

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0073 of 27 April 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

VITEXTHERM CL

Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

VITEX - YANNIDIS BROS S.A. ImerosTopos, P. O Box 139 19300 ASPROPYRGOS GRIECHENLAND

VITEX

13 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0073

Page 2 of 13 | 27 April 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 13 | 27 April 2018

European Technical Assessment ETA-18/0073 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The VITEXTHERM CL consists of an anchor sleeve with an enlarged shaft made of polypropylene (virgin material), an insulation plate made of glass fibre reinforced polyamide (virgin material) (VITEXTHERM CL / 250-390) and a special compound nail consisting of two parts, one made of glass fibre reinforced polyamide for the shaft element and the other part made of galvanised steel.

The specific nail for the anchor type VITEXTHERM CL / 250 - 390 is made of galvanized steel which is used together with a separate plastic cylinder made of glass fibre reinforced polyamide.

The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates DT 90, DT 110 and DT 140.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

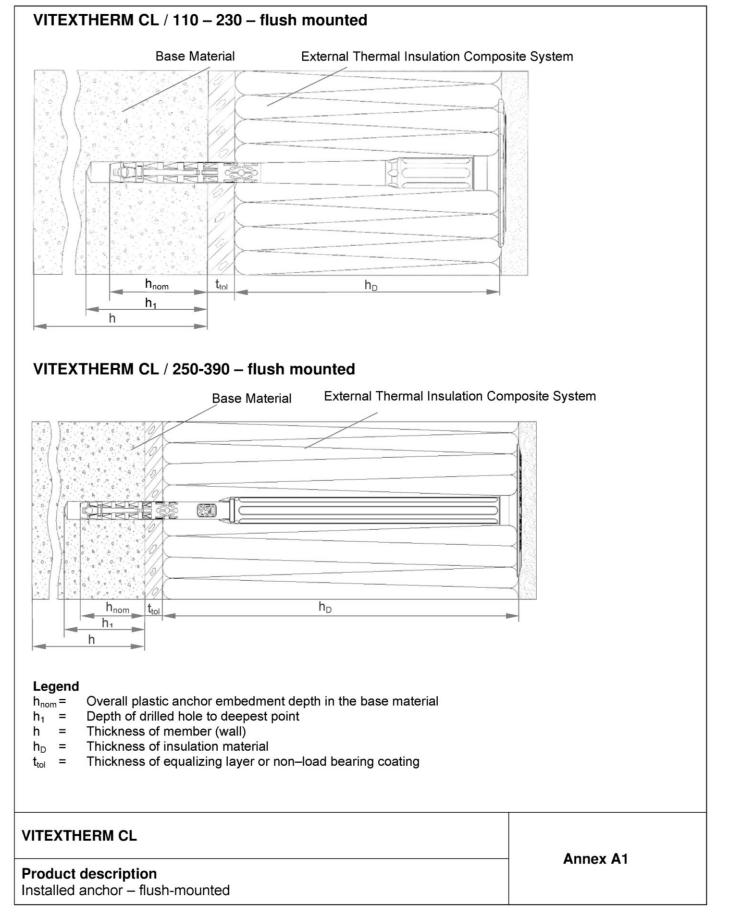
In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

