

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0945 of 13 November 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

STRONGCHEM Injection system PE585 PLUS for concrete

Bonded fastener for use in concrete

Strong Thai Corp Co., Ltd. 351/1 Soi Ram Intra 65 Taraeng Bangkhen BANGKOK THAILAND

Plant 1, Germany

25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0945

Page 2 of 25 | 13 November 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 13 November 2018

Specific Part

1 Technical description of the product

The "STRONGCHEM Injection System PE585 PLUS for concrete" is a bonded anchor consisting of a cartridge with injection mortar STRONGCHEM PE585 PLUS and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements (static and quasi-static loading)	See Annex C 8 to C 10
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 2, C 3, C 6 to C 8 and C 10

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

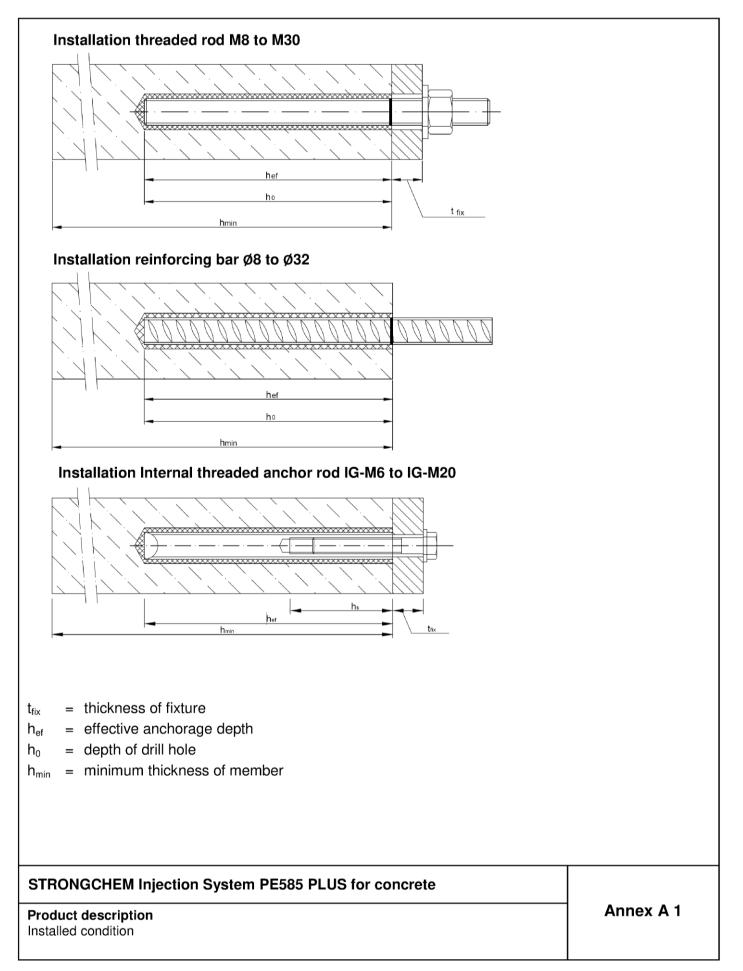
The system to be applied is: 1

European Technical Assessment ETA-18/0945

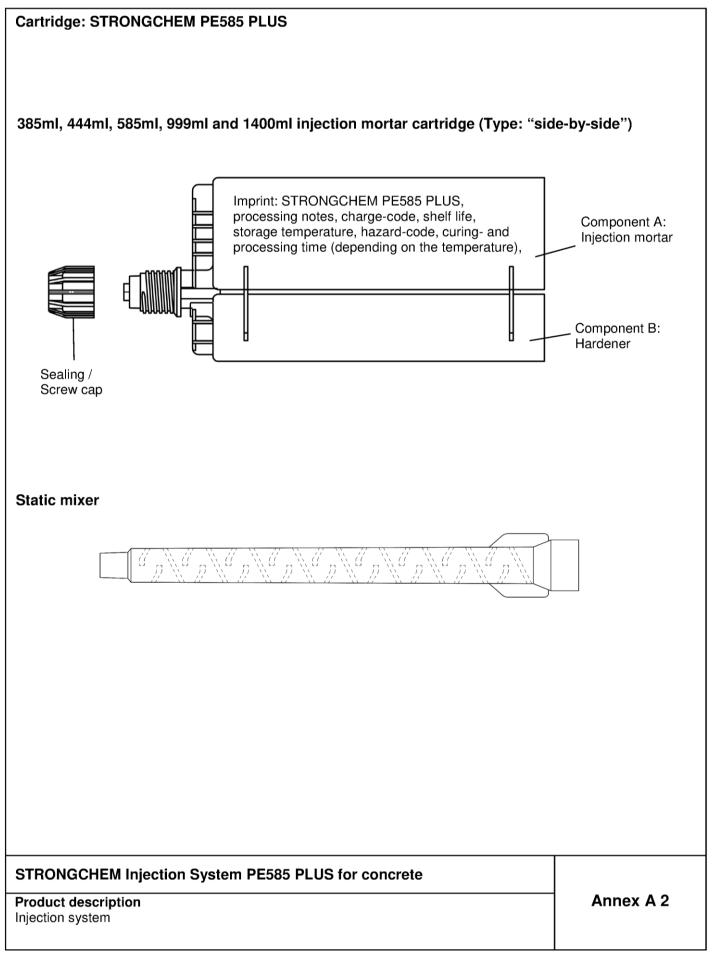
Page 4 of 25 | 13 November 2018

English translation prepared by DIBt

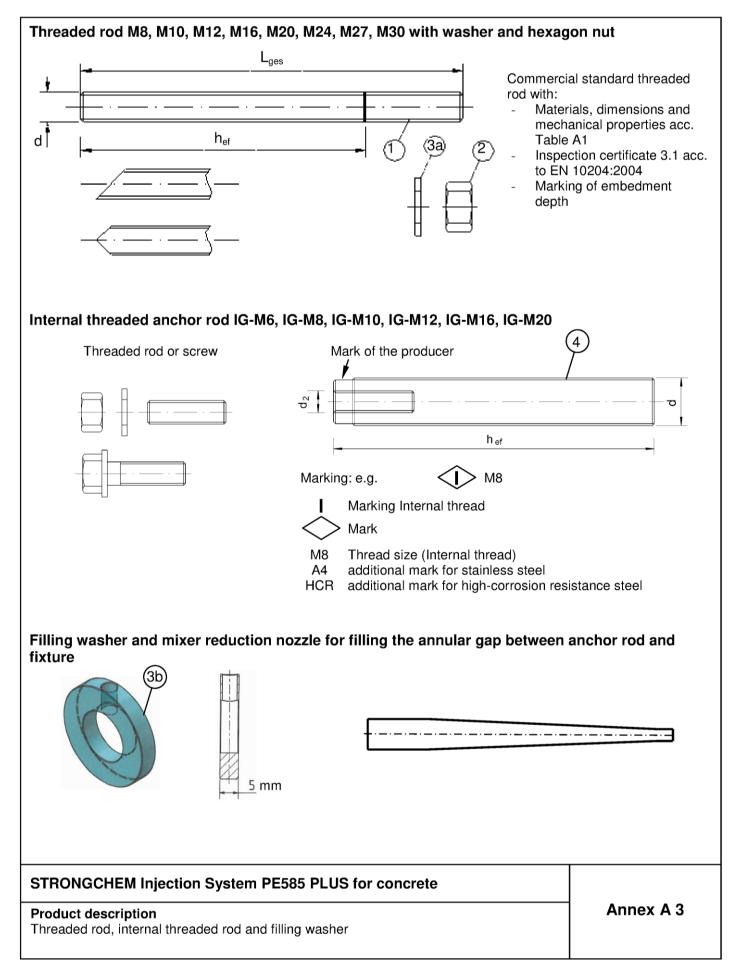
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

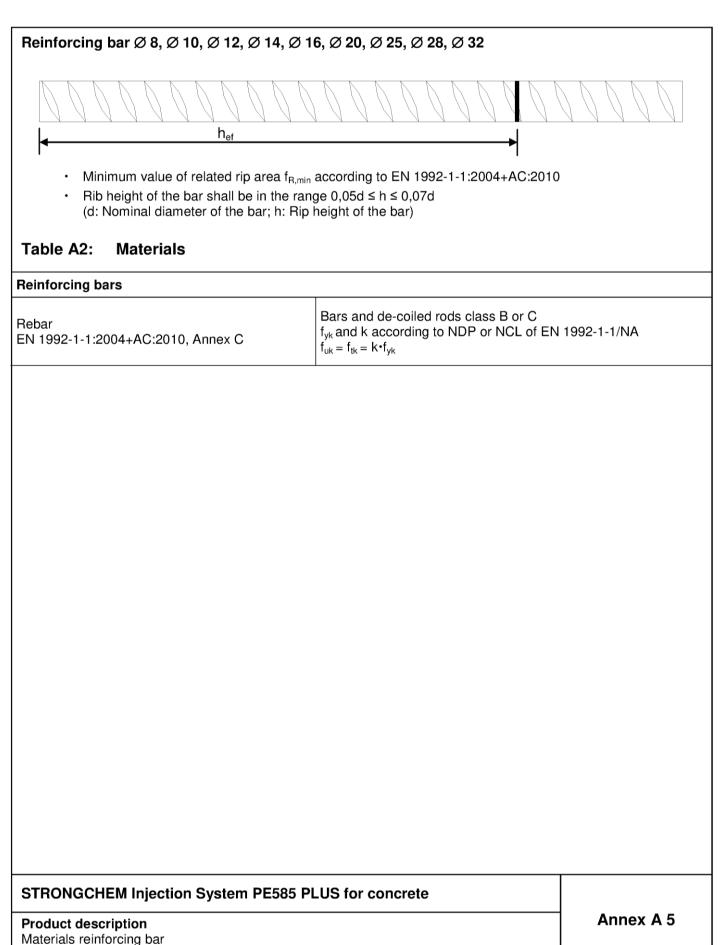

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 November 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider





	ble A1: Materials	Madavial							
	Designation	Material	-0001						
	I, zinc plated (Steel acc. to EN 10 plated \geq 5 µm acc. to EN ISO 4042:				and				
	SO $10684:2004 + AC:2009$ or sherard				9 and				
			4.6	f _{uk} =400 N/mm ² ; f _{vk} =240 N/mm ² ; A	- > 8% fracture elongation				
			4.8	f _{uk} =400 N/mm ² ; f _{yk} =320 N/mm ² ; A					
-	Anchevind	Property class							
1	Anchor rod	acc. to EN ISO 898-1:2013	5.6	f _{uk} =500 N/mm ² ; f _{yk} =300 N/mm ² ; A					
		EN 130 896-1.2013	3.0 10k-000 14/1111 , 19k-100 14/1111 , 15 2 1						
			8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ; A	$_{5}$ > 12% fracture elongation				
		Property class	4	for anchor rod class 4.6 or 4.8					
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8					
		EN ISO 898-2:2012	8	for anchor rod class 8.8					
