	1,09							
		C50/6	60	1,10							
Betonausbruch											
ungerissener Beton		k _{ucr,N}	[-]				11	1,0			
gerissener Beton		k _{cr,N}	[-]				7	,7			
Randabstand		C _{cr,N}	[mm]				1,5	h _{ef}			
Achsabstand		S _{cr,N}	[mm]				2 (Ccr,N			
Spalten		,									
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
Randabstand	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} \left(2\right)$,)			
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Achsabstand		S _{cr,sp}	[mm]				2 0	cr,sp			
Montagebeiwert (CAC)					4.0	(4.0)1)		- 146			
(trockener und feuchte	r Beton)	γinst	[-]		1,0	(1,2) ¹⁾			1	,2	
Montagebeiwert (MAC) (trockener und feuchte		γinst	[-]		1	1,2				-	

¹⁾ Werte in Klammer gültig für gerissenen Beton

PROFAST Injektionssystem V-PRO 200 für Beton Leistungen Charakteristische Werte der Zugtragfähigkeit für Gewindestangen unter statischer, quasi-statischer Belastung und Erdbebenbelastung (Leistungskategorie C1+C2) Anhang C 2

Tabelle C3: Charakteristische Werte der Querzugtragfähigkeit für Gewindestangen unter statischer, quasi-statischer Belastung und Erdbebenbelastung (Leistungskategorie C1+C2)

(Leistungskat	egorie C1	+C2)											
Dübelgröße Gewindestangen			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30			
Stahlversagen ohne Hebelarm													
	V ⁰ _{Rk,s}	[kN]				siehe Ta	belle C1						
Charakteristische Quertragfähigkeit	V _{Rk,s,eq,C1}	[kN]				0,70 •	V ⁰ _{Rk,s}						
	$V_{Rk,s,eq,C2}$	[kN]	(NF	PD)	0,80 • V ⁰ _{Rk,s}	Ke	ine Leist	ung best	timmt (NF	'D)			
Teilsicherheitsbeiwert	γMs,V	[-]				siehe Ta	belle C1						
Duktilitätsfaktor	k ₇	[-]				1	,0						
Stahlversagen mit Hebelarm													
	M ⁰ _{Rk,s}	[Nm]				siehe Ta	belle C1						
Charakteristisches Biegemoment	M ⁰ _{Rk,s,eq,C1}	[Nm]			Keine	Leistung	bestimm	t (NPD)					
	M ⁰ _{Rk,s,eq,C2}	[Nm]			Keine	Leistung	bestimm	bestimmt (NPD)					
Teilsicherheitsbeiwert	γMs,V	[-]				siehe Ta	belle C1						
Betonausbruch auf der lastabgewandte	n Seite												
Faktor	k ₈	[-]				2	,0						
Montagebeiwert	γ inst	[-]				1	,0						
Betonkantenbruch													
Effektive Dübellänge	l _f	[mm]				l _f = min(h	l _{ef} ; 8 d _{nom})						
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Montagebeiwert	γ inst	[-]				1	,0						
Faktor für Ringspalt	α_{gap}	[-]				0	,5						

PROFAST Injektionssystem	V-PRO 200 für Beton
--------------------------	---------------------

Leistungen

Charakteristische Werte der Querzugtragfähigkeit für Gewindestangen unter statischer, quasistatischer Belastung und Erdbebenbelastung (Leistungskategorie C1+C2)

