

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0279 of 7 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Ratto Concrete Screw M3CE

Mechanical fasteners for use in concrete

Viteria Ratto s.a.s Via Seminella 50H 16012 BUSALLA (GE) ITALIEN

Viteria Ratto Plant 1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-18/0279

Page 2 of 15 | 7 June 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z36794.18 8.06.01-126/18

European Technical Assessment ETA-18/0279

Page 3 of 15 | 7 June 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Ratto Concrete Screw M3CE is made of galvanised steel of sizes 8, 10, 12 or 16 mm. The anchor may be provided with different head configurations according to Annex A2. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the concrete screw is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the concrete screw of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance to tension load	see Annex C 1	
(static and quasi-static loading)		
Characteristic resistance to shear load	see Annex C 2	
(static and quasi-static loading)		
Displacements (static and quasi-static loading)	see Annex C 5	
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C 1, C 2 and C 5	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C 3 and C 4

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-18/0279

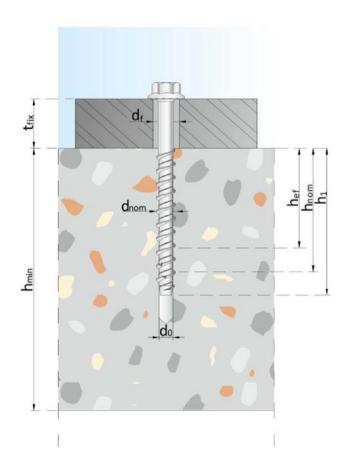
Page 4 of 15 | 7 June 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 7 June 2018 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider

Installed conditions

Installation for static, quasi-static and seismic performance category C1 and C2

Designation

d _{nom}	Outside diameter of the anchor
d_{cut}	Maximum cutting diameter of the drill bit
t _{fix}	Thickness of the fixtures
d _o	Diameter of the drill hole
d _f	Diameter of the clearance hole in the fixture
h _{min}	Minimum thickness of the concrete member
h _{nom}	Overall anchor embedment depth
h _{ef}	Anchorage depth

Ratto Concrete Screw M3CE	
Product description Installed condition	Annex A 1

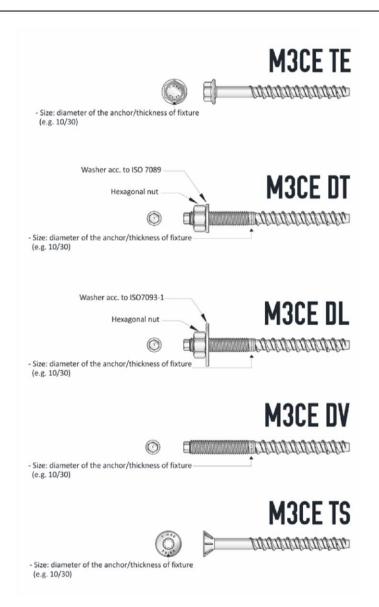


Table A1: Materials

ITEM	Description		f _u [Mpa]	Finishing
МЗСЕ	Hexagonal flanged washer head screw			
M3CE DT	Dual thread screw with hexagonal shank			Materials
M3CE DV	Dual thread screw with hexagonal shank, nut and washer according to ISO 7089:2000	640	750	galvanised ≥ 5μm according to
M3CE DL	Dual thread screw with hexagonal shank, nut and washer according to ISO 7093:2000			ISO 4042:1999
M3CE TS	Flat countersunk head with ribs screw			

Ratto Concrete Screw M3CE	
Product description Anchor types and Materials	Annex A 2

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: All anchor types, all sizes
- Seismic action for Performance Category C1 and C2: Ø 16 and Ø 12
- Seismic action for Performance Category C1: Ø 10
- Fire exposure: all sizes

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Design for fastenings in accordance to FprEN 1992-4:2016 and EOTA Technical Report TR 055

Installation:

- Hole drilling by rotary plus hammer mode only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller
 distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the
 direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