3a 3b	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	Steel, zinc plated, hot-	dip ga	Ivanised or sherardized					
		Property class	5.8	f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ;	A ₅ > 8% fracture elongatio				
4	Internal threaded anchor rod	acc. to EN ISO 898-1:2013	8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ;	A ₅ > 8% fracture elongatio				
itai nd	nless steel A2 (Material 1.4301 / 1	.4303 / 1.4307 / 1.4567	oder	1.4541, acc. to EN 10088-1:2014	4)				
	nless steel A4 (Material 1.4401 / 1	.4404 / 1.4571 / 1.4362	or 1.4	578, acc. to EN 10088-1:2014)					
	l ·	Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A	$_{5} > 12\%$ fracture elongation				
1 Anchor rod ¹⁾⁴⁾		acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A					
		EN ISO 3506-1:2009	80						
		Property class	50	for anchor rod class 50	J				
2	2 Hexagon nut ¹⁾⁴⁾	acc. to	70	for anchor rod class 70					
		EN ISO 3506-1:2009	80	for anchor rod class 80					
3a 3b	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁵⁾	_A4: Material 1.4401 / 1	.4404	/ 1.4307 / 1.4567 or 1.4541, EN / 1.4571 / 1.4362 or 1.4578, EN	10088-1:2014				
4	Internal threaded anchor rod 1)2)	Property class acc. to	50 70	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ;					
1 I		EN ISO 3506-1:2009							
igr	corrosion resistance steel (Mate								
	1)	Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A					
1	Anchor rod ¹⁾	acc. to EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A	-				
			80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	$_5 > 12\%$ fracture elongation				
~	Library and 1)	Property class	50	for anchor rod class 50					
2	Hexagon nut 1)	acc. to EN ISO 3506-1:2009	70	for anchor rod class 70					
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7089:2000 and a EN ISO 7089:2000,		80 565. a	for anchor rod class 80					
ou	EN ISO 7093:2000 oder EN ISO 7094:2000)		, u						
	Hilling washer	1		f500 N/mm ² f210 N/mm ²					
3b	Filling washer	Property class	50	acc. to					
	Internal threaded anchor rod ^{1) 2)}	acc. to	50 70	$f_{uk}=700 \text{ N/mm}^2$; $f_{yk}=450 \text{ N/mm}^2$;					
3b 4 1) 2) 3) 4)		acc. to EN ISO 3506-1:2009 p to M24 and Internal the quirement for performan steel A4	70 reade	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; d anchor rods up to IG-M16,					

