

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0185 of 14 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

HVU2

Bonded fastener for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Hilti Corporation

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0185

Page 2 of 24 | 14 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 14 May 2018

European Technical Assessment ETA-18/0185 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HVU2 is a bonded anchor consisting of a mortar capsule HVU2 M... and a steel element. The steel element is a threaded rod with washer and nut HAS-(E) M24 to M30 or an internally threaded sleeve HIS(R)N M20.

The mortar capsule is placed in the hole and the steel element is driven by machine as specified in Annex B6.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 5 to C 6
Displacements (static and quasi-static loading)	See Annex C 7 to C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristics	Performance	
Content, emission and/or release of dangerous substances	No performance assessed	

European Technical Assessment ETA-18/0185

Page 4 of 24 | 14 May 2018

English translation prepared by DIBt

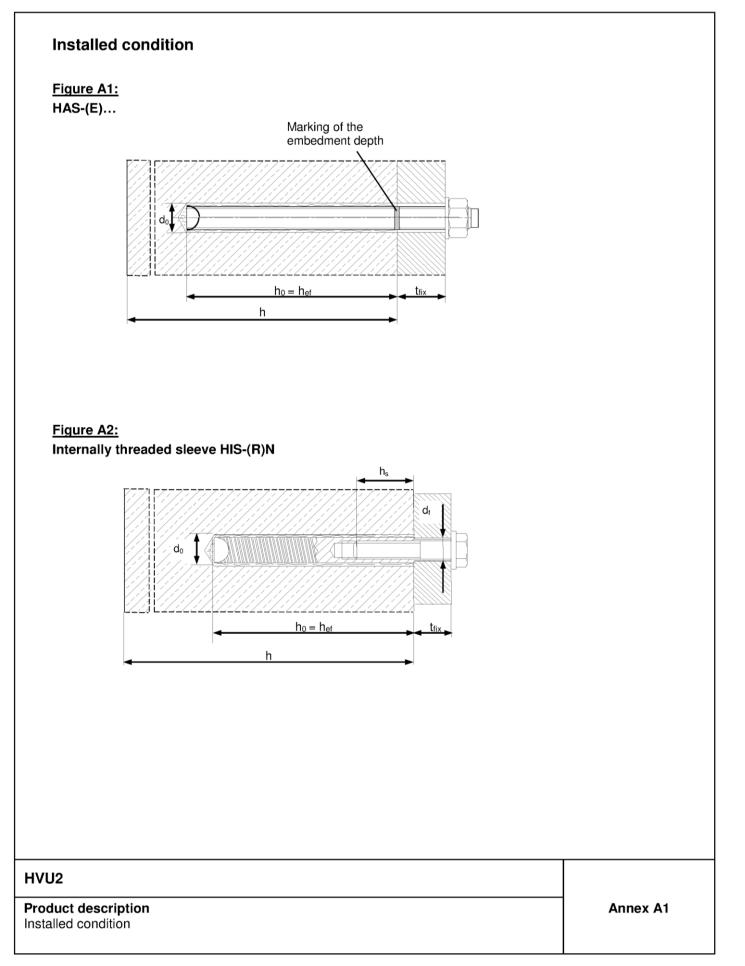
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In European Assessment Document EAD 330499-00-0601the applicable European legal act is: [96/582/EC].

