

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0644 of 5 November 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ICCONS ThunderBolt® Pro - XTM

Fasteners for use in concrete for redundant non-structural systems

ICCONS Pty Ltd (New Zealand) c/o - 5E Piermark Drive Rosedale AUCKLAND 0632 NEUSEELAND

Factory Plant 1

14 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0644

Page 2 of 14 | 5 November 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 5 November 2018

Specific Part

1 Technical description of the product

The ICCONS ThunderBolt® Pro – XTM is an anchor made of galvanised or stainless steel of size 6. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 and C 4

3.2 Safety in use (BWR 4)

Essential characteristic	Performance	
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1	
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2	

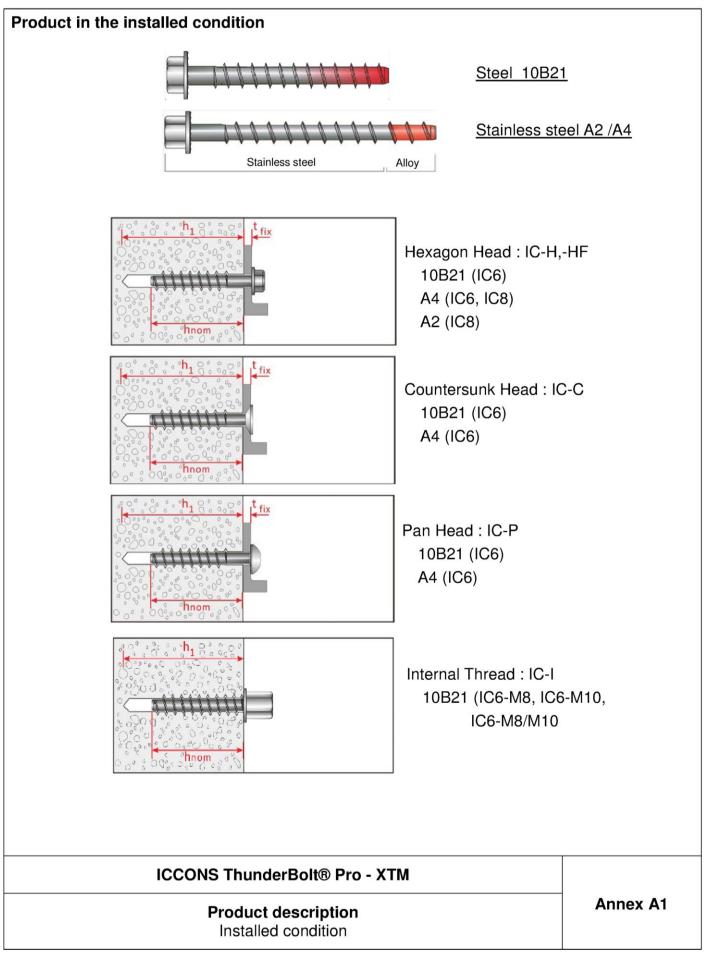
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-18/0644 English translation prepared by DIBt

Page 4 of 14 | 5 November 2018


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 5 November 2018 by Deutsches Institut für Bautechnik

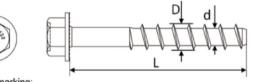
BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Name				Mat	erial					
Screw										
anchor	Head marking	mate				1400				
	IC	Steel			:. To SAE		d (> 5	um)		
					nical plat			<i>p</i> (11)		
	IC A4		nles	s steel 1	.4401, 1.			4)		
	IC A2	Stain	nles	s steel 1	.4301					
						IC 6		I	C 8]
	Anchor size / head typ	es	۶		-H -HF -C -P -I	-H -HF	-C -P	-H	-H	-
	material				10B21	A	4	A2	A4	
	Nominal value of the characteristic yield structure	ength f	yk	N/mm²	780	640	432	640	640	
	Nominal value of the characteristic teisile strength	f	: uk	N/mm ²	870	800	540	800	800	
	Elongation at rupture	A	As	[%]			≤ 8			
				5 10 <i>x</i> 50 10 10 10 10 10 10 10 10 10 10 10 10 10	1) IC- 2) IC-	lexagoı -H size -H A4 s -H A2 s	6 size 6,8	s (sta	321 steel) inless A4 inless A2	.)
			100		3) IC-	lexagoı -HF siz -HF A4	e 6		321 steel) inless A4	
	5 6x130	5 64 A4.	1120		5) IC-	ounter -C size -C A4 s	6	(10	B21 steel ainless A4	,
	C 64/28		1120		7) IC	an hea -P size -P A4 s	6	•	B21 steel ainless A4	,
					9) IC	-I size	6 with	internal		eel) 18 or M10 18 and M10