European Technical Assessment ETA-18/0073

Page 4 of 13 | 27 April 2018

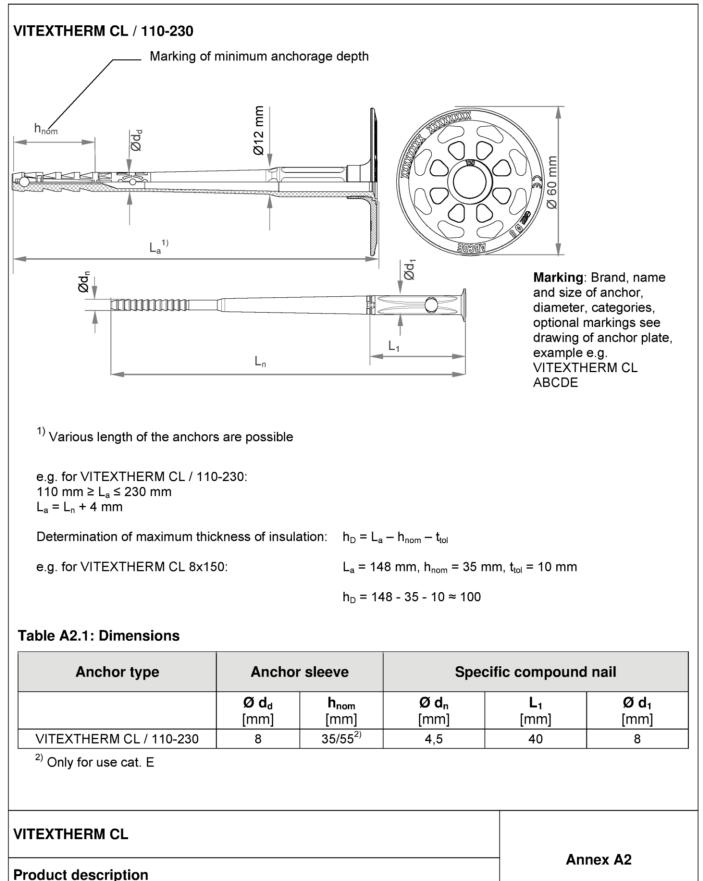
English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

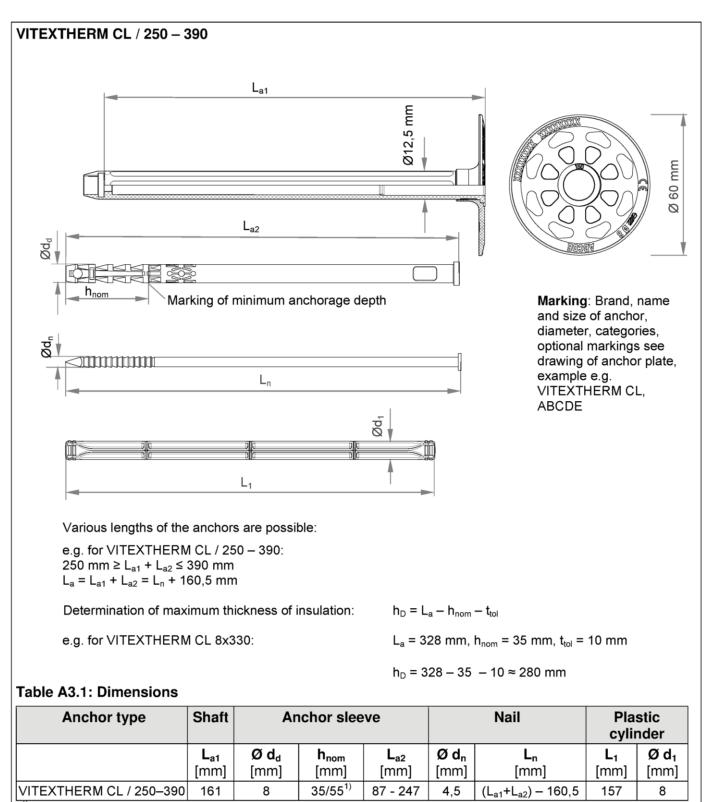
Issued in Berlin on 27 April 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* E. Aksünger