Ratto Concrete Screw M3CE	
Intended Use Specifications	Annex B 1

Deutsches Institut für **Bautechnik**

Table B1: M3CE TE, installation details

Denomination		M3CE Ø8/6 ¹⁾	M3CE Ø10/8 ²⁾	M3CE Ø12/10 ³⁾	M3CE Ø16/14 ⁴⁾
Nominal drill hole diameter	$d_o = [mm]$	6	8	10	14
Cutting diameter of drill bit	d _{cut} ≤ [mm]	6.40	8.45	10.45	14.50
Effective anchorage depth	h _{ef} = [mm]	48	56	64	85
Depth of drill hole	$h_1 = [mm]$	75	85	100	140
Diameter of clearance in the fixture	$d_f = [mm]$	9	12	14	18
Overall anchor embedment depth in the concrete	h _{nom} =[mm]	60	70	80	110
Minimum thickness of concrete member	h _{min} = [mm]	100	110	130	170
Outside diameter of anchor	$d_{nom} = [mm]$	8	10	12	16
Wrench size M3CE TE	SW = [mm]	10	13	15	21
Minimum thickness of fixture	t _{fix} =[mm]	≥5	≥5	≥5	≥5
Minimum length of the anchor M3CE TE	L=[mm]	≥65	≥75	≥85	≥115
Minimum edge distance	c _{min} = [mm]	45	50	60	80
Minimum spacing	s _{min} = [mm]	45	50	60	80

Table B2: M3CE DT, M3CE DL and M3CE DV, installation details

Denomination	M3CE Ø8/6 ¹⁾	M3CE Ø10/8 ²⁾	M3CE Ø12/10 ³⁾	
Nominal drill hole diameter	$d_o = [mm]$	6	8	10
Cutting diameter of drill bit	d _{cut} ≤ [mm]	6.40	8.45	10.45
Effective anchorage depth	h _{ef} =[mm]	48	56	64
Depth of drill hole	h ₁ = [mm]	75	90	100
Diameter of clearance in the fixture	d _f = [mm]	9	12	14
Overall anchor embedment depth in the concrete	h _{nom} =[mm]	60	70	80
Minimum thickness of concrete member	h _{min} = [mm]	100	110	130
Outside diameter of anchor	d _{nom} = [mm]	8	10	12
Wrench size M3CE DT and M3CE DL	SW = [mm]	13	17	19
Maximum tightening torque of the nut	T = [Nm]	20	50	80
Hexagonal shank size	AF = [mm]	5	7	8
Minimum thickness of fixture	t _{fix} =[mm]	≥5	≥5	≥5
Minimum length of the anchor	L=[mm]	≥85	≥100	≥113
Minimum edge distance	c _{min} = [mm]	45	50	60
Minimum spacing	s _{min} =[mm]	45	50	60

Table B3: M3CE TS, installation details

Denomination	M3CE Ø8/6 ¹⁾	M3CE Ø10/8 ²⁾	M3CE Ø12/10 ³⁾	
Nominal drill hole diameter	$d_o = [mm]$	6	8	10
Cutting diameter of drill bit	d _{cut} ≤ [mm]	6.40	8.45	10.45
Effective anchorage depth	h _{ef} = [mm]	48	56	64
Depth of drill hole	h ₁ = [mm]	75	90	100
Diameter of clearance in the fixture	d _f = [mm]	9	12	14
Overall anchor embedment depth in the concrete	h _{nom} =[mm]	60	70	80
Minimum thickness of concrete member	h _{min} = [mm]	100	110	130
Outside diameter of anchor	$d_{nom} = [mm]$	8	10	12
Six lobe recess M3CE TS	Т	T30	T40	T50
Minimum thickness of fixture	t _{fix} =[mm]	≥5	≥5	≥5
Minimum length of the anchor M3CE TS	L=[mm]	≥65	≥75	≥85
Minimum edge distance	c _{min} = [mm]	45	50	60
Minimum spacing	s _{min} = [mm]	45	50	60

¹⁾ Setting requires an impact wrench with maximum 20 Nm torque

⁴⁾ Setting requires an impact wrench with maximum 160 Nm torque

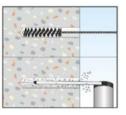
Ratto Concrete Screw M3CE	
Intended Use Installation parameters	Annex B 2
mistanation parameters	

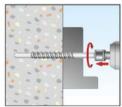
²⁾ Setting requires an impact wrench with maximum 50 Nm torque ³⁾ Setting requires an impact wrench with maximum 80 Nm torque