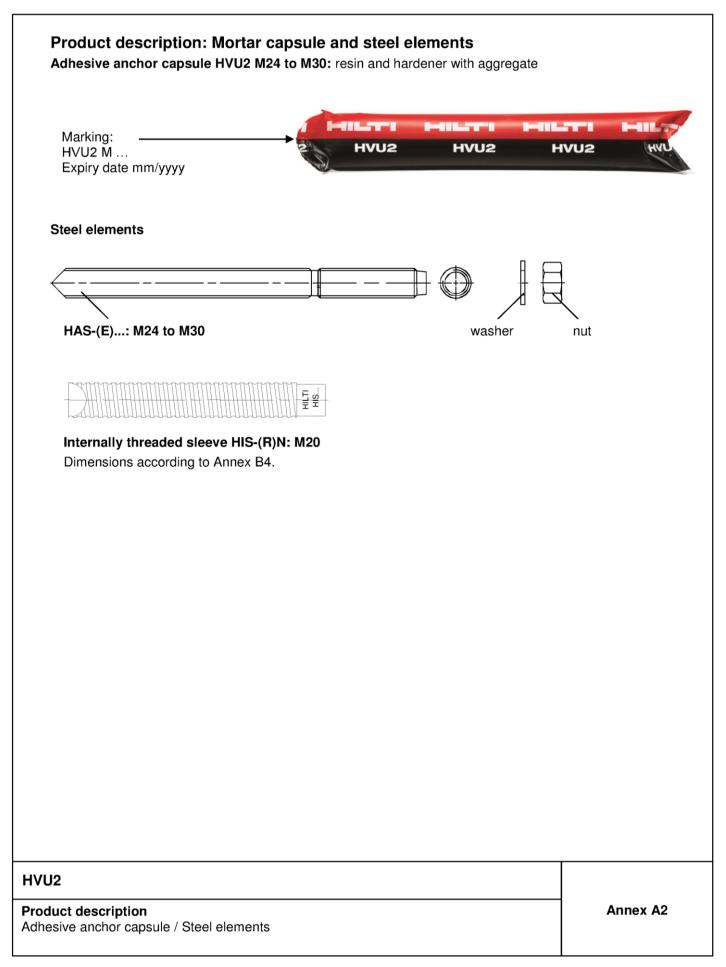
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 14 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange


Page 5 of European Technical Assessment ETA-18/0185 of 14 May 2018

English translation prepared by DIBt

Designation	Material				
Metal parts made of zinc coated steel					
HAS-(E)	M24: Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$ Elongation after fracture $A_f > 0,22$ (equal to A ($l_0 = 5d$) > 8% ductile) M24 to M30: Strength class 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$ Rupture elongation A ($l_0 = 5d$) > 12% ductile Electroplated zinc coated $\ge 5 \text{ µm}$, (F) hot dip galvanized $\ge 45 \text{ µm}$				
Internally threaded sleeve HIS-N	Electroplated zinc coated \ge 5 μ m				
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m				
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \ge 5 μ m, hot dip galvanized \ge 45 μ m				
Metal parts made of	stainless steel				
HAS-(E)R					
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014				
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014				
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014				
Metal parts made of	high corrosion resistant steel				
HAS-(E)HCR	M24: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$ Rupture elongation A ($l_0 = 5d$) > 12% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014				
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014				
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014				

HVU2

Product description Materials Annex A3

Specifications of intended use
Anchorages subject to:Static and quasi static loading.
 Base material: Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013. Strength classes C20/25 to C50/60 according to EN 206:2013. Cracked or uncracked concrete.
Temperature in the base material:
At installation 0 °C to +40 °C
· In-service
Temperature range I: -40 °C to +40 °C (max. long term temperature +24 °C and max. short term temperature +40 °C) Temperature range II: -40 °C to +80 °C
(max. long term temperature +50 °C and max. short term temperature +80 °C) Temperature range III: -40 °C to +120 °C
(max. long term temperature +72 °C and max. short term temperature +120 °C)
Table B1: Specifications of intended use

		Foil capsule HVU2 with …		
Elements		Threaded rod HAS-(E)	HIS-(R)N	
Hammer drilling with hollow drill bit TE-YD		M24 to M30	M20	
Hammer drilling	62222	M24 to M30	M20	
Diamond coring	£ ⊕)•	M24 to M30	M20	

HVU2

Intended Use Specifications

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zine coasted steel, staipless steel or high corr
- (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal conditions, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

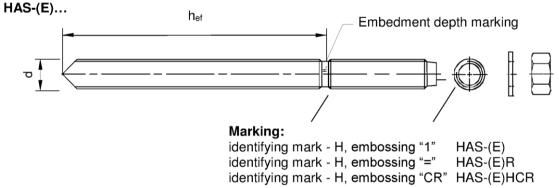
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: FprEN 1992-4:2017 and EOTA Technical Report TR 055

Installation:

- Concrete condition I1:
- Installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- Drilling technique: hammer drilling, diamond coring (e.g. Hilti DD 30-W or other Hilti DD machines), hammer drilling with hollow drill bit TE-YD.
- Installation direction: D2: downward and horizontal installation for threaded rod (HAS) M24 to M30 and internally threaded sleeve HIS-N M20.

D3: downward and horizontal and upward (e.g. overhead) installation for threaded rod (HAS) M24 and internally threaded sleeve HIS-N M20.

