

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0278 of 12 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

PROFAST Injection system V-PRO 200 for concrete

Bonded fastener for use in concrete

PROFAST Ankersysteme B.V.B.A. PO Box 27 3900 OVERPELT BELGIEN

PROFAST Ankersystemen B.V.B.A. - Manufacturing plant 5

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-18/0278

Page 2 of 24 | 12 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0278

Page 3 of 24 | 12 July 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "PROFAST Injection system V-PRO 200 for concrete" is a bonded anchor consisting of a cartridge with injection mortar V-PRO 200 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance and displacements for seismic	See Annex
performance categories C1 and C2	C 2. C 3, C 6, C 7, C 8 and C 9

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

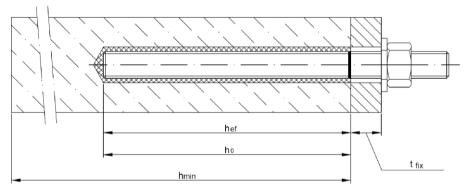
European Technical Assessment ETA-18/0278

Page 4 of 24 | 12 July 2018

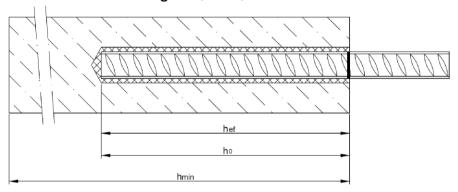
English translation prepared by DIBt

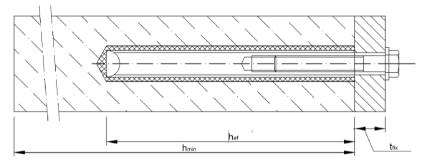
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 12 July 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Stiller


Installation threaded rod M8 to M30

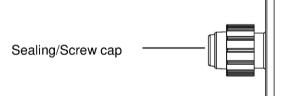
Installation reinforcing bar Ø8 to Ø32

Installation internal threaded rod IS-M6 to IS-M20

 t_{fix} = thickness of fixture

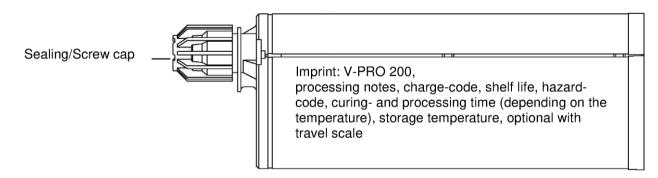
h_{ef} = effective anchorage depth

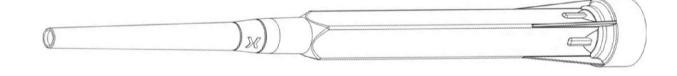
 $h_0 = depth of drill hole$


 h_{min} = minimum thickness of member

PROFAST Injection System V-PRO 200 for concrete Product description Installed condition Annex A 1