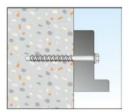
Drill bit

	M3CE anchor size	Drill bit item code
Ĭ.	Ø 8	
	Ø 10	DUNT CDC
	Ø 12	PUNT SDS
8	Ø 16	

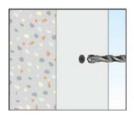

Blowing pump

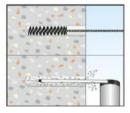


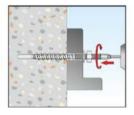

Ratto Concrete Screw M3CE	
Intended Use Cleaning and setting tools	Annex B 3

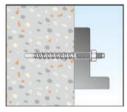


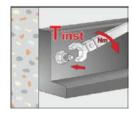
Installation instructions M3CE



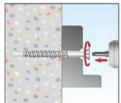


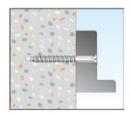



	Drill a hole into the concrete in rotary plus hammer mode. The hole must be 2 [mm] less than the outside diameter of the anchor
Step 2	Remove the dust into the hole using 2 times a brush and 2 times a blowing pump
Step 3	Place the fixture
Step 4	Install the anchor using an impact screwdriver


Installation instructions M3CE DT, M3CE DL and M3CE DV




Step 1	Drill a hole into the concrete in rotary plus hammer mode. The hole must have a diameter 2 [mm] less than the outside diameter of the anchor
Step 2	Remove the dust into the hole using a 2 times brush and a 2 times blowing pump
Step 3 1)	Place the fixture
Step 4	Install the anchor using an impact screwdriver
Step 5	Tight the nut applying the required torque moment


¹⁾Through fixing is allowed (place the fixture before placing the anchor)

Installation instructions M3CE TS

Step 1	Drill a hole into the concrete in rotary plus hammer mode. The hole must be 2 [mm] less than the outside diameter of the anchor
Step 2	Remove the dust into the hole using a 2 times brush and a 2 times blowing pump
Step 3	Place the fixture
Step 4	Install the anchor using an impact screwdriver

Ratto Concrete Screw M3CE

Intended Use

Installation instructions

Annex B 4

Table C1: Performances for design, tension

Type of anchor / Size			M3CE Ø8/6	M3CE Ø10/8	M3CE Ø12/10	M3CE Ø16/14
Steel failure						
Characteristic Resistance	$N_{Rk,s}$ $N_{Rk,s,eq,C1}$ $N_{Rk,s,eq,C2}$	[kN]	20	35	50	95
Partial factor	γ _{Ms} 1)	[-]		1	,5	
Pull-out failure						
Effective embedment depth	h _{ef}	[mm]	48	56	64	85
Characteristic Resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	16	20	25	40
Characteristic Resistance in cracked concrete C20/25			4	7,5	9	16
Characteristic resistance in seismic performance category C1	$N_{Rk,p,eq}$	[kN]	NPD	6,0	6,3	16
Characteristic resistance in seismic performance category C2	$N_{Rk,p,eq}$	[KIN]	NPD	NPD	2,7	7,2
Increasing factors for N _{Rk,p} for cracked and uncracked		C30/37	1,22			
concrete	Ψ_{c}	C40/50	1,41			
		C50/60				
Installation factor	γ_{inst}	[-]	1,4	1,2	1	,4
Concrete cone failure and splitting failure						
Effective embedment depth	h _{ef}	[mm]	48	56	64	85
Factor for k ₁	k _{ucr,N}	[-]	11,0			
Factor for k ₁	k _{cr,N}	[-]	7,7			
Spacing	S _{cr,N}	[mm]	3 x h _{ef}			
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}			255
Spacing (splitting)	S _{cr,sp}	[mm]	160	175	195	255
Edge distance (splitting)	C _{cr,sp}	[mm]	80 85 95 130			
Installation factor	γ_{inst}	[-]	1,4 1,2 1,4			

¹⁾ In absence of other national regulations.

