

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0366 of 15 June 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Nailed-in anchor CNplus 8

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Knauf Gips KG Am Bahnhof 7 97346 Iphofen DEUTSCHLAND

Knauf Gips KG

17 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

European Technical Assessment ETA-18/0366

Page 2 of 17 | 15 June 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0366

Page 3 of 17 | 15 June 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Nailed-in anchor CNplus 8 consists of an anchor sleeve with an enlarged shaft made of polypropylene (virgin material), an insulation plate made of glass fibre reinforced polyamide (virgin material) and a special compound nail consisting of two parts, one made of glass fibre reinforced polyamide for the shaft element and the other part made of galvanised steel.

The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates DT 90, DT 110 and DT 140.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Displacements	See Annex C 3

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance		
Point thermal transmittance	See Annex C 2		

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

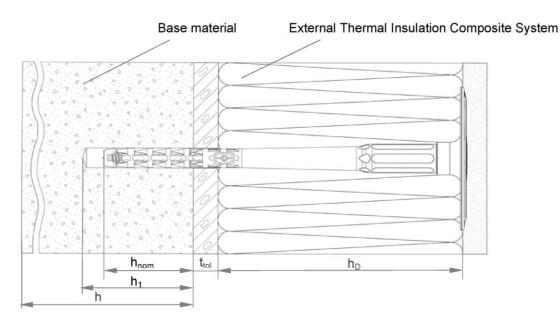
The system to be applied is: 2+

European Technical Assessment ETA-18/0366

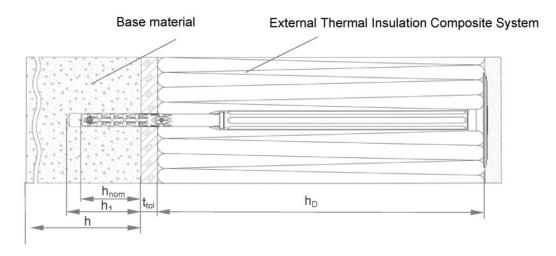
Page 4 of 17 | 15 June 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 15 June 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department E. Aksünger

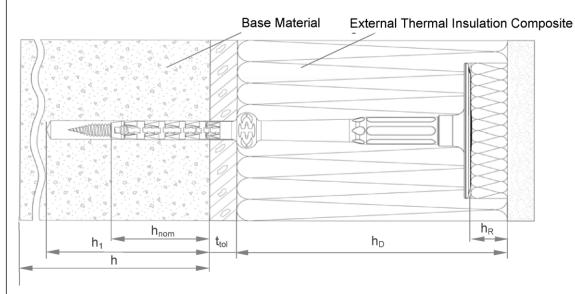
Nailed-in anchor CNplus 8 / 110 - 230 - flush mounted