Cartridge: V-PRO 200

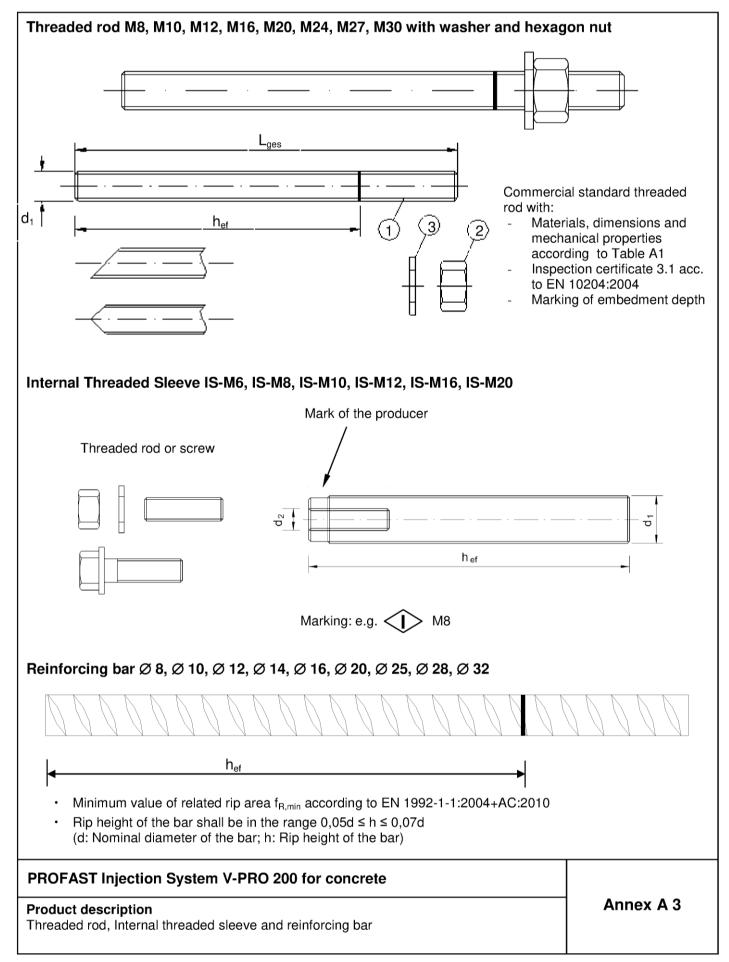

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Imprint: V-PRO 200,

processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), storage temperature, optional with travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

Static Mixer


PROFAST Injection System V-PRO 200 for concrete

Product description

Injection system

Annex A 2

Table A1: Materials					
Designation	Material				
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:		0.0000			
Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.6, 5.8, 8.8, EN 1993-1-8:2005+AC:200 A₅ > 12% fracture elongation					
Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 and 4.8 rod) EN ISO 898-2:2012, Property class 5 (for class 5.6 and 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012				
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated Property class 5.6, 5.8 and 8.8 EN ISO 89	98-1:2013			
Internal threaded rod	Steel, zinc plated				
Stainless steel					
Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 100 Property class 50 EN ISO 3506-1:2009 Property class 70 (\leq M24) EN ISO 3506-1 A ₅ > 12% fracture elongation				
Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 100 Property class 50 (for class 50 rod) EN IS Property class 70 (≤ M24) (for class 70 ro	O 3506-2:2009			
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005				
Internal threaded rod	Stainless steel: 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014 Property class 70 (for class 70 rod) EN ISO 3506-1:2009				
High corrosion resistant steel					
Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:200 Property class 50 EN ISO 3506-1:2009 Property class 70 (\leq M24) EN ISO 3506-1 A ₅ > 12% fracture elongation				
Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:200 Property class 50 (for class 50 rod) EN IS Property class 70 (≤ M24) (for class 70 ro	O 3506-2:2009			
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:200				
Internal threaded rod	Stainless steel: 1.4529 / 1.4565, EN 1008 Property class 70 (for class 70 rod) EN IS				
Reinforcing bars					
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA			
	,				
PROFAST Injection System V-PRO 200 fo	or concrete				
Product description Materials		Annex A 4			

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IS-M6 to IS-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 (except hot-dip galvanised rods)

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IS-M6 to IS-M20.
- Cracked concrete: M8 to M30. Rebar Ø8 to Ø32. IS-M6 to IS-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance to:
 - FprEN 1992-4:2017 and Technical Report TR055

Installation:

electronic copy of the eta by dibt: eta-18/0278

- Dry or wet concrete.
- Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

PROFAST Injection System V-PRO 200 for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Diameter of element	$d_1 = d_{nom} [mm] =$	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	28	30	35
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	9	12	14	18	22	26	30	33
Installation torque	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member	h _{min} [mm]	,		+ 30 mm 100 mm h _{ef} + 2d ₀					
Minimum spacing	s _{min} [mm]	40	50	60	75	95	115	125	140
Minimum edge distance	c _{min} [mm]	35	40	45	50	60	65	75	80

¹⁾ for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.

2) Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of element	$d = d_{nom} [mm] =$	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	25	32	35	40
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Enective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min} [mm]	h _{ef} + 3 ≥ 100								
Minimum spacing	s _{min} [mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	60	70	75	85

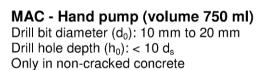
Installation parameters for Internal threaded rod Table B3:

Anchor size		IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20
Internal diameter of sleeve	$d_2 [mm] =$	6	8	10	12	16	20
Outer diameter of sleeve ²⁾	$d_1 = d_{nom} [mm] =$	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective anchorage depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Enective anchorage depth	$h_{ef,max}$ [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	$d_f [mm] =$	7	9	12	14	18	22
Installation torque	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length Min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
Minimum spacing	s _{min} [mm]	50	60	75	95	115	140
Minimum edge distance	c _{min} [mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