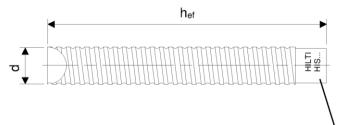
Anchor installation carried out by appropriately qualified personnel and under the supervision of the
person responsible for technical matters of the site.


HVU2

Intended Use Specifications

Installation parameters of HAS-(E)... Table B2:

HAS-(E)			M24	M27	M30
Foil capsule HVU2 M…			24x210	27x240	30x270
Diameter of fastener	$\boldsymbol{d} = \boldsymbol{d}_{nom}$	[mm]	24	27	30
Nominal diameter of drill bit	do	[mm]	28	30	35
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	210	240	270
Maximum diameter of clearance hole in the fixture	d _f	[mm]	26	30	33
Minimum allowed thickness of concrete member	h _{min}	[mm]	270	300	340
Maximum torque moment	$max \; T_{\text{fix}}$	[Nm]	200	270	300
Minimum allowable spacing	Smin	[mm]	115	120	140
Minimum allowable edge distance	Cmin	[mm]	60	75	80


HVU2

Intended Use Installation parameters

Internally threaded sleeve HIS-(R)N Foil capsule HVU2 M			M20
			24x210
Diameter of fastener	$\boldsymbol{d} = \boldsymbol{d}_{nom}$	[mm]	27,8
Nominal diameter of drill bit	do	[mm]	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	205
Maximum diameter of clearance hole in the fixture	df	[mm]	22
Minimum allowed thickness of concrete member	h _{min}	[mm]	270
Maximum torque moment	max T _{fix}	[Nm]	150
Thread engagement length min-max	h₅	[mm]	20-50
Minimum allowable spacing	Smin	[mm]	130
Minimum allowable edge distance	Cmin	[mm]	90

Internally threaded sleeve HIS-(R)N...

Marking:

Identifying mark - HILTI and embossing "HIS-N" (for zinc coated steel) embossing "HIS-RN" (for stainless steel)

Table B4: Minimum curing time

Temperature in the base material T	Minimum curing time t _{cure}
0 °C to 4 °C	40 min
5 °C to 9 °C	20 min
10 °C to 19 °C	10 min
20 °C to 40 °C	5 min

HVU2

Elem	ents	Drill and clean			
		Hammer drilling			
HAS-(E)	HIS-(R)N	Standard drill bit	Hollow drill bit TE-YD	Diamond coring	Brush
Fanananananan F an			E	₹ ⊕) •	*****
Size	Name	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB
M24	-	28	28	28	28
M27	-	30	-	30	30
-	M20	32	32	32	32
M30	-	35	35	35	35

Cleaning alternatives

Compressed Air Cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

Cleaning is performed during drilling with Hilti TE-YD drilling system including vacuum cleaner.

Н	۷	U	2
---	---	---	---

electronic copy of the eta by dibt: eta-18/0185

Intended Use Cleaning tools

Table B6: Parameters of setting tools HAS-(E)					
Elements Setting tools Operating mode					
HAS-(E) M24 to M30	TE-C ½" / TE-FY ¾"	HAS-(E) with double nut and TE-FY ¾" adapter	Rotary hammer tool in rotation hammer mode		

Table B7: Parameters of setting tools HIS-(R)N...

Elements	Setting	tools	Setting mode
HIS-(R)N M20	TE-C ½" / TE-FY ¾" TE(-A) HIS-S	HIS-N with HIS-S and TE-FY ¾" adapter	Rotary hammer tool in rotation hammer mode
		HIS-N with screw and TE-FY ¾" adapter	Rotary hammer tool in rotation hammer mode

