

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0979 of 12 November 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Injection System W-VIZ dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Herstellwerk W1, Deutschland Herstellwerk W2, Deutschland

17 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0979

Page 2 of 17 | 12 November 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 17 | 12 November 2018

Specific Part

1 Technical description of the product

The Injection System W-VIZ dynamic is a torque controlled bonded anchor consisting of a cartridge with injection mortar WIT-VM 100, WIT-VIZ, WIT-EXPRESS or WIT-VIZ express, an anchor rod with expansion cones and external connection thread, a centring ring (only for through-setting installation), a conical washer, a hexagon nut with spherical contact surface and a locknut. For the pre-setting installation a conical washer with a bore is used. Alternatively the hexagon nut with spherical contact surface can be replaced by a spherical disc with hexagon nut.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (Assessment method A)	Performance	
Characteristic fatigue resistance under cyclic tension loading		
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)		
Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance $\Delta N_{Rk,c,0,n} \Delta N_{Rk,p,0,n} \Delta N_{Rk,sp,0,n} \Delta N_{Rk,cb,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	See Annexes C 1 and C 2	
Characteristic combined pull- out /concrete cone fatigue resistance $\Delta N_{Rk,p,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)		
Characteristic fatigue resistance under cyclic shear loading		
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)		
Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ ($n = 1$ to $n = \infty$)	See Annexes C 1 and C 2	
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)		

European Technical Assessment ETA-18/0979

Page 4 of 17 | 12 November 2018

English translation prepared by DIBt

Essential characteristic (Assessment method A)	Performance
Characteristic fatigue resistance under cyclic combined tension and shear load	ing
Characteristic steel fatigue resistance a_{sn} ($n = 1$ to $n = \infty$)	See Annexes C 1 and C 2
Load transfer factor for cyclic tension and shear loading	
Load transfer factor ψ_{FN}, ψ_{FV}	See Annexes C 1 and C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 November 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-18/0979 of 12 November 2018

English translation prepared by DIBt

Page 6 of European Technical Assessment ETA-18/0979 of 12 November 2018

English translation prepared by DIBt

Marking		ing: e.g. VMZ-d 12 25 A4 HCR	ident yn anch size o maxir additi on co	tifying ma or identity of thread mum thick ional mar nical was	rk of mar ness of t king of st her	fixture ainless s	steel A4,	if not stant steel	J Ma	narking: e.g. rking of lengt amic - Cone marking
Centring ring (through-setting installation only) Alternatively: Conical washer with bore radial angular		Sphe (hex	with s conta	gon nut spherical act surface	e agon nut		conica l bore (alterna	tively: mainter / version:	conical w rking on the <u>Marki</u>	ion on the asher with anchor rod) ng: arking
Marking of length		J	К	L		м	N	0	Р	Q
Length of anchor min \geq	139,7	152,4	165,1	1 177	,8 19	90,5	203,2	215,9	228,6	241,3
Length of anchor max <	152,4	165,1	177,8	3 190	,5 20)3,2	215,9	228,6	241,3	254,0
Marking of length	R	S	Т	U	V	W	X	Y	Z	> Z
Length of anchor min ≥ Length of anchor max <	254,0 279,4	279,4 304,8	304,8 330,2	330,2 355,6	355,6 381,0	381,0 406,4				482,6
Injection System W-VI Product description Components, Marking	Z dynar	nic							An	nex A2

Part	Designation	Steel, zinc plated	Stainless steel (A4)	High corrosion resistant steel (HCR)
1	Anchor rod	Steel, acc. to EN 10087:1998, galvanized and coated	High corrosion resistant steel 1.4529, acc. to EN 10088:2014	4, coated
2	Centring ring	Plastic		
3	Conical washer	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel 1.4529, acc. to EN 10088:2014
За	Spherical disc	Steel, galvanized	Stainless steel, 1.4401 or 1.4571 acc. to EN 10088:2014	High corrosion resistant steel 1.4529, acc. to EN 10088:2014
4	Hexagon nut with spherical contact surface	Steel, galvanized	ISO 3506, Property class 70, stainless steel	ISO 3506, Property class 70, high corrosion resistant steel
4a	Hexagon nut		1.4401 or 1.4571, acc. to EN 10088:2014	1.4529 or 1.4565, acc. to EN 10088:2014
5	Locknut	Steel, galvanized	Stainless steel, 1.4401, 1.4571 or 1.4362, acc. to EN 10088:2014	High corrosion resistant steel 1.4565, 1.4529 or 1.4547, acc. to EN 10088:2014
6	Mortar Cartridge	Vinylester resin, styrene-fr	ee	