PROFAST Injection System V-PRO 200 for concrete	
Intended Use	Annex B 2
Installation parameters	

Table B4: Parameter cleaning and setting tools



- MR	52													
Threaded Rod	Rebar	Internal threaded rod	d₀ Drill bit - Ø	ı	l₀ h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston pl					
(mm)	(mm)	(mm)	(mm)		(mm)	(mm)		1	→	1				
M8			10	RB10	11,5	10,5	-	-	-	-				
M10	8	IS-M6	12	RB12	13,5	12,5	-	-	-	-				
M12	10	IS-M8	14	RB14	15,5	14,5	-	-	-	-				
	12		16	RB16	17,5	16,5	-	-	-	-				
M16	14	IS-M10	18	RB18	20,0	18,5	IP18							
	16		20	RB20	22,0	20,5	IP20							
M20		IS-M12	22	RB22	24,0	22,5	IP22							
	20		25	RB25	27,0	25,5	IP25	h . >	h .>					
M24		IS-M16	28	RB28	30,0	28,5	IP28	h _{ef} > 250 mm	h _{ef} > 250 mm	all				
M27			30	RB30	31,8	30,5	IP30		250 11111					
	25		32	RB32	34,0	32,5	IP32							
M30	28	IS-M20	35	RB35	37,0	35,5	IP35							
	32		40	RB40	43,5	40,5	IP40							

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Drill bit diameter (d_0): 18 mm to 40 mm

Steel brush RB

Drill bit diameter (d₀): all diameters

PROFAST In	iection S	vetem '	V-PRO	200 for	concrete
FROFASTIII	jection 3	ysteili	V-FNO	200 101	COLICIETE

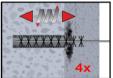
Intended Use

Cleaning and setting tools

Annex B 3

Installation instructions

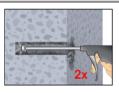
Drilling of the bore hole


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). In case of aborted drill hole: the drill hole shall be filled with mortar

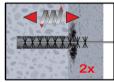
Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_s$ (uncracked concrete only!)

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.



2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

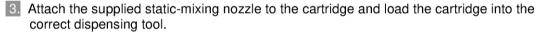
2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times.
If the bore hole ground is not reached with the brush, a brush extension must be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

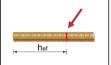
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

PROFAST Injection System V-PRO 200 for concrete

Intended Use

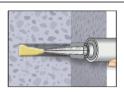

Installation instructions

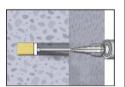
Annex B 4

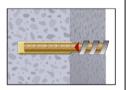


Installation instructions (continuation)

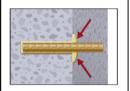



For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

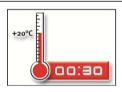

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

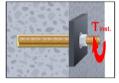
6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B5.



- 7. Piston Plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench.

PROFAST Injection System V-PRO 200 for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Cartridge temperature

+5°C to +40°C

Table B5:	Table B5: Maximum working time and minimum curing time								
Concrete	tem	perature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete				
0 °C	to	+ 4 °C	25 min	3,5 h	7 h				
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h				
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h				
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min				
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min				
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min				

PROFAST Injection System V-PRO 200 for concrete	
Intended Use Curing time	Annex B 6

2,38

1,56

Tak	ole C1: Characteristic values for		on res	istar	nce a	nd st	teel s	shea	r		
0:	resistance of threaded ro	as 			11.40	10.40	11.40	11.00	1404	14.07	
Size	cteristic tension resistance, Steel failure			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
	Property class 8.8	N _{Rk,s}	+	29	46	67	125	196	282	368	449
	ostender Stahl A4 and HCR, Property class 50		[kN]	18	29	42	79	123	177	230	281
		N _{Rk,s}	[kN]							230	
	ostender Stahl A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	cteristic tension resistance, Partial factor	251)	1.1								
	Property class 4.6	yMs,N	[-]					,0			
	Property class 4.8	γ _{Ms,N} 1)	[-]					,5			
Steel, Property class 5.6			[-]	2,0							
Steel, Property class 5.8			[-]	1,5 1,5							
	Property class 8.8	γMs,N 1)	[-]	2,86							
	ess steel A4 and HCR, Property class 50	γMs,N 1)	[-]	1,87							
	ess steel A4 and HCR, Property class 70	γMs,N	[-]	1,8/							
Characteristic shear resistance, Steel failure			TI-NII	7	10	17	0.1	10	71		110
arm	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]		12	17	31	49		92	112
ever	Steel, Property class 5.6 and 5.8		[kN]	9	15	21	39	61	88	115	140
Without lever	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Vitho	Stainless steel A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
	Stainless steel A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
Ε	Steel, Property class 4.6 and 4.8	M _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
er arm	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
lever	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
With I	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel A4 and HCR, Property class 70			[Nm]	26	52	92	232	454	784	-	-
	cteristic shear resistance, Partial factor										
	Property class 4.6	γMs,V 1)	[-]					67			
	Property class 4.8	γ _{Ms,V} 1)	[-]					25			
	Property class 5.6	γ _{Ms,V} 1)	[-]					67			
Steel, Property class 5.8			[-]	1,25							
Steel, Property class 8.8			[-]	1,25							