HVU2	

Intended Use Setting tools

Hole drilling		
a) Hammer drilling:	For dry or wet concrete	
	Drill hole to the required embedment depth with a hammer drill se mode using an appropriately sized carbide drill bit.	et in rotation-hammer
b) Hammer drilling wi	th Hilti hollow drill bit: For dry and wet concrete	
TE-CD TE-YD	Drill hole to the required embedment depth with an appropriately hollow drill bit with Hilti vacuum attachment. This drilling system r cleans the drill hole during drilling when used in accordance with After drilling is completed, proceed to the "setting the element" st instruction.	emoves the dust and the user's manual.
c) Diamond coring:	For dry or wet concrete	
	Diamond coring is permissible when suitable diamond core drillin corresponding core bits are used.	g machines and the
Check setting depth		
	Check the setting depth with the marked element. The element has to fit in the hole until the required embedment d If it is not possible to insert the element to the required embedme	
Drill hole cleaning:	Just before setting an anchor, the drill hole must be free of dust a Inadequate hole cleaning = poor load values.	and debris.
Compressed Air Clear	ning (CAC): For all drill hole diameters do and all drill hole depths h	10.
6 bar/90 psi 2x do 10-35mm	Blow 2 times from the back of the hole (if needed with nozzle extended hold be compressed air (min. 6 bar at 6 m ³ /h) until retund the noticeable dust.	
VU2		

Page 15 of European Technical Assessment ETA-18/0185 of 14 May 2018

English translation prepared by DIBt

٦

Elucia O time a los incontinos a sustan la cas (sustan line ana casua) ta t	
Flush 2 times by inserting a water hose (water-line pressure) to the until water runs clear.	he back of the hole
Brush 2 times with the specified brush (see table B5) by inserting HIT-RB to the back of the hole (if needed with extension) in a twi removing it. The brush must produce natural resistance as it enters the drill hold drill hole \emptyset) - if not, the brush is too small and must be replaced with diameter.	sting motion and ole (brush Ø ≥
Flush 2 times by inserting a water hose (water-line pressure) to t until water runs clear.	he back of the hole
Blow 2 times from the back of the hole (if needed with nozzle extended length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until retunition noticeable dust and water.	
Brush 2 times with the specified brush (see table B5) by inserting HIT-RB to the back of the hole (if needed with extension) in a twis removing it. The brush must produce natural resistance as it enters the drill hold drill hole \emptyset) - if not, the brush is too small and must be replaced we diameter.	sting motion and ole (brush Ø ≥
Blow again with compressed air 2 times until return air stream is and water.	free of noticeable dust
	 HIT-RB to the back of the hole (if needed with extension) in a twi removing it. The brush must produce natural resistance as it enters the drill h drill hole Ø) - if not, the brush is too small and must be replaced with diameter. Flush 2 times by inserting a water hose (water-line pressure) to the until water runs clear. Blow 2 times from the back of the hole (if needed with nozzle extended with oil-free compressed air (min. 6 bar at 6 m³/h) until return noticeable dust and water. Brush 2 times with the specified brush (see table B5) by inserting HIT-RB to the back of the hole (if needed with extension) in a twi removing it. The brush must produce natural resistance as it enters the drill hedrill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and must be replaced with and the drill hole Ø) - if not, the brush is too small and the drill hole Ø) - if not, the brush is too small and the drill hole Ø) - if not, the brush is too small

Intended Use Installation instructions

Setting the element	
HVU2	Overhead application is permitted for HVU2 size M24. Insert the foil capsule with the peak ahead to the back of the hole.
iT TE	Drive the anchor rod with the plugged tool into the hole, applying moderate pressure. Rotary hammer tool in rotation hammer mode (450 RPM to maximum 1300 RPM). Setting tool see Annex B6. After reaching the embedment depth switch off setting machine immediately.
	Overhead installation. For overhead installation use the overhead dripping cup HIT-OHC.
	Loading the anchor: After required curing time t_{cure} (see Table B4) the anchor can be loaded. The applied installation torque shall not exceed the values maxT _{fix} given in Table B2 and B3.