Anhang C 3

	harakteristische nter statischer u					nnenge	windeh	ıülsen		
Dübelgröße Innengew	indehülsen			IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20	
Stahlversagen ¹⁾										
Charakteristische Zugtra Stahl, Festigkeitsklasse		$N_{Rk,s}$	[kN]	10	17	29	42	76	123	
Teilsicherheitsbeiwert		γMs,N	[-]			1	,5			
Charakteristische Zugtra Stahl, Festigkeitsklasse	agfähigkeit, 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Teilsicherheitsbeiwert		γMs,N	[-]			1	,5			
Charakteristische Zugtra Nichtrostender Stahl A4		N _{Rk,s}	[kN]	14	26	41	59	110	172	
Teilsicherheitsbeiwert		γMs,N	[-]			1,	87			
Kombiniertes Versage	n durch Herausziehen u	nd Betonausbr	uch							
Charakteristische Verbu	ındtragfähigkeit im ungeris	ssenen Beton C	20/25							
Temperaturbereich I: 80°C/50°C	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	17	16	15	14	13	13	
Temperaturbereich II: 120°C/72°C	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	12	12	11	
Temperaturbereich III: 160°C/100°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	12	11	10	9,5	9,0	9,0	
	ındtragfähigkeit im gerisse	enen Beton C20/	/25							
Temperaturbereich I: 80°C/50°C	trockener und feuchter Beton	$ au_{Rk,cr}$	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5	
Temperaturbereich II: 120°C/72°C	trockener und feuchter Beton	τ _{Rk,cr}	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	
Temperaturbereich III: 160°C/100°C	trockener und feuchter Beton	$ au_{ m Rk,cr}$	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	
		C25/					02			
		C30/	37			1,	04			
Erhöhungsfaktor für Bet	on	C35/-		1,07						
ψ_{c}		C40/				1,	08			
		C45/	55			1,	09			
		C50/	60	1,10						
Betonausbruch										
ungerissener Beton		k _{ucr,N}	[-]				1,0			
gerissener Beton		K _{cr,N}	[-]				,7			
Randabstand		C _{cr,N}	[mm]				h _{ef}			
Achsabstand		S _{cr,N}	[mm]			2 0	C _{cr,N}			
Spalten	T									
	h/h _{ef} ≥ 2,0	-				1,0) h _{ef}			
Randabstand	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \cdot \right)$	$,5-\frac{h}{h_{ef}}$			
	h/h _{ef} ≤ 1,3					2,4	∤ h _{ef}			
Achsabstand		S _{cr,sp}	[mm]			2 0	cr,sp			
Montagebeiwert (CAC) (trockener und feuchter	Beton)	γinst	[-]		1,0 (1,2)2)			1,2		
Montagebeiwert (MAC) (trockener und feuchter	,	γinst	[-]		1,2			-		
1 CONCINCT ATTA TOUGHTEE										

Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindehülsen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindestange und die zugehörigen Befestigungsmittel.

Werte in Klammer gültig für gerissenen Beton

PROFAST Injektionssystem V-PRO 200 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit für Innengewindehülsen unter statischer und quasistatischer Belastung	Anhang C 4

Tabelle C5: Charakteristische Werte der Querzugtragfähigkeit für Innengewindehülsen unter statischer und quasi-statischer Belastung

Dübelgröße Innengewindehülsen			IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20
Stahlversagen ohne Hebelarm ¹⁾								
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Teilsicherheitsbeiwert	γMs,V	[-]			1,2	5		
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Teilsicherheitsbeiwert	γMs,V	[-]			1,2	5		
Charakteristische Quertragfähigkeit, nicht- rostender Stahl A4, Festigkeitsklasse 70	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	86
Teilsicherheitsbeiwert	γMs,V	[-]			1,5	6		
Duktilitätsfaktor	k ₇	[-]			1,0)		
Stahlversagen mit Hebelarm ¹⁾								
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Teilsicherheitsbeiwert	γMs,V	[-]			1,2	5		
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Teilsicherheitsbeiwert	γMs,V	[-]			1,2	5		
Charakteristisches Biegemoment, nicht- rostender Stahl A4, Festigkeitsklasse 70	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	454
Teilsicherheitsbeiwert	γMs,V	[-]			1,5	6		
Betonausbruch auf der lastabgewandter	Seite							
Faktor	k ₈	[-]			2,0)		
Montagebeiwert	γinst	[-]			1,0)		
Betonkantenbruch								
Effektive Dübellänge	I _f	[mm]			$I_f = min(h_e)$; 8 d _{nom})		
Außendurchmesser des Dübels	d _{nom}	[mm]	10	12	16	20	24	30

Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindehülsen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindestange und die zugehörigen Befestigungsmittel.

PROFAST Injektionssystem V-PRO 200 für Beton

Leistungen

Charakteristische Werte der Querzugtragfähigkeit für Innengewindehülsen unter statischer und quasi-statischer Belastung

Anhang C 5

Dübelgröße Betonsta	hl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen				20	2.0	2 .2	2 14	2.0	2 20	2 20	220	
		N _{Rk,s}	[kN]					A _s • f _{uk} ²⁾				
Charakteristische Zugt	ragfähigkeit	N _{Rk,s,eq,C1}	[kN]				1,	0 • A _s • f	2) uk			
Stahlspannungsquersc	hnitt	As	[mm²]	50	79	113	154	201	214	491	616	804
Teilsicherheitsbeiwert		γMs,N	[-]					1,4 ³⁾				
Kombiniertes Versag	en durch Herauszie	hen und Beton	ausbruch									
Charakteristische Verb	undtragfähigkeit im u	ngerissenen Be	eton C20/25									
Temperaturbereich I: 80°C/50°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperaturbereich II: 120°C/72°C	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperaturbereich III: 160°C/100°C	trockener und feuchter Beton	$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Charakteristische Verb	undtragfähigkeit im g	erissenen Beto	n C20/25									
Temperaturbereich I: 80°C/50°C	trockener und feuchter Beton	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperaturbereich II: 120°C/72°C	trockener und feuchter Beton	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperaturbereich III: 160°C/100°C	trockener und feuchter Beton	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
			5/30					1,02				
Erhöhungsfaktor für Be			0/37					1,04				
(Nur statische oder qua Beanspruchung)	asi-statische		0/50	1,07 1,08								
ψ_c			5/55					1,09				
			0/60	1,09								
Betonausbruch		_										
ungerissener Beton		k _{ucr,N}	[-]					11,0				
gerissener Beton		k _{cr,N}	[-]					7,7				
Randabstand		C _{cr,N}	[mm]					1,5 h _{ef}				
Achsabstand		S _{cr,N}	[mm]					$2c_{\text{cr,N}}$				
Spalten												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Randabstand	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{\epsilon}$	$_{ef} \left(2,5 - \right)$	$\left(rac{h}{h_{ef}} ight)$			
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Achsabstand		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Montagebeiwert (CAC) (trockener und feuchte		γinst	[-]		-	1,0 (1,2)	1)			1	,2	
Montagebeiwert (MAC))	γinst	[-]			1,2						
(trackener und fauchte	" Deten)	I / Inst	1 171	1					1			