¹⁾ in absence of national regulation

Stainless steel A4 and HCR, Property class 50

Stainless steel A4 and HCR, Property class 70

PROFAST Injection System V-PRO 200 for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

γ_{Ms,V} 1)

γ_{Ms,V} 1)

[-]

[-]

electronic copy of the eta by dibt: eta-18/0278

English translation prepared by DIBt

Table C2:	Characteristic values of tension loads for threaded rods under static,
	quasi-static action and seismic action (performance category C1+C2)

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure												
	N _{Rk,s}	[kN]	see Table C1									
Characteristic tension	resistance	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rks}								
Onaracteristic terision i	esistance	N _{Rk,s,eq,C2}	[kN]	NPD 1,0 · No Performance Determined (NPD)							IPD)	
Partial factor		γMs,N	[-]			rik,5	see Ta	able C1				
Combined pull-out an	d concrete cone failur											
Characteristic bond res	sistance in non-cracked	concrete C20/25	5									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	17	17	16	15	14	13	13	13	
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	15	14	14	13	12	12	11	11	
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{\text{Rk,ucr}}$	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0	
Characteristic bond res	sistance in cracked cond	rete C20/25										
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk,eq,C1}}$	[N/mm ²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5	
80°C/50°C	dry and wet concrete	τ _{Rk, eq,C2}	[N/mm ²]	N	PD	3,6			NPD			
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq,C1}}$	[N/mm ²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5	
120°C/72°C		τ _{Rk, eq,C2}	[N/mm ²]	N	PD	3,1			NPD			
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq,C1}}$	[N/mm²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5	
160°C/100°C		τ _{Rk, eq,C2}	[N/mm²]	NPD 2,5 NPD								
		C25/30 1,02										
		C30/3	1,04									
Increasing factors for c	oncrete	C35/4	1,07									
ψ_{c}		C40/5	1,08									
		C45/5	1,09 1,10									
Onnounts and fallows		C50/6	50					10				
Concrete cone failure		I. I	1									
Non-cracked concrete		k _{ucr,N}	[-]				1	1,0				
Cracked concrete		k _{cr,N}	[-]				7	,7				
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}				
Axial distance		S _{cr,N}	[mm]				2 (Ccr,N				
Splitting failure												
	h/h _{ef} ≥ 2,0						1,0) h _{ef}				
Edge distance 2,0> h/h _{ef} > 1,3		C _{cr,sp}	C _{cr,sp} [mm]		$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$							
h/h _{ef} ≤ 1,3]		2,4 h _{et}								
Axial distance	S _{cr,sp}	[mm]	2 C _{Cr,sp}									
Installation factor (CAC (dry and wet concrete)	*)	γinst	[-]		1,0 ((1,2) ¹⁾		- 1	1	,2		
Installation factor (MAC (dry and wet concrete)	γinst	[-]	1,2									

¹⁾ Value in brackets for cracked concrete

PROFAST Injection System V-PRO 200 for concrete	
Performances Characteristic values of tension loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)	Annex C 2

electronic copy of the eta by dibt: eta-18/0278

Factor for annular gap

 α_{gap}

[-]