Page 6 of European Technical Assessment ETA-18/0073 of 27 April 2018

English translation prepared by DIBt



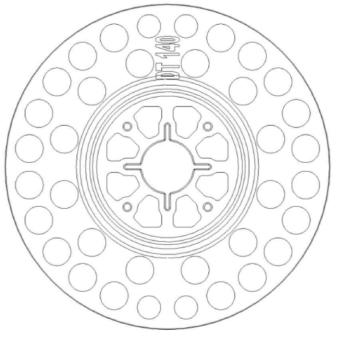
Dimensions VITEXTHERM CL / 110-230

Page 7 of European Technical Assessment ETA-18/0073 of 27 April 2018

English translation prepared by DIBt

¹⁾ Only for use cat. E

VITEXTHERM CL


Product description Dimensions VITEXTHERM CL / 250-390

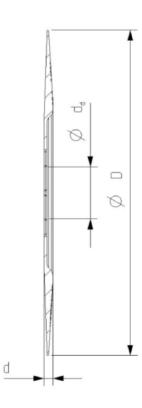

Annex A3

Table A4.1: Material	
Designation	Material
Anchor sleeve	PP (virgin material), colour: grey
Shaft VITEXTHERM CL / 250 – 390	PA6 (virgin material)GF, colour: grey
Plastic cylinder VITEXTHERM CL / 250 - 390	PA6 (virgin material) GF
Specific nail VITEXTHERM CL / 250 – 390	Steel gal Zn A2G or A2F according to EN ISO 4042 : 1999
Specific compound nail VITEXTHERM CL / 110 – 230	PA6 GF (plastic part of compound nail) Steel gal Zn A2G or A2F according to EN ISO 4042 : 1999
Anchor plate	PA6 (virgin material) GF colour: grey, orange, red, green, yellow, blue
Slip-on plate	PA6 (virgin material) GF colour: grey, orange, red, green, yellow, blue

Drawing of the slip-on plates

Table A4.2: Slip-on plate, diameters and material

Slip-on plate	Ø D [mm]	Ø d _d [mm]	d [mm]	Material
DT 90 / 110 / 140	90 / 110 / 140	22,5	3,9	PA6 GF

VIXTHERM CL	
Product description	Annex A4
Material	
Slip-on plates combined with VITEXTHERM CL	

Specifications of intended use

Anchorages subject to:

The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the external thermal insulation composite system (ETICS).

Base materials:

- Normal weight concrete (use category A), according to Annex C1.
- Solid masonry (use category B), according to Annex C1.
- Hollow or perforated masonry (use category C), according to Annex C1.
- Lightweight aggregate concrete (use category D), according to Annex C1.
- Autoclaved aerated concrete (use category E), according to Annex C1. •
- For other base materials of the use categories A, B, C, D and E the characteristic resistance of the anchor may be determined by job site tests acc. to EOTA Technical Report TR 051 Edition December 2016.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors γ_{M} = 2,0 and γ_{F} = 1,5 in absence of other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchors is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of ETICS.

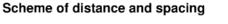
Installation:

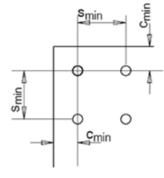
- Hole drilling by the drill modes according to Annex C1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks.

VITEXTHERM CL

Intended use

Annex B1

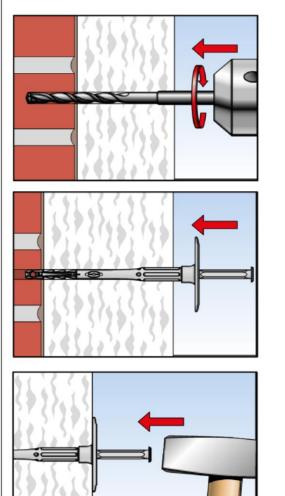

Specifications



			VITEXTHERM CL
d ₀	=	[mm]	8
d _{cut}	≤	[mm]	8,45
h ₁	≥	[mm]	45/65 ¹⁾
h _{nom}	≥	[mm]	35/55 ¹⁾
	d _{cut} h ₁	$d_{cut} \leq h_1 \geq$	$\begin{array}{c c} d_{cut} & \leq & [mm] \\ \hline h_1 & \geq & [mm] \end{array}$

Table B2.2: Minimum distances and spacing

			VITEXTHERM CL
Minimum thickness of member	h _{min} =	[mm]	100
Minimum spacing	s _{min} =	[mm]	100
Minimum edge distance	c _{min} =	[mm]	100