HVU2

Intended Use Installation instructions

HAS-(E)			M24	M27	M30
Robustness				•	
Hammer drilling and drilling with hollow drill bit TE-YD	γinst	[-]		1,0	
Diamond coring	γinst	[-]		1,0	
Steel failure					
HAS-(E) 5.8	N _{Rk,s}	[kN]	160,2		-
Partial factor	$\gamma_{\text{Ms,N}}$ $^{1)}$	[-]	1,50		-
HAS-(E) 8.8	N _{Rk,s}	[kN]	256,4	347	421,5
Partial factor	$\gamma_{ m Ms,N}$ $^{1)}$	[-]		1,50	
HAS-R	N _{Rk,s}	[kN]	224,3	216,9	263,4
Partial factor	γ Ms,N $^{1)}$	[-]	1,87	2,	86
HAS-HCR	N _{Rk,s}	[kN]	224,3		-
Partial factor	γ Ms,N $^{1)}$	[-]	2,1 -		
Combined pullout and conc	rete cone	failure in			
uncracked concrete C20/25 ir	h ammer	drilled holes	and with hollov	v drill bit TE-YD	
Temperature range I: 24°C / 40°C	$\tau_{Rk,ucr}$	[N/mm²]		16,0	
Temperature range II: 50°C / 80°C	$\tau_{Rk,ucr}$	[N/mm²]	13,0		
Temperature range III: 72°C / 120°C	$ au_{Rk,ucr}$	[N/mm²]		7,5	
uncracked concrete C20/25 ir	n diamond	cored holes			
Temperature range I: 24°C / 40°C	$ au_{Rk,ucr}$	[N/mm²]		14,0	
Temperature range II: 50°C / 80°C	$ au_{Rk,ucr}$	[N/mm²]		12,0	
Temperature range III: 72°C / 120°C	$ au_{Rk,ucr}$	[N/mm²]		7,0	
		C30/37		1,08	
Factor for concrete compressive strength	ψ_{c}	C40/50		1,15	
compressive strength		C50/60		1,20	

HVU2

Performances

Essential characteristics under tension load HAS-(E)

Deutsches Institut für Bautechnik

HAS-(E)			M24	M27 M3	30
cracked concrete C20/25 in hami	ner dril	led holes ar	nd with hollow d	rill bit TE-YD	
Temperature range I: 24°C / 40°C	$ au_{Rk,cr}$	[N/mm²]		8,5	
Temperature range II: 50°C / 80°C	$\tau_{Rk,cr}$	[N/mm²]		6,5	
Temperature range III: 72°C / 120°C	$ au_{Rk,cr}$	[N/mm²]		4,0	
Factor for concrete compressive		C30/37		1,08	
strength for hammer drilled holes	ψc	C40/50		1,13	
and hollow drill bit TE-YD		C50/60		1,18	
cracked concrete C20/25 in diam	ond cor	ed holes			
Temperature range I: 24°C / 40°C	$ au_{Rk,cr}$	[N/mm²]		7,0	
Temperature range II: 50°C / 80°C	$ au_{Rk,cr}$	[N/mm²]		6,0	
Temperature range III: 72°C / 120°C	$\tau_{Rk,cr}$	[N/mm²]		3,5	
Factor for concrete compressive strength for diamond cored holes	ψc	C50/60	1,0		
Concrete cone failure					
Factor for uncracked concrete	k _{ucr}	[-]		11,0	
Factor for cracked concrete	k_{cr}	[-]		7,7	
Edge distance	Ccr,N	[mm]		1,5 · h _{ef}	
Spacing	Scr,N	[mm]		3,0 ⋅ h _{ef}	
Splitting failure					
	h / h _{ef} 2	≥ 2,0	1,0 · h _{ef}	h/h _{ef} 2,0	
Edge distance c _{cr,sp} [mm] for	2,0 > h	/ h _{ef} > 1,3	4,6 · h _{ef} - 1,8 · h	1,3 -	
· · · ·	h / h _{ef} ≤	≤ 1,3	2,26 · h _{ef}	1,0 h _{ef} 2,26 h _{ef}	C _{cr,sp}
Spacing	S _{cr,sp}	[mm]		2·c _{cr,sp}	

¹⁾ In absence of other national regulations

Performances

Essential characteristics under tension load HAS-(E)

Table C2: Essential characteristics for internally threaded sleeve HIS-(R)N under tension load in concrete

HIS-(R)N			M20
Robustness			
Hammer drilling and drilling with hollow drill bit TE-YD	γinst	[-]	1,0
Diamond coring	γinst	[-]	1,0
Steel failure			
HIS-N with with screw or threaded rod grade 8.8	N _{Rk,s}	[kN]	116
Partial factor	$\gamma_{ m Ms,N}$ $^{1)}$	[-]	1,5
HIS-RN with with screw or threaded rod grade 70	N _{Rk,s}	[kN]	166
Partial factor	$\gamma_{\text{Ms,N}}$ $^{1)}$	[-]	2,4
Combined pullout and concrete cone	failure i	in	
uncracked concrete C20/25 in hammer drilled holes and hammer dri	lled hol	es with holl	low drill bit TE-YD
Diameter of fastener	d	[mm]	27,6
Temperature range I: 24°C / 40°C	$ au_{Rk,ucr}$	[N/mm ²]	11,0
Temperature range II: 50°C / 80°C	$ au_{Rk,ucr}$	[N/mm ²]	9,0
Temperature range III: 72°C / 120°C	$ au_{Rk,ucr}$	[N/mm ²]	5,5
uncracked concrete C20/25 in diamond	cored h	noles	
Temperature range I: 24°C / 40°C	$\tau_{Rk,ucr}$	[N/mm ²]	11,0
Temperature range II: 50°C / 80°C	$ au_{Rk,ucr}$	[N/mm ²]	9,0
Temperature range III: 72°C / 120°C	$\tau_{Rk,ucr}$	[N/mm ²]	5,5
Factor for concrete compressive strength	Ψc	C50/60	1,0