Nailed-in anchor CNplus 8 / 250-390 - flush mounted

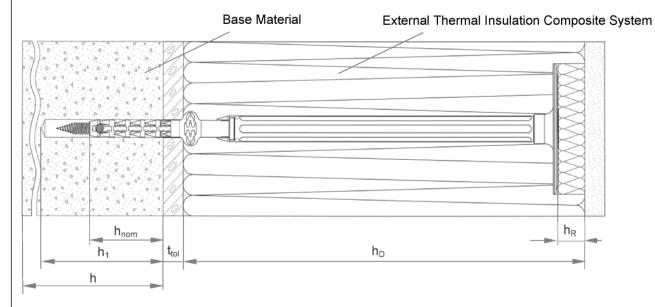
Legend

h_{nom} = Overall plastic anchor embedment depth in the base material

h₁ = Depth of drilled hole to deepest point


h = Thickness of member (wall) h_D = Thickness of insulation material

t_{tol} = Thickness of equalizing layer or non-load bearing coating


3	Nailed-in anchor CNplus 8	
	Product description Installed anchor – flush-mounted	Annex A1

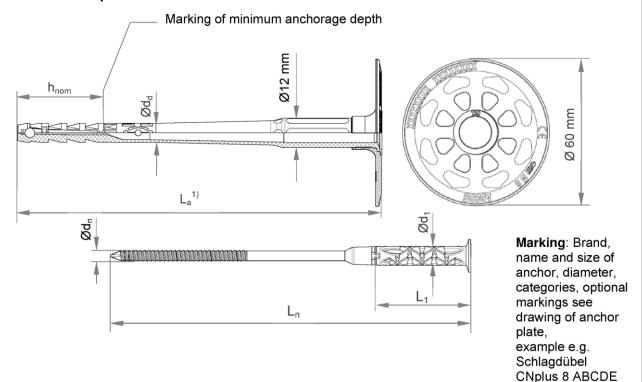
Nailed-in anchor CNplus 8 / 110 – 230 – countersunk mounted

Nailed-in anchor CNplus 8 / 250 - 390 - countersunk mounted

Legend

 h_{nom} = Overall plastic anchor embedment depth in the base material

 h_1 = Depth of drilled hole to deepest point


h = Thickness of member (wall)
 h_D = Thickness of insulation material
 h_R = Thickness of insulation cap

t_{tol} = Thickness of equalizing layer or non-load bearing coating

Nailed-in anchor CNplus 8	A 40
Product description Installed anchor – countersunk mounted	Annex A2

Nailed-in anchor CNplus 8 / 110-230

1)Various lengths of the anchors are possible:

e.g. for Nailed-in anchor CNplus 8 / 110 – 230: 110 mm \geq L_a \leq 230 mm

 $L_a = L_n + 1.5 \text{ mm}$

Determination of maximum thickness of insulation: $h_D = L_a - h_{nom} - t_{tol}$

e.g. for Nailed-in anchor CNplus 8x150: $L_a = 148$ mm, $h_{nom} = 35$ mm, $t_{tol} = 10$ mm

 $h_D = 148 - 35 - 10 \approx 100$

Table A3.1: Dimensions Nailed-in anchor CNplus 8 / 110-230

Anchor type	Ancho		Specific	compound	nail	
	Ø d _d [mm]	h _{nom} [mm]	Ø d _n [mm]	L _n [mm]	L ₁ [mm]	Ø d₁ [mm]
Nailed-in anchor CNplus 8 / 110-230	8	35/55 ¹⁾	4,3	L _a – 1,5	40	8

Only for use cat. D & E

Nailed-in anchor CNplus 8	
Product description Dimensions Nailed-in anchor CNplus 8 / 110-230	Annex A3

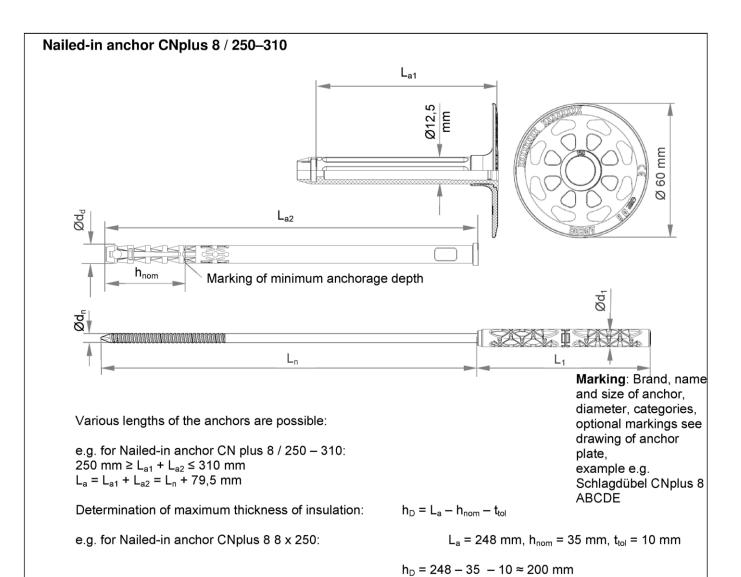
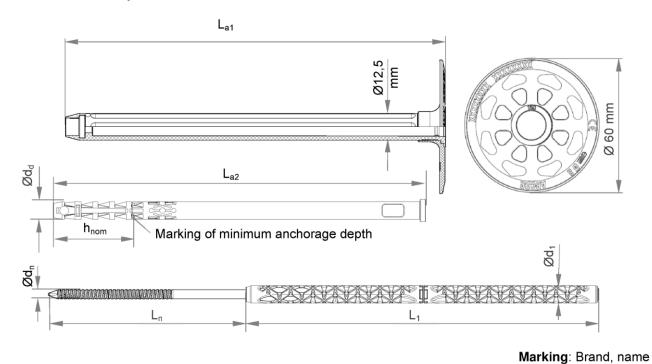