Annex B2

Installation instructions

Setting of anchor (flush mounted) by hammer / VITEXTHERM CL

1.Drill hole by corresponding drilling method

2.Insert anchor manually

3.Set anchor by hammerblows

4.Correctly installed anchor

VITEXTHERM CL
Annex B3
Installation instruction

Base material	Use	Min.	Bulk	Remarks	Drill	Characteristic
	cat.1)		density	i tomanto	method	
	out.	pressive	-		2)	[kN]
		strength	ρ			
		U	[kg/dm ³]			
		f _b				
		[N/mm ²]				
Concrete ≥ C12/15 - C50/60 EN 206-1:2000	A	-	-	-	н	0,9
Solid clay bricks Mz	_	10				
acc. to EN 771-1:2011	В	12	≥ 2,0		н	0,9
Calcium silicate solid bricks KS e.g.				Cross section reduced up		
acc. to EN 771-2:2011	B	12	≥ 1,8	to 15% by perforation	н	0,9
Solid concrete blocks Vbn				vertically to the resting		
acc. to EN 771-3:2011	B	20	≥ 2,0	area	н	0,75
Lightweight concrete blocks Vbl	в	8	≥ 1,4		н	0,6
acc. to EN 771-3:2011		_	,.			-,-
				Cross section reduced		
√ertically perforated clay bricks HI acc. to EN 771-1:2011	c	12	≥ 1,0	between 15% and 50%		
				by perforation vertically to	R	0,6
				the resting area. Exterior		
				web thickness \ge 15 mm		
				Cross section reduced		0 75
Hollow calcium silicate brick KSL	с	20	≥ 1,4	between 15% and 50%	to H	0,75
acc. to EN 771-2:2011				by perforation vertically to		
		12		the resting area. Exterior		0,5
				web thickness \ge 23 mm		-,-
				Cross section reduced		
Lightweight concrete hollow blocks				between 15% and 50%		
Hbl , acc. to EN 771-3:2011	C	10	≥ 1,2	by perforation vertically to	н	0,6
				the resting area. Exterior		
				web thickness \ge 38 mm		
Lightweight aggregate concrete		6				0,6
LAC, acc. to EN 1520:2011, EN	D	4	≥ 0,8	-	н	0.4
771-3:2011		4				0,4
						0 03)
Autoclaved aerated concrete		6	> 0,6			0,3 ³⁾
blocks, AAC	E			-	R	
acc. to EN 771-4:2011		4	> 0,4			0,3 ³⁾
			σ, τ			0,0

¹⁾ See Annex B1 ²⁾ R = Rotary drilling | H = Hammer drilling ³⁾ Only valid for $h_{nom} \ge 55 \text{ mm}$

VITEXTHERM CL

Performance

Characteristic resistance VITEXTHERM CL

Annex C1

Table C2.1: Point thermal transmittance according to EOTA Technischer Report TR 025 : 2016 – 05					
Anchor type	Thickness of insulation material h _D [mm]	Point thermal transmittance χ [W/K]			
VITEXTHERM CL / 110-230	60 - 80	0,001			
VITEXTHERM CE / TTO-230	> 80 - 180	0,000			
VITEXTHERM CL / 250-350	200 - 300	0,000			
VITEXTHERM CL / 370-390	> 300 - 340	0,001			

Table C2.2: Plate stiffness according to EOTA Technischer Report TR 026 : 2016 – 05

Anchor type	Size oft he anchor [mm]	Load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]	
VITEXTHERM CL	60	1,7	0,6	

Table C2.3: Displacements VITEXTHERM CL

Base material			
		Tension load F [kN]	Displacements δ [mm]
Concrete ≥ C12/15 – C50/60 (EN 206-1:2000)		0,30	< 0,3
Clay brick (EN 771-1:2011), Mz 12		0,30	< 0,5
Calcium silicate solid brick (EN 771-2:2011), KS 12		0,30	< 0,3
Vertically perforated clay brick (EN 771-1:2011), Hlz 12		0,20	< 0,2
Hollow calcium silicate brick (EN 771-2:2011), KSL 12	0,15	< 0,2	
Hollow calcium silicate brick (EN 771-2:2011), KSL 20	0,25	< 0,3	
Solid concrete blocks (EN 771-3:2011), Vbn 20		0,25	< 0,3
Hollow brick lightweight concrete (EN 771-3:2011), Hbl 4		0,20	< 0,2
Lightweight concrete solid block (EN 771-3:2011), Vbl 8		0,20	< 0,2
Lightweight aggregate concrete	LAC 4	0,15	< 0,3
(EN 1520:2011, EN 771-3:2011) LAC 6		0,20	< 0,3
Autoclaved aerated concrete blocks	AAC 4	0,10	< 0,2
EN 771-4:2011	AAC 6	0,13	< 0,3

VITEXTHERM CL

Performance Point thermal transmittance, plate stiffness and displacements Annex C2