HVU2

Performances

Essential characteristics under tension load HIS-(R)N

Table C2: continued

HIS-(R)N			M20	
cracked concrete C20/25 in hammer dri	lled hole	es and ham	nmer drilled holes with hollow drill bit TE-Y	1D
Temperature range I: 24°C / 40°C	$ au_{Rk,cr}$	[N/mm²]	6,5	
Temperature range II: 50°C / 80°C	$\tau_{Rk,cr}$	[N/mm²]	5,0	
Temperature range III: 72°C / 120°C	$\tau_{Rk,cr}$	[N/mm ²]	3,0	
Factor for concrete compressive strength		C30/37	1,08	
for hammer drilled holes and hollow drill	Ψc	C40/50	1,15	
bit TE-YD		C50/60	1,20	
cracked concrete C20/25 in diamond co	ored hole	es		
Temperature range I: 24°C / 40°C	$\tau_{Rk,cr}$	[N/mm²]	4,5	
Temperature range II: 50°C / 80°C	$ au_{Rk,cr}$	[N/mm²]	3,5	
Temperature range III: 72°C / 120°C	$\tau_{Rk,cr}$	[N/mm²]	2,5	
Factor for concrete compressive strength for diamond cored holes	ψс	C50/60	1,0	
Concrete cone failure		l		
Factor for uncracked concrete	k ucr	[-]	11,0	
Factor for cracked concrete	k cr	[-]	7,7	
Edge distance	C cr,N	[mm]	1,5 · h _{ef}	
Spacing	Scr,N	[mm]	3,0 ⋅ h _{ef}	
Splitting failure				
	h / ł	n _{ef} ≥ 2,0	1,0 · h _{ef}	
Edge distance c _{cr,sp} [mm] for	2,0 > h	n / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h 1,3	
	h / ł	n _{ef} ≤ 1,3	2,26 h _{ef} 1,0 h _{ef} 2,26 h _{ef} c _{cr,}	er,sp
Spacing	Scr,sp	[mm]	2·c _{cr,sp}	

¹⁾ In absence of national regulations.

HVU2

Performances

Essential characteristics under tension load HIS-(R)N

HAS-(E)			M24	M27	M30
Robustness					
Hammer drilling and drilling with hollow drill bit TE-YD	γinst	[-]		1,0	
Diamond coring	γ inst	[-]		1,0	
Steel failure without lever arm					
HAS-(E) 5.8	$V^0_{Rk,s}$	[kN]	80,1	-	-
Partial factor	$\gamma_{Ms,V}$ 1)	[-]	1,25	-	-
HAS-(E) 8.8	$V^0_{Rk,s}$	[kN]	128,2	173,5	210,7
Partial factor	$\gamma_{ m Ms,V}$ $^{1)}$	[-]		1,25	
HAS-R	$V^0_{Rk,s}$	[kN]	112,2	108,4	131,7
Partial factor	$\gamma_{ m Ms,V}$ $^{1)}$	[-]	1,56	2,	38
HAS-HCR	$V^0_{Rk,s}$	[kN]	112,2	-	-
Partial factor	$\gamma_{ m Ms,V}$ $^{1)}$	[-]	1,75	-	-
Ductility factor	k 7	[-]		1,0	
Steel failure with lever arm					
HAS-(E) 5.8	M ⁰ Rk,s	[kN]	486	-	-
Partial factor	$\gamma_{ m Ms,V}$ 1)	[-]	1,25	-	-
HAS-(E) 8.8	M ⁰ Rk,s	[kN]	777	1223	1638
Partial factor	$\gamma_{ m Ms,V}$ $^{1)}$	[-]		1,25	
HAS-R	M^0 _{Rk,s}	[kN]	680	765	1023
Partial factor	$\gamma_{ m Ms,V}$ $^{1)}$	[-]	1,56	2,	38
HAS-HCR	M ⁰ Rk,s	[kN]	680	-	-
Partial factor	$\gamma_{ m Ms,V}$ $^{1)}$	[-]	1,75	-	-
Ductility factor	k 7	[-]		1,0	
Concrete pry-out failure					
Pry-out factor	k ₈	[-]		2,0	
Concrete edge failure					
Effective length of fastener	lf	[mm]	210	240	270
Outside diameter of fastener	d_{nom}	[mm]	24	27	30