English translation prepared by DIBt

0,5

	stic values o								c, quas	;i-		
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Steel failure without lever arm						•						
	$V^0_{Rk,s}$	[kN]				see Ta	able C1					
Characteristic shear resistance	$V_{Rk,s,eq,C1}$	[kN]				0,70	V ⁰ _{Rk,s}					
	$V_{Rk,s,eq,C2}$	[kN]	(N	PD)	0,80 • V ⁰ _{Rk,s}	No Performance Determined (NPD)						
Partial factor	γMs,V	[-]				see Ta	able C1					
Ductility factor	k ₇	[-]				1	,0					
Steel failure with lever arm												
	M ⁰ _{Rk,s}	[Nm]	see Table C1									
Characteristic bending moment	M ⁰ _{Rk,s,eq,C1}	[Nm]		No Performance Determined (NPD)								
	$M^0_{Rk,s,eq,C2}$	[Nm]		No Performance Determined (NPD)								
Partial factor	γMs,V	[-]				see Ta	able C1					
Concrete pry-out failure												
Factor	k ₈	[-]				2	,0					
Installation factor	γinst	[-]	1,0									
Concrete edge failure	<u>'</u>											
Effective length of fastener	I _f	[mm]	$I_{t} = min(h_{et}; 8 d_{nom})$									
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27						27	30		
Installation factor	γinst	[-]	1,0									
		<u> </u>										

PROFAST Injection System V-PRO 200 for concrete	
Performances Characteristic values of shear loads for threaded rods under static, quasi-static action and seismic action (performance category C1+C2)	Annex C 3

Anchor size internally	threaded rods			IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20		
Steel failure ¹⁾	unoudou rodo			10 111 0		10 111 10	10 111 12	10 10	.0 20		
Characteristic tension re	esistance,	T _N	FLA II	10	47	00	40	70	100		
Steel, strength class 5.8		$N_{Rk,s}$	[kN]	10	17	29	42	76	123		
Partial factor		γMs,N	[-]			1	,5				
Characteristic tension re Steel, strength class 8.8		$N_{Rk,s}$	[kN]	16	27	46	67	121	196		
Partial factor		γMs,N	[-]			1	,5				
Characteristic tension re Stainless Steel A4, Stre		$N_{Rk,s}$	[kN]	14	26	41	59	110	172		
Partial factor		γMs,N	[-]			1,	87				
Combined pull-out and	d concrete cone failure										
	stance in non-cracked co	ncrete C20/25									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	17	16	15	14	13	13		
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	12	12	11		
Temperature range III: 160°C/100°C	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	12	11	10	9,5	9,0	9,0		
	stance in cracked concre	te C20/25									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5		
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5		
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5		
		C25	/30			1,	02				
		C30		1,04							
Increasing factors for co	oncrete	C35/45		1,07							
ψ_{c}		C40		1,08							
		C45/55		1,09							
Concrete cone failure		C50	/60	1,10							
Non-cracked concrete		k _{ucr,N}	[-]			1	1,0				
Cracked concrete		k _{cr,N}	[-]			7	,7				
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}				
Axial distance		S _{cr,N}	[mm]				P _{cr,N}				
Splitting failure		.,									
	h/h _{ef} ≥ 2,0					1,0) h _{ef}				
Edge distance $2.0 > h/h_{ef} > 1.3$ $h/h_{ef} \le 1.3$		C _{cr,sp}	[mm]	$2 \cdot h_{\scriptscriptstyle ef} \Biggl(2,\! 5 - rac{h}{h_{\scriptscriptstyle ef}} \Biggr)$							
		1		2,4 h _{ef}							
Axial distance	•	S _{cr,sp}	[mm]	2 C _{cr,sp}							
Installation factor (CAC) (dry and wet concrete)		γinst	[-]		1,0 (1,2)2)			1,2			
Installation factor (MAC)	γinst	[-]		1,2			_				

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

Value in brackets for cracked concrete.

PROFAST Injection System V-PRO 200 for concrete	
Performances Characteristic values of tension loads for internal threaded rods under static and quasi-static action	Annex C 4

Table C5: Characteristic values of shear loads for internal threaded rods under static and quasi-static action