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 and M16 (except hot-dip galvanised rods).

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30. Rebar Ø8 to Ø32. IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C) II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018

Installation:

- Dry or wet concrete.
- Flooded holes (not sea water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

STRONGCHEM Injection System PE585 PLUS for concrete

Intended Use Specifications

Annex B 1

electronic copy of the eta by dibt: eta-18/0945

Table B1: Installation	parameters for	or threa	aded ro	bd					
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective embedment depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				$h_{ef} + 2d_0$		
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
	h _{ef,max} [mm] =		120	144	168	192	240	300	336	384
Minimum thickness of member	h _{min} [mm]	h , 30 mm								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internally threaded sleeve

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20	
Outer diameter of anchor ¹⁾	d _{nom} [mm] =	10	12	16	20	24	30	
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28	35	
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120	
Ellective ellibedillent depth	h _{ef,max} [mm] =	120	144	192	240	288	360	
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22	
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100	
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/20	12/30	16/40	20/50	
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm		h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150	
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150	

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

STRONGCHEM Injection System PE585 PLUS for concrete

Intended Use Installation parameters Annex B 2

Threaded Rod	Rebar		d₀ Drill bit - Ø HD, HDB, CD	d Brusl	-	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and u of piston plug			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		Ļ	\rightarrow	1	
M8			10	RBT10	12	10,5					
M10	8	IG-M6	12	RBT12	14	12,5	1.		lune recul	- d	
M12	10	IG-M8	14	RBT14	16	14,5] 「	vo piston p	lugs require	ea.	
	12		16	RBT16	18	16,5					
M16	14	IG-M10	18	RBT18	20	18,5	VS18				
	16		20	RBT20	22	20,5	VS20				
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h _{ef} >	h _{ef} >		
M24	~ -	IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all	
M27	25		32	RBT32	34	32,5	VS32				
M30	28 32	IG-M20	35 40	RBT35 RBT40	37 41,5	35,5 40,5	VS35 VS40	4			
	meter (d_0) : lepth (h_0) : <					; - Rec. com bit diameter (d			(min 6 bar	r)	

Cleaning and setting tools

Installation instr	uctions						
Drilling of the bore	hole						
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammer or compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mort	ner (HD), hollow (HDB) y in combination with a					
	Attention! Standing water in the bore hole must be removed before	ore cleaning.					
	pore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ e only!); all drilling methods						
2x	 2a. Starting from the bottom or back of the bore hole, blow the hole cl (Annex B 3) a minimum of two times. 	ean by a hand pump ¹⁾					
<u>*******</u> **	 2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used 						
	2c. Finally blow the hole clean again with a hand pump ¹⁾ (Annex B 3) times.	a minimum of two					
2x	¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d _{nom} also in cracked concrete with hand-pump.						
CAC: Cleaning for a	II bore hole diameter in uncracked and cracked concrete						
2x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of two times stream is free of noticeable dust. If the bore hole ground is not rea extension must be used.	until return air					
<u>*********</u> ** 2x	 2b. Check brush diameter (Table B4). Brush the hole with an appropr > d_{b,min} (Table B4) a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush external 						
2x	2c. Finally blow the hole clean again with compressed air (min. 6 bar minimum of two times until return air stream is free of noticeable or ground is not reached an extension must be used.						
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,					
STRONGCHEM In	jection System PE585 PLUS for concrete						
Intended Use Installation instruction							

Installation inst	ructions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	-
the are presented as the solution of the area of the solution	4. Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey or red colour.	
	6 Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe the given in Table B5.	nixing nozzle as the nchor hole is not
	 ✓ Piston plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 50mm
	8. Push the anchor rod or reinforcing bar into the anchor hole while tur positive distribution of the adhesive until the embedment depth is re	
	The anchor shall be free of dirt, grease, oil or other foreign material	
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fix	ned, the application has
20°C e.g.	 Allow the adhesive to cure to the specified time prior to applying ar not move or load the anchor until it is fully cured (attend Table B5). 	
	11. After full curing, the add-on part can be installed with up to the max (Table B1 or B3) by using a calibrated torque wrench. It can be opt gap between anchor and fixture with mortar. Therefor substitute the washer and connect the mixer reduction nozzle to the tip of the mix filled with mortar, when mortar oozes out of the washer.	ional filled the annular e washer by the filling
STRONGCHEM I	njection System PE585 PLUS for concrete	
Intended Use		Annex B 5