Table A2: Dimensions

Part	Anchor size				100 M12	125 M16	170 M20
		Thread		-	M12	M16	M20
		Effective anchorage depth	h _{ef} ≥	[mm]	100	125	170
1	Anchor rod	Shaft diameter	$d_k =$	[mm]	12,5	16,5	22,0
		Length	L_{min}	[mm]	143	180	242
			L _{max}	[mm]	531	565	623
2	Centring ring	External diameter	Dz	[mm]	14	18	23,5
3	Conical washer	Thickness	ts	[mm]	6	7	8
3	Conical washel	External diameter	da ≥	[mm]	30	38	50
3a	Spherical disc	External diameter	ds =	[mm]	24	30	36
4	Hexagon nut with spherical contact surface	Width across nut	SW	[mm]	18 / 19	24	30
4a	Hexagon nut	Width across nut	SW	[mm]	19	24	30
5	Locknut	Width across nut	SW	[mm]	19	24	30

Injection System W-VIZ dynamic

Product description Materials and Dimensions Annex A3

Specifications of intended use

Anchorages subject to:

Fatigue cyclic loading
 Note: Static and quasi-static action according to ETA-04/0095

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibers according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- Cracked and uncracked concrete
- Temperature Range -40 °C to +80 °C: maximum short term temperature +80 °C and maximum long term temperature +50 °C

Use conditions (Environmental conditions): according to ETA-04/0095

- Structures subject to dry internal conditions (W-VIZ dynamic zinc plated, A4 or HCR).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal conditions, if no particular aggressive conditions exist (W-VIZ dynamic A4 or HCR).
- Structures subject to external atmospheric exposure or exposure in permanently damp internal conditions or particular aggressive conditions (W-VIZ dynamic HCR).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to
 - EOTA TR 061:2018 (Design method I and II) or
 - o EN 1992-4:2018

Installation:

- Anchor shall only be used as a complete fastening unit delivered in series. Components of the anchor must not be replaced.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the site manager.
- In case of aborted hole: new drilling at a distance of at least two times the depth of the aborted hole or at a smaller distance, if the aborted drill hole is filled with high strength mortar.
- The installation temperature of anchor components shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below 0 °C. Curing time must be observed prior to loading the anchor.
- Drilling by hammer drill bit or compressed air drill (use of vacuum drill bit is admissible)
- The filling of the annular gap can be omitted if it is ensured that the anchor is only loaded in axial direction.

Injection System W-VIZ dynamic

Intended use Specifications

Deutsches Institut für Bautechnik

Table B1: Installation parameters							
Anchor size / version			100 M12	100 M12 A4 100 M12 HCR	125 M16	125 M16 A4 125 M16 HCR	170 M20
Effective anchorage depth	$h_{\text{ef}} \geq$	[mm]		100		125	170
Nominal diameter of drill hole	d0 =	[mm]		14		18	24
Depth of drill hole 1)	$h_0 \geq$	[mm]		105		133	180
Diameter of cleaning brush	D≥	[mm]	15,0		19,0		25,0
Installation torque	T _{inst} =	[Nm]		30		50	80
Diameter of clearance hole in the fixture	$d_{\rm f} =$	[mm]		15		19	25
Fixture thickness ²⁾	$t_{\text{fix,min}} \geq$	[mm]		12		16	20
Fixture thickness 27	$t_{fix,max} \leq$	[mm]			200		
Overstand	h _p =	[mm]	31 + t _{fix}	24 + t _{fix}	39 + t _{fix}	30 + t _{fix}	48 + t _{fix}

¹⁾ If the present fixture thickness is lower than the maximum fixture thickness of the anchor, the depth of drill hole should be increased accordingly.