Table A4.1: Dimensions Nailed-in anchor CNplus 8 / 250 - 310


Anchor type	Shaft	Anchor sleeve			S	Specific compou	nd nai	I
	L _{a1} [mm]	Ø d _d [mm]	h _{nom} [mm]	L _{a2} [mm]	Ø d _n [mm]	L _n [mm]		Ø d₁ [mm]
Nailed-in anchor CNplus 8 / 250 – 310	81	8	35/55 ¹⁾	167 - 247	4,3	(L _{a1} +L _{a2}) – 79,5	77,5	8

¹⁾ Only for use cat. D & E

Nailed-in anchor CNplus 8		
Product description Dimensions Nailed-in anchor CNplus 8 / 250-310)	Annex A4

Various lengths of the anchors are possible:

e.g. for Nailed-in anchor CNplus 8 / 330 – 390:

330 mm $\geq L_{a1} + L_{a2} \leq$ 390 mm $L_a = L_{a1} + L_{a2} = L_n + 159,5$ mm

Determination of maximum thickness of insulation:

 $h_D = L_a - h_{nom} - t_{tol}$

e.g. for Nailed-in anchor CNplus 8 x 330:

 $L_a = 328 \text{ mm}, h_{nom} = 35 \text{ mm}, t_{tol} = 10 \text{ mm}$

and size of anchor, diameter, categories, optional markings see

example e.g.

ABCDE

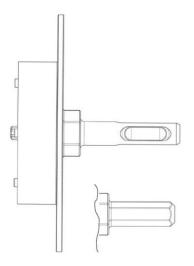
drawing of anchor plate,

Schlagdübel CNplus 8

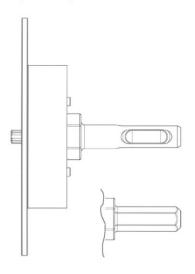
 $h_D = 328 - 35 - 10 \approx 280 \text{ mm}$

Table A5.1: Dimensions Nailed-in anchor CNplus 8 / 330 - 390

Anchor type	Shaft	Anchor sleeve			S	Specific compou	nd nail	
	L _{a1} [mm]	Ø d₀ [mm]	h _{nom} [mm]	L _{a2} [mm]	Ø d _n [mm]	L _n [mm]	L ₁ [mm]	Ø d₁ [mm]
Nailed-in anchor CNplus 8/ 330 – 390	161	8	35/55 ¹⁾	167 - 247	4,3	(L _{a1} +L _{a2}) – 159,5	157,5	8

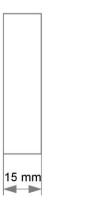

¹⁾ Only for use cat. D & E

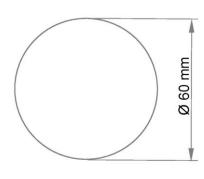
Nailed-in anchor CNplus 8	
Product description Dimensions Nailed-in anchor CNplus 8 / 330-390	Annex A5



Setting tool with SDS adapter or hexagonal adapter available Nailed-in anchor CNplus 8

Countersunk setting 1)




optional plain surface setting

1) Alternatively, it is possible to mill the insulation material with a standard, market-available milling tool.