ICCONS ThunderBolt® Pro - XTM

Product description

Materials and screw types

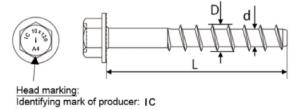

Annex A2

electronic copy of the eta by dibt: eta-18/0644

Deutsches Institut für Bautechnik

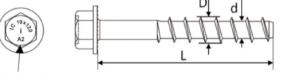
Anchor size					IC 6			IC	8	
Head type			H, HF, P	С	H, HF, P	С	I	н	н	
Material			Stee	l	Stain	less	Steel	Stainless	Stainless	
			10B2	1	A	1	10B21	A2	A4	
Nominal	h _{nom}	[mm]	55		70)	55	52	52	
Embedment										
depth										
Length of	min L	[mm]	60	65	75	80	57	55	55	
anchor	max L	[mm]			140		57	1	50	
Thread diameter	D	[mm]			7,5			9,9		
Shaft diameter	d	[mm]			5,5			7,4		
Thread pitch	р	[mm]			4,45			5	,8	

Steel 10B21



Reverse Locking Serrations

Head marking: Identifying mark of producer: IC Nominal size: e.g. 6mm Length L: 70mm


Nominal size: e.g. 6mm Length L: 85mm Material: A4

Stainless Steel A4

Reverse Locking Serrations

Stainless Steel A2

Head marking: Identifying mark of producer: IC Nominal size: e.g. 8mm Length L: 65mm Material: A2

Reverse Locking Serrations

ICCONS ThunderBolt® Pro - XTM

Product description

Dimensions and markings

Annex A3

Specifications of Intended use

Anchorages subject to:

- Static and quasi-static loads:
- · Used only for multiple use for non-structural application.
- Fire exposure: only for concrete C20/25 to C50/60.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013,
- Strength classes C20/25 to C50/60 according to EN 206:2013,
- · Non-cracked or cracked concrete: all sizes.

Use conditions (Environmental conditions)

- Anchorages subject to dry internal conditions. (zinc plated steel and stainless steel)
- Anchorages subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. (only stainless steel with marking A4)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere or indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with FprEN 1992-4:2016 Design method A and TR 055, Edition December 2016

Installation:

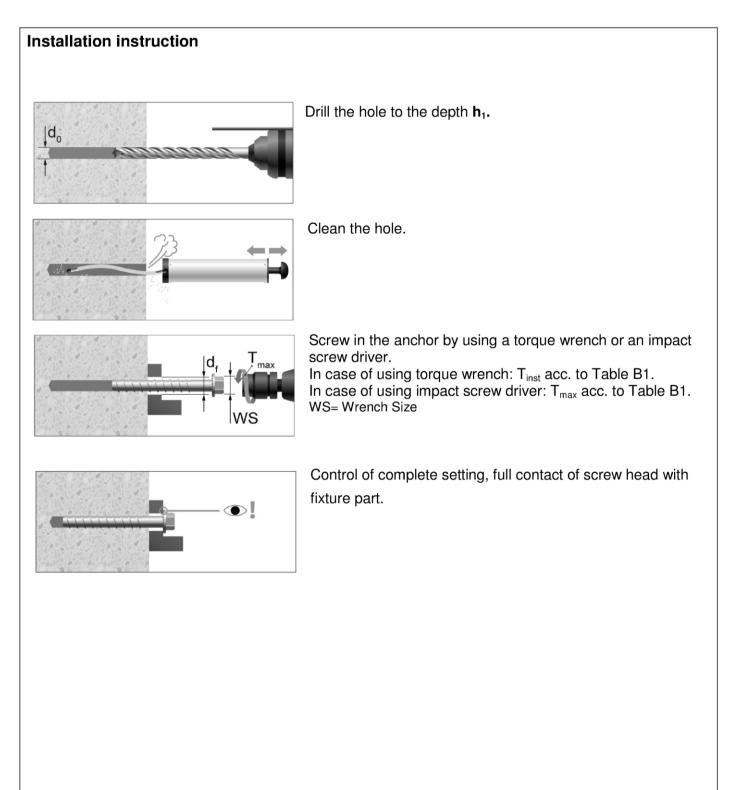
- · Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor shall not be possible.
- The head of the anchor must be fully engaged on the fixture and show no signs of damage.