					1				
Anchor size for internally threaded ro	IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20			
Steel failure without lever arm1)									
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	38	61				
Partial factor	γMs,V	[-]			1,2	25			
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98	
Partial factor	γMs,V	[-]			1,2	25			
Characteristic shear resistance, Stainless Steel A4, Strength class 70	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	86	
Partial factor	γ _{Ms,V}	[-]			1,5	66			
Ductility factor	k ₇	[-]			1,	0			
Steel failure with lever arm ¹⁾									
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8 19 37 66 167				167	325	
Partial factor	γMs,V	[-]	1,25						
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
Partial factor	γMs,V	[-]			1,2	25			
Characteristic bending moment, Stainless Steel A4, Strength class 70	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	454	
Partial factor	γMs,V	[-]			1,5	66			
Concrete pry-out failure									
Factor	k ₈	[-]			2,	0			
Installation factor	γinst	[-]	1,0						
Concrete edge failure									
Effective length of fastener	I _f	[mm]			$I_f = min(h_e)$	_f ; 8 d _{nom})			
Outside diameter of fastener	d _{nom}	[mm]	10 12 16 20 24 3						
Installation factor	γinst	[-]	1,0						

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internal threaded rod and the fastening element.

PROFAST Injection System V-PRO 200 for concrete	
Performances Characteristic values of shear loads for internal threaded rods under static and quasi-static action	Annex C 5

Deutsches Institut für **Bautechnik**

Table C	6:	Characteristic values of tension loads for rebar under static, quasi-static
1		anting and animals action (newforms are not now 04)

	ction and seisr								Ø 22	Ø 05	Ø 00	<i>a</i>
Anchor size reinforci	ng bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure		T										
Characteristic tension	resistance	$N_{Rk,s}$	[kN]					$A_s \cdot f_{uk}^{2)}$				
Characteriotic teriolori	- Colorano	N _{Rk,s,eq,C1}	[kN]				1,	0 ⋅ A _s ⋅ f	2) uk			
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ³⁾				
Combined pull-out an	nd concrete cone failur	е										
Characteristic bond res	sistance in non-cracked	concrete C20	/25									
Temperature range I: 80°C/50°C	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C/72°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	13	12	12	12	12	11	11	11	11
Temperature range III: 160°C/100°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond res	sistance in cracked cond	rete C20/25										
Temperature range I: 80°C/50°C	dry and wet concrete	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II: 120°C/72°C	dry and wet concrete	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0
Temperature range III: 160°C/100°C	dry and wet concrete	$\tau_{Rk,cr} = \tau_{Rk,eq,C1}$	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5
	C25	5/30					1,02					
			C30/37 1,04									
Increasing factors for c	oncrete	C35	1,07									
ψ_{c}			0/50	1,08								
		C45	0/60	1,09								
Concrete cone failure)	000	<i>7</i> /00					1,10				
Non-cracked concrete		k _{ucr,N}	[-]					11,0				
Cracked concrete		k _{cr,N}	[-]					7,7				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					2 C _{cr,N}				
Splitting failure		- 01,11										
	h/h _{ef} ≥ 2,0		Τ					1,0 h _{ef}				
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	(h)								
	h/h _{ef} ≤ 1,3	1		2,4 h _{ef}								
Axial distance		S _{cr,sp}	[mm]									
Installation factor (CAC (dry and wet concrete)	()	γinst	[-]			1,0 (1,2)	1)			1	,2	
Installation factor (MAC (dry and wet concrete)	γinst	[-]			1,2					-		

PROFAST Injection System V-PRO 200 for concrete Annex C 6 **Performances** Characteristic values of tension loads for rebar under static, quasi-static action and seismic action (performace category C1)

Value in brackets for cracked concrete
 f_{uk} shall be taken from the specifications of reinforcing bars
 in absence of national regulation