Polystyrene or mineral wool cap

Nailed-in anchor CNplus 8

Product description
Setting tool for Nailed-in anchor CNplus 8

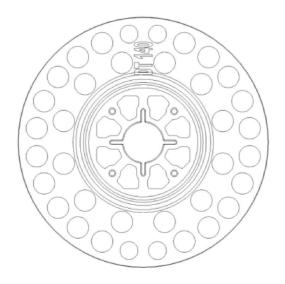

Annex A6

Table A7.1: Material

Designation	Material		
Anchor sleeve	PP (virgin material), colour: grey		
CNplus 8 / 250 - 390	PA6 (virgin material)GF, colour: grey		
CNplus 8 / 110 – 230 or CNplus 8 / 250 - 390	PA6 GF (plastic part of compound nail) Steel gal Zn A2G or A2F according to EN ISO 4042 : 1999		
Anchor plate	PA6 (virgin material) GF colour: grey and blue		
Slip-on plate	PA6 (virgin material) GF colour: grey and blue		

Drawing of the slip-on plates

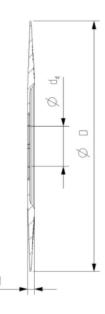


Table A7.2: Slip-on plate, diameters and material

Slip-on plate	Ø D [mm]	Ø d₀ [mm]	d [mm]	Material
DT 90 / 110 / 140	90 / 110 / 140	22,5	3,9	PA6 GF

Nailed-in anchor CNplus 8	
Product description	Annex A7
Material	
Slip-on plates combined with Nailed-in anchor CNplus 8	

Specifications of intended use

Anchorages subject to:

The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the external thermal insulation composite system (ETICS).

- Normal weight concrete (use category A), according to Annex C1 and C2.
- Solid masonry (use category B), according to Annex C1 and C2.
- Hollow or perforated masonry (use category C), according to Annex C1 and C2.
- Lightweight aggregate concrete (use category D), according to Annex C1 and C2.
- Autoclaved aerated concrete (use category E), according to Annex C1 and C2.
- For other base materials of the use categories A, B, C, D and E the characteristic resistance of the anchor may be determined by job site tests acc. to EOTA Technical Report TR 051 Edition December 2016.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$ in absence of other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchors is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of ETICS.

Installation:

electronic copy of the eta by dibt: eta-18/0366

- Hole drilling by the drill modes according to Annex C1 and C2.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks.

Nailed-in anchor CNplus 8	
Intended use Specification	Annex B1

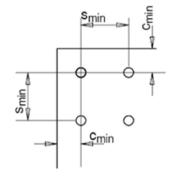
738172 18 8.06.04-119/18

Table B2.1: Installation parameters / flush mounted

Anchor type	Nailed-in anchor CNplus 8			
Drill hole diameter	d_0	=	[mm]	8
Cutting diameter of drill bit	d_cut	≤	[mm]	8,45
Depth of drilled hole to deepest point	h ₁	≥	[mm]	45/55 ¹⁾ /65 ²⁾
Overall plastic anchor embedment depth in the base material	h_{nom}	2	[mm]	35/45 ¹⁾ /55 ²⁾

 $^{^{1)}}$ Only CNplus 8: for weather shell (thin concrete slabs) : 35 mm \leq $h_{nom}~\leq$ 45 mm $^{2)}$ Nailed-in anchor CNplus 8: Only for use cat. "D" & "E"