Г

Table B5:	Mi	nimum cu	ring time		
Concrete	Concrete temperature		Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+ 5 °C	to	+ 9 °C	120 min	50 h	100 h
+ 10 °C	to	+ 19 °C	90 min	30 h	60 h
+ 20 °C	to	+ 29 °C	30 min	10 h	20 h
+ 30 °C	to	+ 39 °C	20 min	6 h	12 h
+	40 °C)	12 min	4 h	8 h
Cartridge	temp	perature		+5°C to +40°C	

STRONGCHEM Injection System PE585 PLUS for concrete

Intended Use Curing time Annex B 6

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods Size M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Characteristic tension resistance, Steel failure 1) N_{Rk,s} Steel, Property class 4.6 and 4.8 [kN] 15 (13) 23 (21) 34 63 98 141 184 224 Steel, Property class 5.6 and 5.8 N_{Rk,s} [kN] 18 (17) 29 (27) 42 78 122 176 230 280 Steel, Property class 8.8 29 (27) $N_{Rk,s}$ [kN] 46 (43) 67 125 196 282 368 449 Stainless steel A2, A4 and HCR, Property class 50 $N_{\mathsf{Rk},\mathsf{s}}$ 18 29 42 79 123 177 230 281 [kN] Stainless steel A2, A4 and HCR, Property class 70 59 171 247 N_{Rk,s} [kN] 26 41 110 _ -Stainless steel A4 and HCR, Property class 80 N_{Rk,s} [kN] 29 46 67 126 196 282 Characteristic tension resistance, Partial factor 2) 2,0 Steel, Property class 4.6 γMs,V [-] Steel, Property class 4.8 1.5 [-] γMs.V Steel, Property class 5.6 [-] 2,0 γMs.V Steel, Property class 5.8 1,5 γMs,V [-] Steel, Property class 8.8 [-] 1,5 γMs,V Stainless steel A2, A4 and HCR, Property class 50 2,86 [-] γMs.V Stainless steel A2, A4 and HCR, Property class 70 [-] 1.87 YMs.V Stainless steel A4 and HCR, Property class 80 [-] 1,6 γMs,V Characteristic shear resistance, Steel failure 1) V⁰_{Rk,s} Steel, Property class 4.6 and 4.8 [kN] 9 (8) 14 (13) 20 38 59 85 110 135 arm 15 (13) Steel, Property class 5.6 and 5.8 $V^0_{Rk,s}$ 39 140 [kN] 9 (8) 21 61 88 115 lever Steel, Property class 8.8 V⁰_{Rk,s} [kN] 15 (13) 23 (21) 34 63 98 141 184 224 Without Stainless steel A2, A4 and HCR, Property class 50 V⁰_{Rk,s} [kN] 9 15 21 39 61 88 115 140 Stainless steel A2, A4 and HCR, Property class 70 V⁰_{Rk,s} [kN] 13 20 30 55 86 124 _ -Stainless steel A4 and HCR, Property class 80 V⁰_{Rk.s} [kN] 15 23 34 63 98 141 -Steel, Property class 4.6 and 4.8 M⁰_{Rk,s} 15 (13) 30 (27) 52 133 260 449 666 900 [Nm] M⁰_{Rk,s} Steel, Property class 5.6 and 5.8 19 (16) 37 (33) 324 1123 [Nm] 65 166 560 833 arm 1797 Steel, Property class 8.8 M⁰_{Rk,s} [Nm] 30 (26) 60 (53) 105 266 519 896 1333 lever Stainless steel A2, A4 and HCR, Property class 50 M⁰_{Rk,s} [Nm] 19 37 66 167 325 561 832 1125 Nith M⁰_{Rk.s} Stainless steel A2, A4 and HCR, Property class 70 [Nm] 26 52 92 232 454 784 -_ Stainless steel A4 and HCR, Property class 80 M⁰_{Rk,s} 896 [Nm] 30 59 105 266 519 --Characteristic shear resistance, Partial factor 2) Steel, Property class 4.6 1,67 [-] γMs,V Steel, Property class 4.8 1,25 [-] γMs,V Steel, Property class 5.6 1,67 [-] γMs.V Steel, Property class 5.8 [-] 1,25 γMs.V Steel, Property class 8.8 [-] 1,25 γMs,V Stainless steel A2, A4 and HCR, Property class 50 [-] 2,38 γMs,V Stainless steel A2, A4 and HCR, Property class 70 1.56 [-] γMs,V Stainless steel A4 and HCR, Property class 80 [-] 1,33 γMs,V