PROFAST Injektionssystem V-PRO 200 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit für Betonstahl unter statischer, quasi-statischer Belastung und Erdbebenbelastung (Leistungskategorie C1)	Anhang C 6

⁽trockener und feuchter Beton)

1) Werte in Klammer gültig für gerissenen Beton
2) f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen
3) Sofern andere nationalen Regelungen fehlen

statischer,	stische We quasi-stati kategorie C	ischer								unter	
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm								•			
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s}	[kN]				0,5	50 • A _s • f	: 2) uk			
Characteristische Quertragranigkeit	$V_{Rk,s,eq,C1}$	[kN]				0,0	37 ∙ A _s ∙ f	: 2) uk			
Stahlspannungsquerschnitt	As	[mm²]	50	79	113	154	201	214	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾				
Duktilitätsfaktor	k ₇	[-]					1,0				
Stahlversagen mit Hebelarm		•	•								
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾								
Characteristische Diegemonient	M ⁰ _{Rk,s,eq,C1}	[Nm]	Keine Leistung bestimmt (NPD)								
Elastisches Widerstandsmoment	Wel	[mm³]	50	98	170	269	402	785	1534	2155	3217
Teilsicherheitsbeiwert	γмs,v	[-]					1,5 ²⁾				
Betonausbruch auf der lastabgewand	ten Seite	•									
Faktor	k ₈	[-]					2,0				
Montagebeiwert	γinst	[-]					1,0				
Betonkantenbruch											
Effektive Dübellänge	l _f	[mm]				$I_f = n$	nin(h _{ef} ; 8	d _{nom})			
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Montagebeiwert	γ inst	[-]					1,0				
Faktor für Ringspalt	$lpha_{ ext{gap}}$	[-]					0,5				

 $^{^{1)}}$ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen $^{2)}$ Sofern andere nationalen Regelungen fehlen

PROFAST Injektionssystem V-PRO 200 für Beton Anhang C 7 Leistungen Charakteristische Werte der Querzugtragfähigkeit für Betonstahl unter statischer, quasi-statischer Belastung und Erdbebenbelastung (Leistungskategorie C1)

Dübelgröße Gewir	ndestange		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Ungerissener Beton	C20/25 unter sta	atischer und quasi-s	tatischer	Belastu	ıng					
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C/72°C	$\delta_{N_{\infty}}\text{-Faktor}$	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,18
Gerissener Beton C	20/25 unter statis	scher, quasi-statisch	er Belas	tung un	d Erdbel	penbelas	tung (Le	eistungs	kategori	e C1)
		F //N 1/ 0\7	0.004		0.005	0,090	0,095	0.000	0.400	
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
Temperaturbereich I: 80°C/50°C	δ_{N0} -Faktor $\delta_{N\infty}$ -Faktor	[mm/(N/mm²)] [mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	
		- '-		,		,	,			0,13
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
80°C/50°C Temperaturbereich II: 120°C/72°C	$\delta_{N\infty}$ -Faktor δ_{N0} -Faktor	[mm/(N/mm²)] [mm/(N/mm²)]	0,104 0,084	0,107 0,086	0,110 0,088	0,116 0,093	0,122 0,098	0,128 0,103	0,133 0,107	0,137 0,110 0,143
80°C/50°C Temperaturbereich II: 120°C/72°C	$\delta_{N\infty}$ -Faktor δ_{N0} -Faktor $\delta_{N\infty}$ -Faktor	[mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	0,104 0,084 0,108	0,107 0,086 0,111	0,110 0,088 0,114	0,116 0,093 0,121	0,122 0,098 0,127	0,128 0,103 0,133	0,133 0,107 0,138	0,137 0,110 0,143 0,412
80°C/50°C Temperaturbereich II: 120°C/72°C Temperaturbereich III: 160°C/100°C	$\begin{array}{c} \delta_{N\infty}\text{-Faktor} \\ \delta_{N0}\text{-Faktor} \\ \delta_{N\infty}\text{-Faktor} \\ \delta_{N0}\text{-Faktor} \\ \delta_{N0}\text{-Faktor} \\ \end{array}$	[mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	0,104 0,084 0,108 0,312 0,321	0,107 0,086 0,111 0,321 0,330	0,110 0,088 0,114 0,330 0,340	0,116 0,093 0,121 0,349	0,122 0,098 0,127 0,367	0,128 0,103 0,133 0,385	0,133 0,107 0,138 0,399	0,137 0,110 0,143 0,412
80°C/50°C Temperaturbereich II: 120°C/72°C Temperaturbereich III: 160°C/100°C	$\begin{array}{c} \delta_{N\infty}\text{-Faktor} \\ \delta_{N0}\text{-Faktor} \\ \delta_{N\infty}\text{-Faktor} \\ \delta_{N0}\text{-Faktor} \\ \delta_{N0}\text{-Faktor} \\ \end{array}$	[mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	0,104 0,084 0,108 0,312 0,321 stungska	0,107 0,086 0,111 0,321 0,330	0,110 0,088 0,114 0,330 0,340	0,116 0,093 0,121 0,349 0,358	0,122 0,098 0,127 0,367 0,377	0,128 0,103 0,133 0,385 0,396	0,133 0,107 0,138 0,399	0,106 0,137 0,110 0,143 0,412 0,424