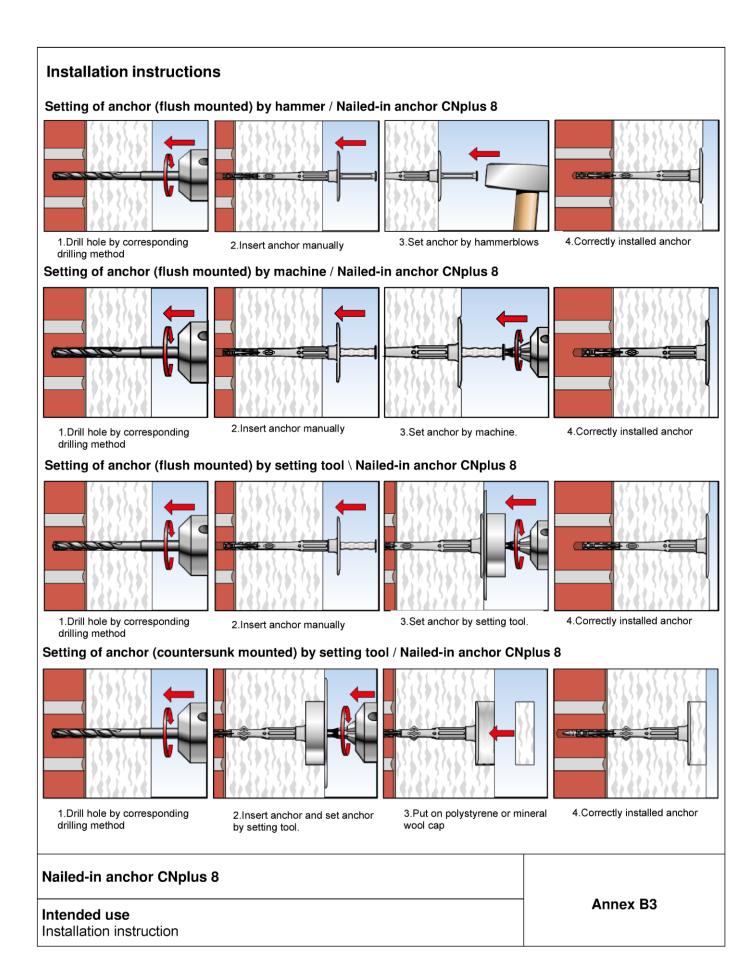
Table B2.2: Installation parameters / countersunk mounted


Anchor type	Nailed-in anchor CNplus 8			
Drill hole diameter	d_0	=	[mm]	8
Cutting diameter of drill bit	d_{cut}	≤	[mm]	8,45
Depth of drilled hole to deepest point	h₁	≥	[mm]	60/70 ¹⁾ /80 ²⁾
Overall plastic anchor embedment depth in the base material	h _{nom}	≥	[mm]	35/45 ¹⁾ /55 ²⁾

 $^{^{1)}}$ valid for weather shell (thin concrete slabs): 35 mm $\leq h_{nom}~\leq$ 45 mm

Table B2.3: Minimum distances and spacing

	Nailed-in anchor CNplus 8			
Minimum thickness of member	h_{min}	=	[mm]	100
Minimum spacing	S _{min}	=	[mm]	100
Minimum edge distance	C _{min}	=	[mm]	100


Scheme of distance and spacing

Nailed-in anchor CNplus 8	
Intended use	Annex B2
Installation parameters	
Minimum distances and spacing	

²⁾ Only for use cat. "D" & "E"

Base material	Use cat. ¹⁾	pressive strength f_b	Bulk density p [kg/dm³]	Remarks	Drill method	Characteristic resistance N _{Rk} [kN] Nailed-in anchor
Concrete ≥ C12/15 - C50/60		[N/mm ²]				CNplus 8
EN 206-1:2000	A	-	-	-	Н	0,9
Weather resistant concrete shell ≥ C20/25 EN 206-1:2000	Α	-	-	$h \ge 42 \text{ mm}$; $t_{\text{fix}} \ge 35 \text{mm}$	н	0,9
Solid clay bricks Mz acc. to EN 771-1:2011	В	20	≥ 1,8		Н	0,9
Calcium silicate solid bricks KS acc. to EN 771-2:2011	В	20	≥ 1,8	Cross section reduced up to 15% by perforation	н	0,9
Solid concrete blocks Vbn acc. to EN 771-3:2011	В	20	≥ 2,0	vertically to the resting area	Н	0,9
Lightweight concrete blocks Vbl acc. to EN 771-3:2011	В	10	≥ 1,6		Н	0,75
Vertically perforated clay bricks HIz		48	≥ 1,6	Cross section reduced between 15% and 50% by perforation vertically to the resting area. Exterior web thickness ≥ 17 mm		0,75
acc. to EN 771-1:2011	С	12	≥ 1,0	Cross section reduced between 15% and 50% by perforation vertically to the resting area. Exterior web thickness ≥ 15 mm	R	0,5
Hollow calcium silicate brick KSL acc. to EN 771-2:2011	С	16	≥ 1,4	Cross section reduced between 15% and 50% by perforation vertically to the resting area. Exterior web thickness ≥ 16 mm	Н	0,5
Lightweight concrete hollow blocks Hbl , acc. to EN 771-3:2011	С	10	≥ 1,2	Cross section reduced between 15% and 50% by perforation vertically to the resting area. Exterior web thickness ≥ 38 mm	Н	0,6
Lightweight aggregate concrete LAC , acc. to EN 1520:2011, EN 771-3:2011	D	6	≥ 0,9	-	Н	0,43)
Autoclaved aerated concrete blocks, AAC acc. to EN 771-4:2011	Е	4	> 0,4	-	R	0,3 ³⁾