²⁾ $t_{\text{fix,min}}$ may be replaced by $t_{\text{fix,min,red}}$, if a reduced fatigue resistance $\Delta V_{\text{R,red}}$ in transverse direction is considered:

 $t_{fix,min,red} = (0,5+0,5 \cdot \Delta V_{R,red} / \Delta V_{R}) \cdot t_{fix,min}$

- Design method I (Table C1) - Design method II (Table C2)

Pre-setting installation
Pre-setting installation
Through-setting installation
Injection System W-VIZ dynamic

Table B2: Minimum thickness of concrete and minimum spacing and edge distance

Anchor size			100 M12	125 M16	170 M20
Minimum thickness of concrete member	h _{min}	[mm]	130	170 160 ¹⁾	230 220 ¹⁾
Cracked concrete					
Minimum spacing	Smin	[mm]	50	60	80
Minimum edge distance	Cmin	[mm]	70	80	110
Uncracked concrete					
Minimum spacing	Smin	[mm]	80	60	80
Minimum edge distance	Cmin	[mm]	75	80	110

¹⁾ The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through the ground of the drill hole shall be closed with high strength mortar. The full bonded length h_{ef} shall be achieved and any potential loss of injection mortar shall be compensated.

Table B3:Processing time and curing time until the application of the load,
WIT-VM 100 or WIT-VIZ

Temperature [°C]	Maximum processing	Minimum o	curing time
in the drill hole	time	dry concrete	wet concrete
+ 40 °C	1,4 min	15 min	30 min
+ 35 °C to + 39 °C	1,4 min	20 min	40 min
+ 30 °C to + 34 °C	2 min	25 min	50 min
+ 20 °C to + 29 °C	4 min	45 min	1:30 h
+ 10 °C to + 19 °C	6 min	1:20 h	2:40 h
+ 5 °C to + 9 °C	12 min	2:00 h	4:00 h
0 °C to + 4 °C	20 min	3:00 h	6:00 h

Table B4: Processing time and curing time until the application of the load, WIT-EXPRESS or WIT-VIZ express

Temperature [°C]	Maximum processing	Minimum cu	uring time
in the drill hole	time	dry concrete	wet concrete
+ 30 °C	1 min	10 min	20 min
+ 20 °C to + 29 °C	1 min	20 min	40 min
+ 10 °C to + 19 °C	3 min	40 min	80 min
+ 5 °C to + 9 °C	6 min	1:00 h	2:00 h
0 °C to + 4 °C	10 min	2:00 h	4:00 h

Injection System W-VIZ dynamic

Intended use

Minimum thickness of concrete, spacing and edge distances, processing and curing time

Hol	e drilling					
1	90°	Drill hole perpendicular to concrete surface with hammer drill, vacuum d drill.	dicular to concrete surface with hammer drill, vacuum drill or compressed a			
		Drill hole must be cleaned directly prior to installation of the anchor.				
Clea	aning					
2a	M12 - M16	W-VIZ dynamic M12 - M16: Blow out drill hole from the bottom using Blow-out Pump at least two times	5.			
2b	min. 6 bar 2x +	W-VIZ dynamic M20: Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve along the entire depth with back and forth motion at least two times.	and blow out drill hol			
3		Check diameter of Cleaning Brush. If brush can be pushed into the or resistance, it must be replaced. Chuck brush into drill machine. Turn on dri hole back and forth along the entire drill hole depth at least two times machine.	ill machine. Brush dri			
4a		W-VIZ dynamic M12 - M16: Blow out drill hole from the bottom using Blow-out Pump at least two times	3.			
4b	min. 6 bar 2x	W-VIZ dynamic M20: Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.				
Inje	ction					
5	AN INTERSPORTER	Check minimum shelf-life on WIT-VM 100, WIT-EXPRESS, WIT-VIZ, cartridge. Never use when expired. Remove cap from cartridge. Screw Mixe When using a new cartridge always use a new Mixer Nozzle. Never use c Nozzle and never use Mixer Nozzle without helix inside.	er Nozzle on cartridge			
6	min.2x → min. 10cm	Insert cartridge in dispenser. Before injecting discard mortar (at least 2 full 10 cm) until it shows a consistent grey colour. Never use this mortar.	strokes or a line of			
7		Prior to injection, check if Mixer Nozzle reaches the bottom of the drill hol the bottom, plug Mixer Extension onto Mixer Nozzle, in order to properly fill with a sufficient quantity of injection mortar. Start from the bottom of the o to avoid trapping air pockets.	the drill hole. Fill hol			
Inje	ection System W-VI	Z dynamic				
-	nded use	-	Annex B4			