ICCONS ThunderBolt® Pro - XTM

Intended use Specifications Annex B1

Anchor size						IC	-			IC	8	
Head type			H, H	Р	1	с	H, HF	Ρ	С	н	н	
Material					Steel 0B21			Stain A		Stainless A2	Stainless A4	
Nominal diameter of drill bit	d ₀	[mm]				6				8		
Nominal embedment depth	h _{nom}	[mm]	55					70)	52		
Min. hole depth in concrete	h₁≥	[mm]	64				80			65		
Effective anchorage depth	h _{ef}	[mm]	42,6				43	,1	22,2			
Clearance hole	d _f	[mm]				9				1	1	
Thickness of fixture	tfix	[mm]	5-8	85	-	10-85	5-	70	10-70	3-	98	
Installation torque ¹⁾	T _{inst}	[Nm]	20	- ¹⁾	20	_1)	-	1)	_1)	3	1	
Wrench size	ws	[mm]	10	-	12,7	-		-	-	1	3	
Torx size	ΤХ	-	-	40	-	40	-	40	40		-	
Max. power output, machine setting	T _{max} ≤	[Nm]		-	80		120	80	80	18	35	

1) Screws can only be set using a impact screw driver.


Table B2: Minimum thickness of member, minimum spacing and edge distance

Anchor size			IC	6	IC	8	
			H, HF, C, P, I	H, HF, C, P	Н	н	
Material			Steel 10B21	Stainless A4	Stainless A2	Stainless A4	
Minimum member thickness	h _{min}	[mm]	100	110	100		
Minimum edge distance	C _{min}	[mm]	40	40	55		
Minimum spacing	S _{min}	[mm]	40	40	55		

ICCONS ThunderBolt® Pro - XTM

Intended use Installation parameters Annex B2

Intended Use Installation Instruction Annex B3

Anchor size					IC	6			IC 8		
Head type			H,HF,I	с	Р	H,HF	с	Р	нн		
Material			Steel Stainless 10B21 A4					6	Stainless A2	Stainles A4	
		s	teel fail	ure		1					
Characteristic resistance	N _{Rk,s}	[kN]		19,7		18,1	12,2	12,2	33,0	33,0	
Partial factor	γ́Ms	[-]		1,4			1,5	1	1,	,5	
		Pu	ll-out fa	ilure							
Characteristic resistance in cracked and uncracked concrete C20/25	N _{Rk,p}	[kN]	5,0	5,0	4,0	5,0	3,5	2,5	2,	,0	
Increasing factors for N _{Rk,p} in cracked or non-cracked concrete	Ψc	C30/37 C40/50 C50/60			1,2 1,4 1,5	41			,	20 37 51	
Installation factor	γinst	[-]		1,0			1,0		,	,0	
		Concr	ete con	e failur	e						
Effective anchorage depth	h _{ef}	[mm]		42,6			43,1		22,2		
Characteristic edge distance	C _{cr,N}	[mm]				1	,5h _{ef}		1		
Characteristic spacing	S _{cr,N}	[mm]				3	,0h _{ef}				
Installation factor	Yinst	[-]		1,0			1,0		1,	,0	
Factor for cracked concrete	k _{cr,N}	[-]					7,7				
Factor for uncracked concrete	k _{ucr,N}	[-]					11,0				
		-	litting fa								
Proof of splitting is required	-	[-]		Yes			Yes		Ye	es	
Characteristic edge distance for splitting	C _{cr,sp}	[mm]		1,5h _{ef}			1,5h _{ef}		2,5	5h _{ef}	
Characteristic anchor spacing for splitting	S _{cr,sp}	[mm]		3,0h _{ef}			3,0h _{ef}		5,0)h _{ef}	
Installation factor	γinst	[-]		1,0			1,0		1,	,0	
Factor for cracked concrete	k _{cr,N}	[-]					7,7				
Factor for uncracked concrete	k _{ucr,N}	[-]					11,0				

Performance

Characteristic values under tension loading

Annex C1

electronic copy of the eta by dibt: eta-18/0644

Anchor size						IC 8						
Head type			H,HF,I	H,HF,I C P H,HF C				Р	н	н		
Material				Steel 10B21			Stainless A4	L	Stainless A2	Stainless A4		
Setting depth	h _{nom}	[mm]		55			70		52			
Effective embedment depth	h _{ef}	[mm]		42,6			43,1		22,2			
		Stee	l failure	withou	t lever a	arm		_	·			
Characteristic resistance	V _{Rk,s}	[kN]		7,9		9,0	6,1	6,1	1	3,2		
Ductility factor	k ₇	[-]				1	0,8		1			
Partial factor	γ _{Ms}	[-]	1,5				1,25	1	1,25			
		Ste	eel failur	e with	lever ar	m						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]		15,9		15,9		14,6	9,9	9,9	3	5,9
Partial factor	γ _{Ms}	[-]		1,5			1,25	1	,25			
		C	Concrete	e pryou	t failure	•						
k-factor	k ₈	[-]		1,0			1,0		1	,0		
Partial factor	γмср	[-]					1,5					
			Concret	e edge	failure							
Effective length of anchor in shear loading	ℓ _f	[mm]		42,6			43,1	22,2				
Effective diameter of anchor	d _{nom}	[mm]			Į	5,37			7,4			
Partial factor	γмс	[-]				1,5						