¹⁾ See Annex B1

²⁾ R = Rotary drilling | H = Hammer drilling

Nailed-in anchor CNplus 8

Performance

Characteristic resistance Nailed-in anchor CNplus 8

Annex C1

 $^{^{3)}}$ Only valid for $h_{nom} \geq 55 \ mm$

Table C2.1: Point thermal transmittance acc. to EOTA Technical Report TR 025 : 2016 – 05 Nailed-in anchor CNplus 8 - flush mounted

Thickness of insulation	Point thermal transmittance χ [W/K]				
material h _D [mm]	cat. A	cat. B	cat. C	cat. D	cat. E
60	0,001	0,001			0
80	0,001	0,001	0,001	0,001	
100				0,001	
120					
140			0,002	0,002	
160			0,002	0,002	0,001
180	0,002	0,002			
200		0,001		0.001	
220				0,001	
240					
260			0,001	0	
280			0,001		0
300	0,001	0,001		0,001	
320	3,301	0,501		5,501	
340				-	-

Table C2.2: Point thermal transmittance acc. to EOTA Technical Report TR 025 : 2016 – 05 Nailed-in anchor CNplus 8 - countersunk mounted

Thickness of insulation	Point thermal transmittance χ [W/K]				
material h _D [mm]	cat. A	cat. B	cat. C	cat. D	cat. E
80		0	0	0	0
100	0,001				
120	0,001	0.001			
140		0,001	0,001		0,001
160	0,002			0,001	
180	0,002	0,002	0,001		
200			0,001		
220	0.001	0.001			
240	0,001	0,001			
260					
280	0	0	0] ,	
300			0	0	0
320	0,001	0,001	0.001		
340			0,001	-	-

Table C2.3: Plate stiffness acc. to EOTA Technical Report TR 026: 2016 - 05

Anchor type	Size of the anchor plate	Load resistance of the anchor plate	Plate stiffness
	[mm]	[kN]	[kN/mm]
termoz CN plus	60	1,7	0,6

Nailed-in anchor CNplus 8	
Performance Point thermal transmittance / Plate stiffness	Annex C2

Table C3.1: Displacements CNplus 8

	Nailed-in ar	nchor CNplus 8
Base material	Tension load F [k N]	Displacements δ [mm]
Concrete ≥ C12/15 – C50/60 (EN 206-1:2000)	0,30	< 0,1
Weather resistant concrete shell ≥ C20/25 (EN 206-1:2000)	0,30	< 0,1
Clay brick (EN 771-1:2011), Mz 20	0,30	< 0,2
Calcium silicate solid bricks (EN 771-2:2011), KS 20	0,30	< 0,2
Solid concrete blocks (EN 771-3:2011), Vbn 20	0,30	< 0,2
Lightweight concrete solid blocks (EN 771-3:2011), Vbl 10	0,25	< 0,1
Vertically perforated clay brick (EN 771-1:2011), Hlz 48	0,25	< 0,2
Vertically perforated clay brick (EN 771-1:2011), Hlz 12	0,17	< 0,1
Hollow calcium silicate brick (EN 771-2:2011), KSL 16	0,17	< 0,1
Hollow brick lightweight concrete (EN 771-3:2011), Hbl 10	0,20	< 0,1
Lightweight aggregate concrete (EN 1520:2011, EN 771-3:2011) LAG	0,13	< 0,2
Autoclaved aerated concrete blocks (EN 771-4:2011)	0,10	< 0,1

Nailed-in anchor CNplus 8	
Performance Displacements	Annex C3