Inst	nstallation instructions – Through-setting installation (continuation)							
Inse	Insertion of anchor rod							
8		Insert the pre-assembled anchor within processing time by hand, rotating slightly up to the full embedment depth, until the conical washer lies against the fixture. The anchor rod is properly set when the gap between anchor rod and fixture is completely filled. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and start again from step 2.						
9	Contraction of the second seco	Follow minimum curing time shown in Table B3 and Table B4 as well as on cartridge label. During curing time anchor rod must not be moved or loaded.						
10		Remove excess mortar after curing time. Remove locknut.						
11		 Apply installation torque T_{inst} according to Table B1 by using torque wrench. Screw on locknut until hand tight then tighten ¹/₄ to ¹/₂ turn using a screw wrench. 						

Injection System W-VIZ dynamic

Intended use Installation instructions – Through-setting installation (continuation)

Hol	e drilling					
1		Drill perpendicular to concrete surface with hammer drill, vacuum drill or co	ompressed air drill.			
		Drill hole must be cleaned directly prior to installation of the anchor.				
Clea	aning					
2a	M12 - M16	W-VIZ dynamic M12 - M16: Blow out drill hole from the bottom using Blow-out Pump at least two times				
2b	$ \begin{array}{c} \underset{2x \leftarrow \rightarrow}{\text{min. 6 bar}} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$					
3		Check diameter of Cleaning Brush. If brush can be pushed into the or resistance, it must be replaced. Chuck brush into drill machine. Turn on dri hole back and forth along the entire drill hole depth at least two times machine.	ll machine. Brush dr			
4a	M12 - M16	W-VIZ dynamic M12 - M16: Blow out drill hole from the bottom using Blow-out Pump at least two times				
4b	min. 6 bar 2x	W-VIZ dynamic M20: Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve along the entire depth with back and forth motion at least two times.	and blow out drill ho			
nje	ction					
5	The Base	Check minimum shelf-life on WIT-VM 100, WIT-EXPRESS, WIT-VIZ cartridge. Never use when expired. Remove cap from cartridge. Screw Mixe When using a new cartridge always use a new Mixer Nozzle. Never use can Nozzle and never use Mixer Nozzle without helix inside.	r Nozzle on cartridge			
6	min.2x → 	Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full cm) until it shows a consistent grey colour. Never use this mortar.	strokes or a line of 1			
7		Prior to injection check if Mixer Nozzle reaches the bottom of the drill hole the bottom, plug Mixer Extension onto Mixer Nozzle in order to properly fill with a sufficient quantity of injection mortar. Start from the bottom of the d to avoid trapping air pockets.	the drill hole. Fill hol			
nic	ction System W-VIZ	7 dynamic				
nje	Schon System W-VIZ	- dynamic				

	nstallation instructions – Pre-setting installation (continuation)							
Inse	ertion of anchor rod							
8		Mark the embedment depth on the anchor rod. Insert the anchor rod by hand, rotating slightly up within processing time. The anchor rod is properly set when excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and start again from step 2.						
9	······································	Follow minimum curing time shown in Annex B3 (Table B3 and Table B4) as well as on cartridge label. During curing time anchor rod must not be moved or loaded.						
10		Remove excess mortar after curing time.						
11	2. 1. Tusr 3. M I. K	 Fixture, washer and nut (without centring ring) can be mounted. Apply installation torque T_{inst} according to Annex B2 (Table B1) by using torque wrench. Screw on locknut until hand tight then tighten ¹/₄ to ¹/₂ turn using a screw wrench. 						
12		Annular gap between anchor rod and fixture must be filled with injection mortar through the bore of the conical washer using the adapter plugged onto the static mixer. The annular gap is properly filled when excess mortar seeps out.						