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

STRONGCHEM Injection System PE585 PLUS for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Table C2: Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2) Anchor size threaded rod M8 M10 M12 M16 M20 M24 M 27 M 30 Steel failure [kN] $A_s \cdot f_{uk}$ (or see Table C1) N_{Rk,s} 1.0 • N_{Rk,s} Characteristic tension resistance N_{Rk,eq,C1} [kN] NPA 1,0 • N_{Rk,s} [kN] No Performance Assessed (NPA) N_{Rk.ea.C2} Partial factor see Table C1 [-] γMs,N Combined pull-out and concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25 [N/mm²] 15 15 14 12 12 12 Temperature range I: dry and wet concrete $\tau_{\mathsf{Bk},\mathsf{uc}}$ 15 13 15 13 40°C/24°C flooded bore hole [N/mm²] 14 10 9,5 8,5 7,5 7,0 $\tau_{\text{Rk,ucr}}$ 7,5 Temperature range II: dry and wet concrete [N/mm²] 9,5 9,5 9,0 8,5 8,0 7,5 7,5 $\tau_{\rm Rk,ucr}$ 60°C/43°C [N/mm²] 9,5 9,5 9,0 8,5 7,5 7,0 6,5 6,0 flooded bore hole $\tau_{\rm Rk,ucr}$ 8,5 8,5 7.5 7,0 7.0 6,5 [N/mm²] 8.0 6,5 Temperature range III: dry and wet concrete $\tau_{\text{Rk,ucr}}$ 72°C/43°C flooded bore hole [N/mm²] 8,5 8,5 8,0 7,5 7,0 6,0 5,5 5,5 $\tau_{\rm Rk,uc}$ Characteristic bond resistance in cracked concrete C20/25 7.0 7.5 5.5 [N/mm²] 7.0 6.5 6.0 5.5 5.5 $\tau_{\text{Rk,cr}}$ dry and wet concrete [N/mm²] 5,9 7,0 7,1 6,2 5.7 5,5 5,5 5,5 $\tau_{\rm Rk,eq,C1}$ 2,4 Temperature range I: $\tau_{\mathsf{Rk},\mathsf{eq},\mathsf{C2}}$ [N/mm²] NPA 2.2 No Performance Assessed (NPA) 40°C/24°C [N/mm²] 7,0 7,0 7,5 6,0 5,0 4,5 4,0 4,0 $\tau_{\rm Rk,cr}$ flooded bore hole [N/mm²] 5,9 7,0 7.1 5,8 4.8 4,5 4.0 4,0 $\tau_{\text{Rk,eq,C1}}$ [N/mm²] NPA 2,4 2,1 No Performance Assessed (NPA) $\tau_{\rm Rk,eq,C2}$ [N/mm²] 4.5 4.5 4,5 4.0 3,5 3,5 3.5 3.5 $\tau_{\text{Rk,cr}}$ dry and wet concrete [N/mm²] 3,7 4,5 4,3 3,8 3,4 3,5 3,5 3,5 $\tau_{\rm Rk,eq,C1}$ Temperature range II: [N/mm²] NPA 1,4 1,4 No Performance Assessed (NPA) $\tau_{\rm Rk,eq,C2}$ 60°C/43°C [N/mm²] 4.5 4.5 4,5 4.0 3,5 3,5 3.5 3.5 $\tau_{\rm Rk,cr}$ flooded bore hole $\tau_{\text{Rk,eq,C1}}$ [N/mm²] 3,7 4,5 4,3 3,8 3,4 3,5 3,5 3,5 [N/mm²] NPA 1,4 1,4 No Performance Assessed (NPA) $\tau_{\rm Rk,eq,C2}$ [N/mm²] 4.0 4.0 3,5 3.0 3,0 3,0 3,0 4.0 $\tau_{\text{Rk,cr}}$ dry and wet concrete [N/mm²] 3,2 4,0 3,9 3,4 3,0 3,0 3,0 3,0 $\tau_{\rm Rk,eq,C1}$ Temperature range III: $\tau_{\rm Rk,eq,C2}$ [N/mm²] NPΔ 1,3 1,2 No Performance Assessed (NPA) 72°C/43°C 4.0 4.0 4.0 3.5 3.0 3.0 3.0 [N/mm²] 3.0 $\tau_{\rm Rk,cr}$ flooded bore hole 3,9 3,4 [N/mm²] 3,2 4.03,0 3,0 3,0 3,0 $\tau_{\rm Rk,eq,C1}$ [N/mm²] NPA 1,3 1,2 No Performance Assessed (NPA) $\tau_{\rm Bk,eq,C2}$ C25/30 1.02 C30/37 1,04 Increasing factors for concrete C35/45 1,07 (For static or quasi-static loading) C40/50 1,08 Ψ_{c} C45/55 1,09 C50/60 1,10 Concrete cone failure Non-cracked concrete 11,0 k_{ucr,N} [-] Cracked concrete 7,7 k_{cr.N} [-] Edge distance 1,5 h_{ef} C_{cr.N} [mm] Axial distance 2 c_{cr,N} S_{cr,N} [mm] Splitting failure h/h_{ef} ≥ 2,0 1.0 her h $2 \cdot h_{ef}$ 2,5 Edge distance $2,0 > h/h_{ef} > 1,3$ [mm] C_{cr,sp} h_{ef} h/h_{ef} ≤ 1,3 2.4 h_{ef} Axial distance S_{cr,sp} [mm] 2 c_{cr,sp} Installation factor 1,2 for dry and wet concrete 1,4 [-] γ_{inst} for flooded bore hole [-] 1,4 γinst STRONGCHEM Injection System PE585 PLUS for concrete Annex C 2 Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2)

Table C3: Characteristic seismic actio							iasi-st	atic ad	ction an	d
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6 and 4.8	$V^0_{\ \mbox{Rk},s}$	[kN]			0,6	$\cdot A_{s} \cdot f_{uk}$ (or see Tal	ole C1)		
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	$0.5 \cdot A_s \cdot f_{uk}$ (or see Table C1)							
Characteristic shear resistance	esistance $\frac{V_{\text{Rk,eq,C1}}}{V_{\text{Rk,eq,C1}}} \begin{bmatrix} kN \end{bmatrix} 0,87 \cdot V^0_{\text{Rk,s}} 0,88 \cdot V^0_{\text{Rk,s}}$				0,80 • V ⁰ _{Rk,}	5				
	$V_{Rk,eq,C2}$	[kN]	NPA 0,80 · V ⁰ _{Bk,s} No Performan					erformand	ce Assessed	(NPA)
Partial factor	γMs,V	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]			1,2	• W _{el} • f _{uk}	(or see Ta	ble C1)		
Characteristic bending moment	M ⁰ _{Rk,eq,C1}	[Nm]	[Nm]							
	${\sf M}^0_{\sf Rk,eq,C2}$	[Nm]	- No Performance Assessed (NPA)							
Partial factor	γMs,V	[-]				see	Table C1			
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	ŀ	[mm]			min(h _{ef} ; 1	l2•d _{nom})			max(8 • d _{nor}	", 300 mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			
Factor for annular gap	α_{gap}	[-]				0,5	5 (1,0) ¹⁾			
¹⁾ Value in brackets valid for filled annular required	gab betwee	n anchor a	and cleara	nce hole i	n the fixtu	re. Use of	special fil	ling wash	er Annex A 3	3 is

STRONGCHEM Injection System PE585 PLUS for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2) $\,$