ICCONS ThunderBolt® Pro - XTM

Performance

Characteristic values under shear loading

Annex C2

Anchor size						ю	C 6			IC	8	
Head type				H,HF,I	С	Р	H,HF	С	Р	н	н	
Material				I	Steel 10B21			Stainless A4		Stainless A2	Stainless A4	
Partial factor		γ _{M,fi}	[-]		1,0			1,0		1,	,0	
				Ste	el failur	е				1		
	R30	N _{Rk,s,fi}	[kN]		0,23			0,23		0	8	
Characteristic resistance	R60	N _{Rk,s,fi}	[kN]	0,20				0,20		0,	7	
ondiacteristic resistance	R90	N _{Rk,s,fi}	[kN]		0,16		0,16			0,5		
	R120	N _{Rk,s,fi}	[kN]		0,11			0,11		0	4	
				Pull-	out failu	ure				1		
Characteristic resistance			[kN]	1,	3	1,0	1,3	0,9	0,6	0,	5	
in concrete >= C20/25	R90											
	R120 N _{Rk,p,fi} [kN				0	0,8	1,0	0,7	0,5	0	4	
			(Concret	e cone	failure	1			1		
	R30	N ⁰ _{Rk,c,fi}	[kN]		2.0		2,1			0,4		
Characteristic resistance in concrete >= C20/25	R60 R90	IN Rk,c,fi	[גוא]	2,0				2,1				
		N ⁰ _{Rk,c,fi}	[kN]		1,6			1,7	0,	3		
Effective embedment dep	oth	h _{ef}	[mm]		42,6			43,1		22	.,2	
Minimum member thickne	ess	h _{min}	[mm]		100			110		10	00	
Que en la co		S _{cr,N,fi}	[mm]					4h _{ef}		1		
Spacing		S _{min}	[mm]			4	0			55	5	
Edge distance		C _{cr,N,fi}	[mm]									
Fire exposure from one s only	ide	C _{min}	[mm]	40						55		
Fire exposure from more one side	than						≥ 30	00 mm				

ICCONS ThunderBolt® Pro - XTM

Performance

Characteristic values for resistance to fire

Annex C3

Anchor size						IC	8				
Head type				H, HF,IC	Р	H, HF	с	Р	н	н	
Material				Steel 10B21		St	ainless A4		Stainless A2	Stainles A4	
Partial factor		γ _{M,fi}	[-]				1.0				
	•	Stee	l failure	without level	arm						
	R30	V _{Rk,s,fi}	[kN]	0,23	0,23 0,23				0,8		
Characteristic registeres	R60	V _{Rk,s,fi} [kN]		0,20	0,20			0,7			
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	0,16			0,16		0,5		
	R120	V _{Rk,s,fi}	[kN]	0,11			0,11		0,	,4	
		-	el failur	e with level a	'n						
	R30	M ⁰ _{Rk,p,fi}	[Nm]	0,18			0,18		0,	,9	
Characteristic resistance	R60	M ⁰ _{Rk,p,fi}	[Nm]	0,16			0,16		0,	,7	
	R90	M ⁰ _{Rk,p,fi}	[Nm]	0,13		0,13		0,5			
	R120	M ⁰ _{Rk,p,fi}	[Nm]	0,09		0,09			0,4		
			Pry-c	out failure							
k ₈			[-]	1,0			1,0		1,	,0	
	R30										
	R60	V _{Rk,cp,fi}	[kN]	2,0			2,1		0,	,4	
Characteristic resistance	R90										
	[kN]	1,6		1,7			,3				
			Concrete	edge failure							
	≤ R90	V _{Rk,c,fi}	[kN]		١	$I_{Rk,c,fi}^{0} = 0$),25 *		;		
Characteristic resistance	R120	V _{Rk,c,fi}	[kN]	$V^{0}_{Rk,c,fi} = 0,20 * V^{0}_{Rk,c}$							

ICCONS ThunderBolt® Pro - XTM

Performance

Characteristic values for resistance to fire

Annex C4