Injection System W-VIZ dynamic

Intended use Installation instructions – Pre-setting installation (continuation)

Work steps 1 - 7 as illustrated in Annex B4							
Ins	ertion of anchor rod						
8		Inserting the pre-assembled anchor within processing time by hand, rotating slightly until the conical washer lies against the fixture.					
9		Check, if excess mortar seeps from hole. If the hole is not completely filled, pull our anchor rod let mortar cure, drill out hole and start again from step 2. The annular gap in the fixture does not have to be filled.					
10		Follow minimum curing time shown in Annex B3 (Table B3 and Table B4) as well as on cartridge label. During curing time anchor rod must not be moved or loaded.					
11		Remove locknut after curing time has expired and backfilling of anchor plate.					
12	1 Trest 2	 Apply installation torque T_{inst} according to Annex B2 (Table B1) by using torque wrench. Screw on locknut until hand tight then ¼ to ½ turn using a screw wrench. 					

Injection System W-VIZ dynamic

Intended use

Installation instructions - Installation with clearance between concrete and anchor plate

Table C1:Characteristic values of the fatigue resistance after n load cycles without static actions (FElod = 0) for design method I according to TR 061												
Anchor size / version		100 M12		100 M12 A4 100 M12 HCR		125 M16		125 M16 A4 125 M16 HCR		170 M20		
Steel failure ¹⁾												
	n	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{\text{Rk},\text{s},0,\text{n}}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{\text{Rk},\text{s},0,\text{n}}$	$\Delta N_{Rk,s,0,n}$	$\Delta V_{Rk,s,0,n}$	
	1	53,9	34,0	53,9	34,0	83,4	63,0	83,4	63,0	112,1	149,0	
	≤ 10 ³	48,3	27,6	52,6	31,3	78,8	54,0	72,5	54,0	92,7	113,5	
	≤ 3·10 ³	45,9	23,8	50,9	28,3	77,1	47,2	68,2	47,2	89,9	91,6	
Characteristic	≤ 10 ⁴	41,4	18,6	47,6	23,5	73,1	36,5	62,4	36,5	83,4	65,0	
resistance without static-	≤ 3·10 ⁴	35,9	14,1	42,8	18,1	66,3	26,2	56,7	26,2	73,8	43,9	
actions [kN]	≤ 10 ⁵	29,1	10,5	36,3	12,8	55,8	18,4	50,5	18,4	60,9	29,0	
	≤ 3·10 ⁵	24,2	8,9	30,1	9,8	45,5	15,6	45,7	15,6	50,7	23,2	
	≤ 10 ⁶	21,1	8,2	24,9	8,5	37,4	15,0	41,8	15,0	44,9	21,3	
	≥ 10 ⁶	20,1	8,2	21,2	8,2	34,0	15,0	37,3	15,0	43,5	21,1	
Partial factor γ _{Ms,fat} Acc. to TR 061, Eq. (3)												
Exponent for combined loading	$lpha_{sn}$	1,5		1,2		1,5		1,5		1,5		
$\label{eq:constraint} \textbf{Concrete failure } \Delta N_{\text{Rk},(c/\text{sp/cb}),0,n} = \eta _{\text{k},\text{c},\text{N} \text{fat},n} \cdot N_{\text{Rk},(c/\text{sp/cb})} \text{and } \Delta V_{\text{Rk},(c/\text{cp}),n} + N_{\text{Rk},(c/\text{sp/cb})} \text{and } \Delta V_{\text{Rk},(c/\text{sp}),n} + N_{\text{Rk},(c/\text{sp/cb})} \text{and } \Delta V_{\text{Rk},(c/\text{sp}),n} + N_{\text{Rk},(c/\text{sp/cb})} \text$					/ Rk,(c/cp),0,r	$_{2/cp),0,n} = \eta_{k,c,V,fat,n} \cdot V_{Rk,(c/cp)}$						
	n	$\eta_{k,c,N,fat,n}$	$\eta_{k,c,V,fat,n}$	$\eta_{k,c,N,fat,n}$	$\eta_{k,c,V,fat,n}$	$\eta_{k,c,N,\text{fat},n}$	$\eta_{k,c,V,fat,n}$	$\eta_{k,c,N,fat,n}$	$\eta_{k,c,V,fat,n}$	$\eta_{k,c,N,\text{fat},n}$	$\eta_{k,c,V,\text{fat},n}$	
	1	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
	≤ 10 ³	0,932	0,799	0,932	0,799	0,932	0,799	0,932	0,799	0,932	0,799	
	≤ 3·10 ³	0,893	0,760	0,893	0,760	0,893	0,760	0,893	0,760	0,893	0,760	
Reduction	≤ 10 ⁴	0,841	0,725	0,841	0,725	0,841	0,725	0,841	0,725	0,841	0,725	
factor η _{fat} for characteristic	≤ 3·10 ⁴	0,794	0,700	0,794	0,700	0,794	0,700	0,794	0,700	0,794	0,700	
resistance	≤ 10 ⁵	0,750	0,680	0,750	0,680	0,750	0,680	0,750	0,680	0,750	0,680	
	≤ 3·10 ⁵	0,722	0,668	0,722	0,668	0,722	0,668	0,722	0,668	0,722	0,668	
	≤ 10 ⁶	0,704	0,660	0,704	0,660	0,704	0,660	0,704	0,660	0,704	0,660	
	≥ 10 ⁶	0,693	0,652	0,693	0,652	0,693	0,652	0,693	0,652	0,693	0,652	
Partial factor	γMc,fat	1,5										
Exponent for combined loading	$lpha_{c}$	1,5										
Load-transfer factor for fas-	ψ_{FN}					0,	79					
tener groups												