Table C4: Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action Anchor size internally threaded sleeves IG-M 6 IG-M 8 IG-M 10 IG-M 12 IG-M 16 IG-M 20 Steel failure¹⁾ Characteristic tension resistance, $N_{Rk,s}$ [kN] 10 17 29 42 76 123 Steel, strength class 5.8 Partial factor [-] 1,5 γMs,N Characteristic tension resistance, [kN] 16 27 46 67 121 196 N_{Rk,s} Steel, strength class 8.8 Partial factor [-] 1.5 γMs,N Characteristic tension resistance. $N_{\mathsf{R}\mathsf{k},\mathsf{s}}$ [kN] 14 26 41 59 110 124 Stainless Steel A4 and HCR, Strength class 70²⁾ 1,87 2,86 Partial factor [-] γMs.N Combined pull-out and concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25 Temperature range I: dry and wet concrete 15 15 14 13 12 12 [N/mm²] $\tau_{\rm Rk,ucr}$ 40°C/24°C flooded bore hole 14 13 10 9,5 8,5 7,0 9,5 8,5 7,5 9,0 8,0 7,5 dry and wet concrete Temperature range II: [N/mm²] $\tau_{\rm Rk,ucr}$ 60°C/43°C flooded bore hole 9.5 9.0 8.5 7.0 6.0 7,5 Temperature range III: dry and wet concrete 8,5 8.0 7.5 7,0 7.0 6,5 [N/mm²] $\tau_{\rm Rk,ucr}$ 7,5 7,0 72°C/43°C 8,5 6.0 5,5 flooded bore hole 8,0 Characteristic bond resistance in cracked concrete C20/25 7.5 7.0 6,5 6.0 5,5 5,5 Temperature range I: dry and wet concrete [N/mm²] $\tau_{\text{Rk,cr}}$ 40°C/24°C 7.0 7.5 6.0 5.0 4.5 4.0 flooded bore hole 4,5 4,5 4,0 3,5 3,5 Temperature range II: dry and wet concrete 3,5 [N/mm²] $\tau_{\rm Bk,cr}$ 60°C/43°C flooded bore hole 4,5 4,5 4,0 3,5 3,5 3,5 dry and wet concrete Temperature range III: 4,0 4,0 3,5 3,0 3,0 3,0 [N/mm²] $\tau_{\rm Rk,cr}$ 72°C/43°C flooded bore hole 4,0 4,0 3,5 3,0 3,0 3,0 C25/30 1,02 C30/37 1,04 Increasing factors for concrete C35/45 1,07 ψc C40/50 1.08 C45/55 1,09 C50/60 1,10 Concrete cone failure Non-cracked concrete $k_{\text{ucr},N}$ [-] 11,0 Cracked concrete [-] 7.7 $k_{cr,N}$ Edge distance 1.5 h_{ef} [mm] C_{cr.N} 2 c_{cr,N} Axial distance S_{cr,N} [mm] Splitting failure h/h_{ef} ≥ 2,0 1,0 h_{ef} h $2 \cdot h_{ef}$ Edge distance $2,0 > h/h_{ef} > 1,3$ 2,5 [mm] C_{cr,sp} h_{a} h/h_{ef} ≤ 1,3 2,4 h_{ef} Axial distance S_{cr,sp} [mm] 2 c_{cr.sp} Installation factor for dry and wet concrete [-] 1,2 1,4 γinst for flooded bore hole [-] 1.4 γinst Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element. 2) For IG-M20 strength class 50 is valid STRONGCHEM Injection System PE585 PLUS for concrete

Performances

Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action

Table C5: Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action Anchor size for internally threaded sleeves IG-M 6 IG-M 8 IG-M 10 IG-M 12 IG-M 16 IG-M 20 Steel failure without lever arm¹⁾ Characteristic shear resistance, $V^0{}_{\mathsf{Rk},s}$ 61 [kN] 5 9 15 21 38 Steel, strength class 5.8 1,25 Partial factor [-] γMs,V Characteristic shear resistance. V⁰_{Rk,s} [kN] 8 14 23 34 60 98 Steel, strength class 8.8 1,25 Partial factor [-] γMs.V Characteristic shear resistance, $V^0_{Rk,s}$ Stainless Steel A4 and HCR [kN] 7 13 20 30 40 55 Strength class 70²⁾ Partial factor [-] 1,56 2,38 γMs.V Ductility factor k_7 [-] 1,0 Steel failure with lever arm¹⁾ Characteristic bending moment, [Nm] 8 19 37 66 167 325 M⁰_{Rk,s} Steel, strength class 5.8 Partial factor 1,25 [-] γMs.V Characteristic bending moment, [Nm] 12 30 60 105 267 519 M⁰_{Bk.s} Steel, strength class 8.8 Partial factor [-] 1,25 γMs,V Characteristic bending moment, Stainless Steel A4 and HCR $M^0_{Rk,s}$ [Nm] 11 26 52 92 233 456 Strength class 70²⁾ Partial factor γMs.V [-] 1,56 2,38 Concrete pry-out failure Factor k_8 [-] 2,0 Installation factor 1,0 Yinst [-] Concrete edge failure Effective length of fastener l_f min(h_{ef}; 12 · d_{nom}) max(8 • d_{nom}, 300 mm) [mm] Outside diameter of fastener 10 12 20 24 30 dnom [mm] 16 Installation factor 1,0 [-] Yinst Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element. 2) For IG-M20 strength class 50 is valid STRONGCHEM Injection System PE585 PLUS for concrete