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor} \cdot \tau;$

Dübelgröße Gewindestange

Tabelle C9: Verschiebung unter Querbeanspruchung¹⁾ (Gewindestange)

Gerissener und ungerissener Beton C20/25 unter statischer, quasi-statischer Belastung und Erdbebenbelastung										
(Leistungskategorie C1)										
Alle Temperaturbereiche	δ_{V0} - Faktor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_\infty}\text{-}$ Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C2)										
Alle	$\delta_{V,seis(DLS)}$	[mm/(kN)]	Keine I	eistuna	0,27					

M 8

M 10

M 12

M 16

M 20

M24

M 27

M 30

l	Alle	$\delta_{\text{V,seis}(\text{DLS})}$	[mm/(kN)]	Keine Leistung	0,27	Keine Leistung bestimmt (NPD)
l	Temperaturbereiche	$\delta_{V,seis(ULS)}$	[mm/(kN)]	bestimmt (NPD)	0,27	Reme Leistung bestimmt (NPD)

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}\text{-Faktor}\cdot V; \hspace{1cm} V\text{: einwirkende Querlast}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor}\cdot V;$

PROFAST Injektionssystem V-PRO 200 für Beton	
Leistungen Verschiebungen (Gewindestange)	Anhang C 8

Tabelle C10:V	erschieb	ung unter Zเ	ıgbear	nspruc	hung ¹⁾	(Beto	nstahl)			
Dübelgröße Betor	nstahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Betor	C20/25 unt	er statischer und	d quasi-s	statische	r Belast	ung					
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065
Temperaturbereich III:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192
Gerissener Beton C	20/25 unter	statischer, quas	i-statisc	her Bela	stung un	d Erdbe	benbela	stung (L	eistungs	kategori	e C1)
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148
Temperaturbereich III:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor} \cdot \tau;$

Tabelle C11:Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Gerissener und ungerissener Beton C20/25 unter statischer, quasi-statischer Belastung und Erdbebenbelastung (Leistungskategorie C1)											
Alle	δ_{V0} - Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{V∞} - Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-Faktor} \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V; \end{split}$$
V: einwirkende Querlast

PROFAST Injektionssystem V-PRO 200 für Beton	
Leistungen Verschiebungen (Betonstahl)	Anhang C 9

Tabelle C12: Ve	erschiebung u	nter Zugbean	spruchu	ng ¹⁾ (Inn	engewir	ndehülse	e)	
Dübelgröße Inneng	IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20		
Ungerissener Beton	C20/25 unter statis	cher und quasi-sta	atischer Be	lastung				
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperaturbereich II: 120°C/72°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,129	0,135	0,146	0,157	0,168	0,184
Gerissener Beton C2	0/25 unter statisch	er, quasi-statische	er Belastun	g				
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C13: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindehülse)

Dübelgröße Inne	IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20			
Gerissener und ungerissener Beton C20/25 unter statischer, quasi-statischer Belastung									
Alle	δ_{V0} -Faktor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04	
Temperaturbereiche	δ _{V∞} -Faktor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V; V: einwirkende Querlast

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor}\cdot V;$

PROFAST Injektionssystem V-PRO 200 für Beton	
Leistungen Verschiebungen (Innengewindehülse)	Anhang C 10