							ic, qu	asi-st	atic		
		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
		•									
V ⁰ _{Rk,s}	[kN]	0,50 • A _s • f _{uk} ²⁾									
$V_{Rk,s,eq,C1}$	[kN]	0,37 • A _s • f _{uk} ²⁾									
As	[mm²]	50	79	113	154	201	314	491	616	804	
γms,v	[-]	1,5 ²⁾									
k ₇	[-]	1,0									
	_										
Characteristic bending moment [Nm]				1.2 • W _{el} • f _{uk} ¹⁾							
M ⁰ _{Rk,s,eq,C1}	[Nm]			No F	Performa	nce Dete	rmined (N	NPD)			
Wel	[mm³]	50	98	170	269	402	785	1534	2155	3217	
γms,v	[-]					1,5 ²⁾					
k ₈	[-]					2,0					
γinst	[-]					1,0					
<u> </u>											
I _f	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$									
d _{nom}	[mm]	8 10 12 14 16 20 25 28 32									
γinst	[-]					1,0					
	VORK,S,eq.C1 As YMS,V K7 MORK,S,eq.C1 Wel YMS,V If dnom	VO	Seismic action (perform	Seismic action (performance Ø 8	Seismic action (performance cate)	Seismic action (performance category Continue) Max	seismic action (performance category C1) Ø8 Ø 10 Ø 12 Ø 14 Ø 16 V° _{RK,S} [kN] 0,50 · A _s · N V° _{RK,S} ,eq,C1 [kN] 0,37 · A _s · N As [mm²] 50 79 113 154 201 γ _{Ms,V} [·] 1,5²² 1,0 M° _{RK,S} [Nm] No Performance Dete W _{cl} [mm³] 50 98 170 269 402 γ _{Ms,V} [·] 1,5²² 1,5²² k ₈ [·] 2,0 γ _{Inst} [·] 1,0	Vortical Content Section Performance category C1 Section Section	V° RK,s, eq.C1 [Nm] No Performance Category C1	More More	

 $^{^{1)}}_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{2)}_{\rm in}$ absence of national regulation

PROFAST Injection System V-PRO 200 for concrete	
Performances Characteristic values of shear loads for rebar under static, quasi-static action and seismic action (performance category C1)	Annex C 7

Table C8: Di	splacements	s under tension	load ¹	(threa	ded ro	od)				
Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25 un	der static and qua	si-statio	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete	C20/25 under s	static, quasi-static	and sei	smic C	1 action	1				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°Č	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Cracked concrete	C20/25 under s	seismic C2 action	•							
All temperature	$\delta_{N,seis(DLS)}$	[mm/(N/mm²)]	(NI	BD)	0,120	No	Daramet	or Dotorr	minad (NII	BD)
ranges	$\delta_{N,seis(ULS)}$	[mm/(N/mm²)]] (1)	PD)	0,140	No Parameter Determined (N				PD)

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C9:

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24	M 27	М 30
Non-cracked and cracked concrete C20/25 under static, quasi-static and seismic C1 action										
All temperature	δ_{V0} -factor [mm/(kN)]		0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor [mm/(kN)]		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete	C20/25 under se	eismic C2 action								
All temperature	$\delta_{\text{V,seis}(\text{DLS})}$	[mm/(kN)]		ameter mined	0,27	No Parameter Determine			termined	
ranges	$\delta_{\text{V,seis(ULS)}}$	[mm/(kN)]		PD)	0,27		(NPD)			

 $^{1)}$ Calculation of the displacement $\delta_{V0}=\delta_{V0}\text{-factor}\ \cdot \text{V}; \qquad \text{V: action shear load} \\ \delta_{V\infty}=\delta_{V\infty}\text{-factor}\ \cdot \text{V};$

PROFAST Injection System V-PRO 200 for concrete	
Performances	Annex C 8
Displacements (threaded rods)	

Table C10: D	Table C10: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinfo	Anchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32											
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048	
80°C/50°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063	
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050	
	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065	
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186	
160°C/100°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192	
Cracked concrete	C20/25 uı	nder static, qua	si-statio	and se	ismic C	1 actio	n					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108	
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113	
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148	
Temperature range III:	$\delta_{\text{No}}\text{-factor}$	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425	
160°C/100°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C11: Displacement under shear load 1) (rebar)

Anchor size reinf	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
For concrete C20/25 under static, quasi-static and seismic C1 action											
All temperature	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

PROFAST Injection System V-PRO 200 for concrete	
Performances	Annex C 9
Displacements (rebar)	

Table C12: Displacements under tension load ¹⁾ (Internal threaded rod)								
Anchor size Interna	al threaded rod		IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20
Non-cracked concrete C20/25 under static and quasi-static action								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete (C20/25 under stati	c and quasi-sta	tic action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ_{No} -factor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N_{\infty}}\text{-factor}$	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor} \ \cdot \ \tau;$

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \tau;$

Table C13: Displacements under shear load¹⁾ (Internal threaded rod)

Anchor size Inte	IS-M 6	IS-M 8	IS-M 10	IS-M 12	IS-M 16	IS-M 20		
Non-cracked and cracked concrete C20/25 under static and quasi-static action								
All temperature	δ _{v0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V;$

PROFAST Injection System V-PRO 200 for concrete	
Performances Displacements (Internal threaded rod)	Annex C 10