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

	Characteristic va eismic action (p					51 510		uasi	้อเล่แ		JII all	u
Anchor size reinforci Steel failure	ng bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
		N _{Rk,s}	[kN]					$A_s \cdot f_{uk}^{1}$)			
Characteristic tension	resistance	N _{Rk,eq,C1}	[kN]				1.	0 • A _s • f				
Cross section area		As	[mm ²]	50	79	113	154	201	314	491	616	804
		-		50	79	113	154	1,4 ²⁾	514	491	010	004
Partial factor	ad concrete conc failure	γMs,N	[-]					1,4-′				
	nd concrete cone failure sistance in non-cracked co	oncrete C20/	25									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III: 72°C/43°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
	flooded bore hole sistance in cracked concre	$\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
Characteristic bond res		τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	dry and wet concrete	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,0	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C	Ale a de al la cue la cla	τ _{Rk.cr}	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,1	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,eq,C1}$	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0
		$\tau_{\text{Rk,eq,C1}}$	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:		$ au_{Rk,eq,C1}$	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
		τ _{Rk,eq,C1}	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
			5/30					1,02				
Increasing factors for c	oncrete		0/37					1,04				
(For Static or quasi-sta			5/45					1,07				
Ψc	5,		0/50					1,08				
			5/55	1,09								
Concrete cone failure		C5	0/60					1,10				
Non-cracked concrete	•	k	[-]					11,0				
		k _{ucr,N}						7,7				
Cracked concrete		k _{cr,N}	[-]					-				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					$2 c_{\text{cr,N}}$				
Splitting failure	h/h > 0.0							106				
	h/h _{ef} ≥ 2,0	-						1,0 h _{ef}				
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]				$2 \cdot h_{c}$	_{ef} 2,5 -	$\left(\frac{h}{h_{ef}}\right)$			
	h/h _{ef} ≤ 1,3	1						2,4 h _{ef}	-			
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor		-01,60	1 1.000					- Poilab				
for dry and wet concret	te	γinst	[-]			1,2				1	,4	
for flooded bore hole			[-]			.,_		1,4			, ,	
	en from the specifications national regulation	γinst of reinforcin										
Performances	I Injection System					mic acti	on		-	Anne	ex C 6	6

Table C7: Characteris seismic acti						atic, c	uasi-	static	actio	n and	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	V ⁰ _{Rk,s}	[kN]	0,50 • A _s • f _{uk} ¹⁾								
Characteristic shear resistance	$V_{Rk,eq,C1}$	[kN]	J] $0,40 \cdot A_{s} \cdot f_{uk}^{(1)}$ $0,44 \cdot A_{s} \cdot f_{uk}^{(1)}$								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	ŶMs,V	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm		•									
Characteristic handling memory	M ⁰ _{Rk,s}	[Nm]				1.2	2 ∙ W _{el} ∙ f	: 1) uk			
Characteristic bending moment	M ⁰ _{Rk,eq,C1}	[Nm]			No	Performa	ance Ass	essed (N	PA)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γms,v	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]			min(h _{ef} ; ⁻	12 · d _{nom})			max(8	• d _{nom} , 30)0 mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γ inst	[-]	1,0								
Factor for annular gap	$lpha_{gap}$	[-]					0,5 (1,0) ³	3)			
 ¹⁾ f_{uk} shall be taken from the specificatio ²⁾ in absence of national regulation ³⁾ Value in brackets valid for filled annul required. 	ns of reinforcing b ar gab between a	oars nchor an	d clearan	ce hole ir	n the fixtu	ıre. Use d	of special	l filling wa	asher Anr	nex A 3 is	5
STRONGCHEM Injection S Performances Characteristic values of shear load	-					ction			Ann	ex C i	7

(performance category C1)