Ratto Concrete Screw M3CE	
Performances	Annex C 1
Characteristic resistance to tension loads	

Table C2: Performances for design, shear

Type of anchor / Size			M3CE Ø8/6	M3CE Ø10/8	M3CE Ø12/10	M3CE Ø16/14
Steel failure without level arm						
Characteristic Resistance for static and quasi-static action	$V^0_{Rk,s}$	[kN]	9,4	20,1	32,4	56,9
Characteristic Resistance for seismic action in	V-	[kN]	NPD	12,1	19,1	39,8
Performance category C1	$V_{Rk,s,eq}$	[KIN]	NPD	12,1	19,1	33,0
Characteristic Resistance for seismic action in	V	[kN]	NPD	NPD	17,7	39,8
Performance category C2	$V_{Rk,s,eq}$	[KIV]	NFD	NFD	17,7	39,6
Partial factor	$\gamma_{Ms}^{-1)}$	[-]		1	,5	
Steel failure with level arm						
Characteristic bending moment	$M^{\scriptscriptstyle{0}}_{\scriptscriptstyle{Rk},s}$	[Nm]	19	44	83	216
Ductility factor	k ₇	[-]	0,8			
Partial factor	$\gamma_{Ms}^{-1)}$	[-]		1	,5	
Concrete pryout failure						
Effective embedment depth	h _{ef}	[mm]	48	56	64	85
Factor for pryout failure	k ₈	[-]	1	,0	2,	,0
Installation factor	γ_{inst}	[-]	1,4 1,2 1,4			.4
Concrete edge failure						
Effective anchorage length	l _{ef}	[mm]	48	56	64	85
Effective diameter of the anchor	d_{nom}	[mm]	6	8	10	14
Installation factor	γ _{inst}	[-]	1,4 1,2 1,4			
Factor for annular gap	α _{gap} [-] 0,5					

¹⁾ In absence of other national regulations.

Ratto Concrete Screw M3CE	
Performances Characteristic resistance to shear loads	Annex C 2

Table C3: Performances under fire exposure in concrete C20/25 to C50/60 (tension)

Type of anchor / Size			M3CE Ø8/6	M3CE Ø10/8	M3CE Ø12/10	M3CE Ø16/14
Duration of fire resistance = 30min						
Steel Failure						
Characteristic Resistance	$N_{Rk,s,fi,30}$	[kN]	0,28	0,73	1,51	2,85
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,30}$	[kN]	1,00	1,87	2,25	4,0
Concrete cone failure						
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,30}	[kN]	2,87	4,23	5,90	12,0
Duration of fire resistance = 60min						
Steel Failure						
Characteristic Resistance	$N_{Rk,s,fi,60}$	[kN]	0,25	0,64	1,13	2,14
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,60}$	[kN]	1,00	1,87	2,25	4,0
Concrete cone failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,c,fi,60}$	[kN]	2,87	4,22	5,90	12,0
Duration of fire resistance = 90min						
Steel Failure						
Characteristic Resistance	N _{Rk,s,fi,90}	[kN]	0,19	0,49	0,98	1,85
Pull-out failure						
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,90}$	[kN]	1,00	1,87	2,25	4,0
Concrete cone failure	,,,,				•	
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,90}	[kN]	2,87	4,22	5,90	12,0
Duration of fire resistance =120min	,,,,				•	
Steel Failure						
Characteristic Resistance	N _{Rk,s,fi,120}	[kN]	0,14	0,39	0,75	1,43
Pull-out failure	,.,					
Characteristic Resistance in concrete C20/25 to C50/60	$N_{Rk,p,fi,120}$	[kN]	0,8	1,5	1,8	3,20
Concrete cone failure	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Characteristic Resistance in concrete C20/25 to C50/60	N _{Rk,c,fi,120}	[kN]	2,30	3,38	4,72	9,59
	S _{cr,N}	-	4 x h _{ef}			
Spacing	S _{min}	[mm]	45	50	60	80
	C _{cr,N}			2 x	h _{ef}	
Edge distance	C _{min}	[mm]	more than	one side, t	tack comes the edge dis ≥ 300 mm c	stance of

Ratto Concrete Screw M3CE	
Performances Characteristic and an fire assessment and an tension locales	Annex C 3
Characteristic values for fire exposure under tension loads	

Table C4: Performances under fire exposure in concrete C20/25 to C50/60 (shear)