¹⁾ In absence of national regulations.

Performances

Essential characteristics under shear load HAS-(E)

Table C4: Essential characteristics for internally threaded sleeve HIS-(R)N under shear load in concrete

HIS-(R)N			M20
Robustness			
Hammer drilling and drilling with hollow drill bit TE-YD	γinst	[-]	1,0
Diamond coring	γinst	[-]	1,0
Steel failure without lever arm			
HIS-N with screw or threaded rod grade 8.8	$V^0_{Rk,s}$	[kN]	58
Partial factor	γ Ms,V $^{1)}$	[-]	1,25
HIS-RN with screw or threaded rod grade 70	$V^{0}_{Rk,s}$	[kN]	83
Partial factor	$\gamma_{\rm Ms,V}$ 1)	[-]	2,0
Ductility factor	k7	[-]	1,0
Steel failure with lever arm			
HIS-N with screw or threaded rod grade 8.8	M ⁰ Rk,s	[Nm]	519
Partial factor	$\gamma_{\rm Ms,V}$ 1)	[-]	1,25
HIS-RN with screw or threaded rod grade 70	M ⁰ Rk,s	[Nm]	454
Partial factor	$\gamma_{\rm Ms,V}$ 1)	[-]	1,56
Ductility factor	k 7	[-]	1,0
Concrete pry-out failure			
Pry-out factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of fastener	lf	[mm]	205
Outside diameter of fastener	d _{nom}	[mm]	27,6

¹⁾ In absence of national regulations.

HVU2

Performances Essential characteristics under shear load HIS-(R)N

HAS-(E)			M24	M27	M30
Uncracked cond	crete				
Temperature rai	nge I to III				
Displacement	δ _{N0} -factor	[mm/(N/mm²)]	0,06	0,1	5
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,10	0,3	0
Cracked concre	te	•;			
Temperature rai	nge I to III				
Displacement	δ _{N0} -factor	[mm/(N/mm²)]	0,10	0,1	5
Displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,14	0,3	0

 $\delta_{N0} = \delta_{N0}$ -factor · τ; $\delta_{N\infty} = \delta_{N\infty}$ -

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$ (τ : action bond stress).

Table C6: Displacements for HAS-(E) under shear load¹⁾

HAS-(E)			M24	M27 M30	
Displacement	δ_{V0} -factor	[mm/kN]	0,03	0,03	
Displacement	δv∞-factor	[mm/kN]	0,05	0,05	

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0 \text{-factor} \cdot V; \qquad \delta v_\infty = \delta v_\infty \text{-factor} \cdot V$

(V: action shear load).

HVU2

Performances Displacements HAS-(E)

Table C7: Displacements for internally threaded sleeves HIS-(R)N under tension load¹⁾

HIS-(R)N		M20					
Uncracked concrete							
Temperature range I to I							
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,15				
Displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,15				
Cracked concrete		· ·					
Temperature range I to I	II						
Displacement	δ _{N0} -factor	[mm/10kN]	0,20				
Displacement	$\delta_{N\infty}$ -factor	[mm/10kN]	0,20				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor} \cdot N; \qquad \delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot N$

(N: action tension load).

Table C8: Displacements for internally threaded sleeves HIS-(R)N under shear load¹⁾

HIS-(R)N		M20	
Displacement	δ_{V0} -factor	[mm/kN]	0,04
Displacement	δv∞-factor	[mm/kN]	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \cdot V; \qquad \delta_{V\infty} = \delta_{V\infty} \text{-factor} \cdot V$

(V: action shear load).

HVU2

Performances Displacements HIS-(R)N