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25 unde	er static and qua	si-statio	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	smic C	1 action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,05
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,06
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,06
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Cracked concrete	C20/25 under sei	smic C2 action								
Temperature range I:	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm²)]			0.03	0,05				
40°C/24°C	$\delta_{N,eq(ULS)}$ -factor	[mm/(N/mm ²)]			0,06	0,09				
	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm ²)]	No Perfe	ormance	0,03	0,05				
Temperature range II:		• • •	No Performance			-	No Performance Assessed			(NPA)
Temperature range II: 60°C/43°C		[mm/(N/mm ²)]	Assesse	ed (NPA)	0,06	0,09	1401 0	Tormance	//000000000	. ()
60°C/43°C	$\delta_{\text{N},\text{eq}(\text{ULS})}$ -factor	[mm/(N/mm ²)] [mm/(N/mm ²)]	Assesse	ed (NPA)	0,06 0,03	0,09 0,05		Tormance	//0000000000000000000000000000000000000	. (
	$\begin{array}{c c} & \delta_{N,eq(ULS)} \ \ \ -factor \\ \hline \delta_{N,eq(DLS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	/-	pr · τ;	· · ·	,	0,05 0,09				
$\begin{array}{l} \label{eq:constraint} \hline 60^\circ\text{C}/43^\circ\text{C} \\ \hline \text{Temperature range III:} \\ 72^\circ\text{C}/43^\circ\text{C} \\ \hline \end{array}$	$\begin{array}{c c} & \delta_{N,eq(ULS)} \ \ \ -factor \\ \hline \delta_{N,eq(DLS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factoreter $ $ULS) = \delta_{N,eq(ULS)}-factoreter $	pr · τ; pr · τ;	τ: acti	0,03 0,06	0,05 0,09 stress for				. (,
$\begin{array}{l} \label{eq:constraint} \hline 60^\circ\text{C}/43^\circ\text{C} \\ \hline \text{Temperature range III:} \\ 72^\circ\text{C}/43^\circ\text{C} \\ \hline \end{array}$	$\begin{array}{c c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(DLS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factoreter $ $ULS) = \delta_{N,eq(ULS)}-factoreter $	pr · τ; pr · τ;	τ: acti	0,03 0,06	0,05 0,09 stress for		M24	M 27	
$\begin{array}{c} 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array}$	$\begin{array}{c c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(DLS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factore shear left limit of the stress st$	or · τ; or · τ; Dad ¹⁾ (1 M 8	τ: action thread M 10	0,03 0,06 on bond a ed rod M 12	0,05 0,09 stress for) M 16	r tension M 20	M24		
$\begin{array}{c} 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array}$	$\begin{array}{c c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(DLS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factore shear left limit of the stress st$	or · τ; or · τ; Dad ¹⁾ (1 M 8	τ: action thread M 10	0,03 0,06 on bond a ed rod M 12	0,05 0,09 stress for) M 16	r tension M 20	M24		М 30
$\begin{array}{c} 60^{\circ}\text{C}/43^{\circ}\text{C} \\ \hline \text{Temperature range III:} \\ 72^{\circ}\text{C}/43^{\circ}\text{C} \\ \end{array}$	$\begin{array}{c c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(DLS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factoretain the second s$	or · τ; or · τ; Dad ¹⁾ (1 <u>M 8</u> tatic, qu	τ: action thread M 10 uasi-state 0,06	0,03 0,06 on bond a ed rod M 12 tic and a 0,05	0,05 0,09 stress for) M 16 seismic 0,04	M 20 C1 act 0,04	M24 ion 0,03	M 27 0,03	M 30
$\frac{60^{\circ}\text{C}/43^{\circ}\text{C}}{\text{Temperature range III:}}$ $\frac{72^{\circ}\text{C}/43^{\circ}\text{C}}{\text{Temperature range III:}}$ $\frac{1^{\circ}\text{ Calculation of the}}{\delta_{N0} = \delta_{N0}\text{-factor}}$ $\frac{\delta_{N\infty} = \delta_{N\infty}\text{-factor}}{\delta_{N\infty} = \delta_{N\infty}\text{-factor}}$ $\frac{\text{Table C9: Di}}{\text{Anchor size thread}}$ $\frac{\text{Anchor size thread}}{\text{Non-cracked and down}}$ $\frac{\text{All temperature}}{\text{ranges}}$	$\begin{array}{c c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factore since the second secon$	or · τ; or · τ; Dad ¹⁾ (1 <u>M 8</u> tatic, qu	τ: activ thread M 10 lasi-stat	0,03 0,06 on bond a ed rod M 12 tic and a	0,05 0,09 stress for) M 16 seismic	M 20	M24 ion	M 27	M 30
$60^{\circ}C/43^{\circ}C$ Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete	$\begin{array}{c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-facto$ $uls) = \delta_{N,eq(ULS)}-facto$ $under shear lefter le$	or · τ; or · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: action thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond a ed rod M 12 tic and a 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04	M24 ion 0,03	M 27 0,03	M 30 0,03 0,05
$60^{\circ}C/43^{\circ}C$ Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete All temperature	$\begin{array}{c} \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorethermodeling and the second s$	or · τ; or · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: activ thread M 10 Iasi-stat 0,06 0,08	0,03 0,06 on bond a ed rod M 12 tic and a 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06 0,1	M 20 C1 act 0,04 0,06	M24 ion 0,03	M 27 0,03 0,05	M 30 0,03 0,05
$60^{\circ}C/43^{\circ}C$ Temperature range III: $72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete	$\begin{array}{c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-facto$ $uls) = \delta_{N,eq(ULS)}-facto$ $under shear lefter le$	or · τ; or · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: action thread M 10 uasi-state 0,06 0,08	0,03 0,06 on bond a ed rod M 12 tic and a 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	M24 ion 0,03 0,05	M 27 0,03 0,05	M 3 (0,03) 0,05
60° C/43°C Temperature range III: 72° C/43°C ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete All temperature	$\begin{array}{c} \delta_{N,eq(ULS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorethermodeling and the second s$	or · τ; or · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: activ thread M 10 Iasi-stat 0,06 0,08	0,03 0,06 on bond a ed rod M 12 tic and a 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06 0,1	M 20 C1 act 0,04 0,06	M24 ion 0,03 0,05	M 27 0,03 0,05	M 3 (0,03) 0,05

Table C10: Dis	splacements	under tension	load ¹⁾ (ir	nternally	threade	ed sleeve	?)	
Anchor size interna	ally threaded sl	eeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conci	rete C20/25 und	er static and quas	i-static ac	tion				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete	C20/25 under st	atic and quasi-sta	tic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
60°C/43°C ⊂	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
່72°C/43°Cັ	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor τ ;

Table C11: Displacements under shear load¹⁾ (internally threaded sleeve)

	•			•	•		,	
Anchor size in	ternally threade	ed sleeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	crete C20/25 ur	nder static a	and quasi-s	static action	้า		
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_\infty}\text{-factor}$	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06
δ _{V∞} = δ _{V∞} -fac	ClOT · V,							
STRONGCH	EM Injection S	Svotom DEE95	DI LIS for	onoroto				

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/	25 under static	and qua	asi-stati	c action	้า					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete	C20/25 u	nder static, qua	asi-statio	c and se	eismic C	1 actio	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
	e displacen · τ; · τ; isplacen	nent τ: action bonc	hear lo	oad ¹⁾ (r	ebar)						
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	e displacen · τ; · τ; isplacen	nent τ: action bonc				Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C13: D	e displacen · τ; · τ; isplacen prcing bar	nent τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø10	ebar) Ø 12		Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ Table C13: D Anchor size reinfo For concrete C20/	e displacen · τ; · τ; isplacen prcing bar	nent τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø10	ebar) Ø 12		Ø 16 0,04	Ø 20 0,04	Ø 25 0,03	Ø 28 0,03	Ø 32 0,03
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: D Anchor size reinfor For concrete C20/ All temperature ranges ¹⁾ Calculation of th	e displacen • τ; • τ; isplacen prcing bar 25 under s δ _{V0} -factor δ _{V∞} -factor e displacen	nent τ: action bond nent under s static, quasi-sta [mm/kN] [mm/kN] nent	hear lo Ø 8 atic and 0,06 0,09	øad ¹⁾ (r Ø 10 seismid	ebar) Ø 12 c C1 act	ion					
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-} \text{factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-} \text{factor} \end{split}$ Table C13: D Anchor size reinfor For concrete C20/ All temperature ranges	e displacent $\tau;$ $\tau;$ isplacent prcing bar 25 under st δ_{V0} -factor $\delta_{V\infty}$ -factor ie displacent V;	nent τ: action bond nent under s static, quasi-sta [mm/kN] [mm/kN]	hear lo Ø 8 atic and 0,06 0,09	øad¹⁾ (r Ø 10 seismid 0,05	ebar) Ø 12 c C1 act 0,05	i on 0,04	0,04	0,04	0,03	0,03	0,03