Type of anchor / Size			M3CE Ø8/6	M3CE Ø10/8	M3CE Ø12/10	M3CE Ø16/14
Duration of fire resistance = 30min			<i>9</i> 0/0	Δ10/8	Ø12/10	Ø16/14
Characteristic resistance	$V_{Rk,s,fi,30}$	[kN]	0,28	0,73	1,51	2,85
Characteristic bending resistance	M ⁰ _{Rk,s,fi,30}	[Nm]	0,24	0,87	2,22	5,76
Duration of fire resistance = 60min	, majojinjou		,	,		,
Characteristic resistance	V _{Rk,s,fi,60}	[kN]	0,25	0,64	1,13	2,14
Characteristic bending resistance	M ⁰ _{Rk,s,fi,60}	[Nm]	0,22	0,75	1,66	4,32
Duration of fire resistance = 90min	, , , ,					
Characteristic resistance	$V_{Rk,s,fi,90}$	[kN]	0,19	0,49	0,98	1,85
Characteristic bending resistance	M ⁰ _{Rk,s,fi,90}	[Nm]	0,17	0,58	1,44	3,74
Duration of fire resistance = 120min	1					
Characteristic resistance	V _{Rk,s,fi,120}	[kN]	0,14	0,39	0,75	1,43
Characteristic bending resistance	M ⁰ _{Rk,s,fi,120}	[Nm]	0,12	0,46	1,11	2,88
Concrete pryout failure	, , , ,					•
The characteristic resistance $V_{rk,cp,fi,Ri}$ in concrete	e C20/25 to C50/60 i	s detern	nined by:			
$V_{Rk,c,fi(90)} = k_8 \times N_{Rk,c,fi(90)} (\leq R90)$ and $V_{Rk,c,fi(120)} = k \times N_{Rk,c,fi(120)}$ (up to R120)						
Factor k	k ₈	[-]	1	1	2	2
Concrete edge failure	'					
The characteristic resistance V _{rk on fi Ri} in concrete	e C20/25 to C50/60 i	s detern	nined by			

The characteristic resistance $V_{rk,cp,fi,Ri}$ in concrete C20/25 to C50/60 is determined by $V^0_{Rk,c,fi[90]} = 0,25 \times V^0_{Rk,c}$ (R30, R60, R90) and $V^0_{Rk,c,fi[120]} = 0,20 \times V^0_{Rk,c}$ (R120) with $V^0_{Rk,c}$ as an initial value of the characteristic resistance of a single anchor in cracked concrete C20/25

Ratto Concrete Screw M3CE	
Performances	Annex C 4
Characteristic values for fire exposure under shear loads	

Table C5: Displacements

Tension loads in cracked and uncracked concrete			M3CE Ø8/6	M3CE Ø10/8	M3CE Ø12/10	M3CE Ø16/14	
Service tension load in uncracked concrete C20/25	N _{ucr}	[kN]	7,62	8,89	11,90	13,61	
Displacements	$\delta_{\text{NO,ucr}}$	[mm]	0,76	0,74	0,63	0,74	
	$\delta_{N\infty,ucr}$	[mm]	0,29	0,34	0,23	0,41	
Service tension load in cracked concrete C20/25	N _{cr}	[kN]	1,90	4,17	4,29	5,44	
Displacements	$\delta_{\text{N0,cr}}$	[mm]	0,27	0,39	0,45	0,79	
	δ _{N∞, cr}	[mm]	0,53	0,77	0,97	1,05	
Shear loads in cracked and uncracked concrete							
Service shear load in cracked and uncracked concrete C20/25	V	[kN]	4,50	9,60	15,40	27,10	
Displacements	δ_{V0}	[mm]	0,94	1,47	1,87	3,00	
	$\delta_{V^{\infty}}$	[mm]	1,41	2,20	2,81	4,50	
Seismic performance category C2							
Damage limit state							
Tension load	$\delta_{N,eq(DLS)}$	[mm]	NPD	NPD	0,16	0,56	
Shear load	$\delta_{V,eq(DLS)}$	[mm]	NPD	NPD	5,65	5,54	
Ultimate limit state							
Tension load	$\delta_{N,eq(ULS)}$	[mm]	NPD	NPD	1,02	2,23	
Shear load	$\delta_{V,eq(ULS)}$	[mm]	NPD	NPD	10,08	8,78	

Ratto Concrete Screw M3CE	
Performances	Annex C 5
Displacements	