 The failure in cracked concrete due to combined pull- out /concrete cone failure ΔN_{Rk,p,0,n} in the low-cyclic loading range has been taken into account;

²⁾ N_{Rk,c}, N_{Rk,sp}, N_{Rk,cb}, V_{Rk,c} and V_{Rk,cp} – Characteristic values of resistance to concrete failure under static or quasi-static actions according to ETA-04/0095

Injection System W-VIZ dynamic

Performance

Characteristic fatigue resistance for design method I according to TR 061

Annex C1

Anchor size / version	100 M12 100 M12 A4 100 M12 HCR		125 M16	125 M16 A4 125 M16 HCR	170 M20				
Tension load									
Steel failure									
Characteristic tension resistance	ΔN _{Rk,s,0,∞}	[kN]	20	21,2	34				
Partial factor	γMs,N,fat	-	1,35						
Exponent for combined loading	α_{s}	-	1,5 1,2			1,5			
Concrete failure									
	ΔN _{Rk,c,0,∞}	[kN]	0,693 N _{Rk,c} ¹⁾						
Characteristic tension resistance	∆N _{Rk,sp,0,∞}	[kN]	0,693 N _{Rk,sp} ¹⁾						
resistance	ΔN _{Rk,cb,0,∞}	[kN]	0,693 N _{Rk,cb} ¹⁾						
Effective anchorage depth	h _{ef}	[mm]	100 125				170		
Partial factor	γMc,fat	-	1,5						
Exponent for combined loading α_{c}			1,5						
Load-transfer factor for fastener	0,79								
groups	-								
Shear load									
Steel failure without lever arm									
Characteristic shear resistance	ΔV _{Rk,s,0,∞} [kN]			8,2		21			
artial factor γ _{Ms,V,fa}		-	1,35						
Exponent for combined loading	α_{s}	-	1,5	1,2		1,5			
Concrete pry-out failure									
Characteristic shear resistance	ΔV _{Rk,cp,0,∞} [kN]								
Partial factor γ _{Mc,fat} -			1,5						
Concrete edge failure									
haracteristic shear resistance $\Delta V_{Rk,c,0,\infty}$ [k		[kN]] 0,652 V _{Rk,c} ¹⁾						
Effective length of anchor	lf	[mm]		100		170			
Diameter of anchor d _{nom}		[mm]] 14 18 24						
Partial factor	γMc,fat -		1,5						
Exponent for combined loading	α_{c}	-	1,5						
Load-transfer factor for fastener groups $\Psi_{F,V}$			0,81						

¹⁾ N_{Rk,c}, N_{Rk,sp}, N_{Rk,cb}, V_{Rk,c} and V_{Rk,cp} – Characteristic values of resistance to concrete failure under static or quasi-static actions according to ETA-04/0095

Injection System W-VIZ dynamic

Performance

Characteristic fatigue limit resistance for design according to FprEN 1992-4 and design method II according to TR 061 $\,$

Annex C2