

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0391 of 3 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Pallet racking system "META Multipal S"

Steel static storage systems - Adjustable pallet racking systems

META-Regalbau GmbH & Co. KG Eichenkamp 59759 Arnsberg DEUTSCHLAND

META-Regalbau GmbH & Co. KG Eichenkamp 59759 Arnsberg DEUTSCHLAND

30 pages including 7 annexes which form an integral part of this assessment

EAD 200059-00-0302

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0391

Page 2 of 30 | 3 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 30 | 3 July 2018

European Technical Assessment ETA-18/0391 English translation prepared by DIBt

Specific part

1 Technical description of the product

The construction products are corrosion-protected steel components of the Pallet Racking System META Multipal S for the storage and retrieval of goods. The goods to be stored are generally on pallets or in box-containers. Annex 1 provides an overview of the racking systems.

The upright frames of the racking system are made up of two vertical upright profiles made of steel, which are screwed together via diagonals and, if necessary, horizontal bracing members. The uprights are thin-walled cold-formed Ω -shaped steel sections, which are produced by roll forming. They are perforated over their length continuously at a distance of 50mm. The uprights are fastened by means of a screw connection to the foot plate construction made of steel, which in turn is fixed by metal anchors in the substructure. The bracing members of the upright frames consist of thin-walled, cold-formed, non-perforated C-sections. The upright frames take over the vertical loads and ensure the stiffening in the transverse (cross aisle) direction of the pallet racking system.

The horizontal and down aisle placed pallet beams are designed as hollow cross-sections. They are either made of thin-walled and roll formed steel sheet elements and subsequently welded into a single hollow section or they are composed of two interlocking, cold-formed C-profiles.

For connecting the pallet beams to the frames uprights end plates (beam end connector = BEC) in the form of hook links (clasps) are welded transversely to the support direction at the end of the pallet beams. These hook links are designed as angle profiles. The outer leg extends beyond the pallet carrier and has hook-shaped spreaders, which are hooked into the perforation provided for this purpose within the uprights. By locking pins (connector lock), the hook link is secured against unintentional lifting.

The rotational stiffness of the floor connecting to the upright and the BEC connection to the upright ensures the stiffening of the pallet racking system in the longitudinal (down aisle) direction.

The components and the system setup of the product are given in the Annexes to this European Technical Assessment. They shall correspond to the information given in the Annexes 1 to 6.

The material properties, dimensions and tolerances not indicated in Annexes 1 to 6 shall correspond to the information laid down in the technical information¹ to this European Technical Assessment.

Specification of the intended use in accordance with the applicable European Assessment Document

The construction products are intended to be used according to EAD 200059 00 0302, clause 1.2.

The performances given in Section 3 are only valid if the racking system components are used in compliance with the specifications and conditions given in the Annexes to this European Technical Assessment and if the assembly and setup is carried out according to the manufacturer's assembly instructions.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the racking system components of at least 10 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

The technical documentation is deposited with Deutsches Institut für Bautechnik and as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

2

1

European Technical Assessment ETA-18/0391

Page 4 of 30 | 3 July 2018

English translation prepared by DIBt

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Upright characteristics	See Annex 7.1
BEC characteristics	See Annex 7.2
Floor connection characteristics	See Annex 7.3
Upright frame characteristics	See Annex 7.4
Beam characteristics	No Performance Assessed
Upright splices characteristics	No Performance Assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 200059 00 0302, clause 3.1, the applicable European legal act is: 1998/214/EC

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 3 July 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Reimuth

Page 5 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 6 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 7 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 8 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 9 of European Technical Assessment ETA-18/0391 of 3 July 2018

ETA-18/0391 of 3 July 2018

Page 10 of European Technical Assessment

Page 11 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 12 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 13 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 14 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 15 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 16 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 17 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 18 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 19 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 20 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 22 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 23 of European Technical Assessment ETA-18/0391 of 3 July 2018

Page 24 of European Technical Assessment ETA-18/0391 of 3 July 2018

Use conditions

Within the scope of the inspection intervals specified in EN 15635:2008, the racking constructions shall be checked. Any damage detected shall be eliminated in accordance with EN 15635:2008, clause 9.7.3.

Preferably, damaged components should be replaced by original components.

If this is not possible in individual cases, a new stability check and verification of the racking construction is compulsory taking into account the repair measure of the damaged components.

Design

For the planning and design of pallet racking systems, EN 15512:2009 may be used, if other national regulations are missing. Verification of the structural safety of the pallet racking system is to be provided in each individual case or by structural calculations for types of racking systems.

For the verification of structural safety according to EN 15512:2009, the characteristics compiled in the following sections of Annex 7 may be used.

Ultimate limit state

Checks on the ultimate limit state may be carried out in accordance with EN 15512:2009, sections 9 and 10.

The redistribution of bending moments in accordance with EN 5512:2009, clause 9.4.3.2, is not allowed.

Serviceability limit state

Checks on the serviceability limit state may be carried out in accordance with EN 15512:2009, section 11.

Actions

The actions in accordance with EN 15512:2009, section 6, may be used.

Load combination rules

The load combination rules in accordance with EN 15512:2009, sections 6 and 7, may be used.

Partial factors

The partial factors in accordance with EN 15512:2009, section 7, may be used, taking into account Annex I.2.

Pallet racking system "META Multipal S"

Characteristics Use conditions and design Annex 7

Page 26 of European Technical Assessment ETA-18/0391 of 3 July 2018

English translation prepared by DIBt

Effective areas of cross sections \mathbf{A}_{eff} und section moduli \mathbf{W}_{eff}

Upr	ight	A _{eff} [cm²]	*1,3) W _{eff,y} [cm ³]	*2,3) W _{eff,z} [cm ³]			
SR	85/17	2,54	7,97	4,64			
0.0	or (oo ^{*4)}	2,88 *5)	0.04	5,54			
SR	85/20	2,99 ^{*6)}	8,61				
SR	100/20	3,88	11,9	7,58			
SR	100/21	5,00	12,8 ^{*3a)}	9,56 ^{*3a)}			
SR	120/20	5,44	17,0	10,6			
SR	120/25	6,76	20,8	14,4			
*1)	Strong-axis bending of the upright profile – Axis v-v						
*2)	Week-axis bending of the upright profile – Axis z-z						
3)	The values apply to the node distances of the frame bracing shown in the annexes (1100mm with Z-bracing and 1200mm with D-bracing).						
*4)	The values apply to "Holm"-distances $\leq 3,0m$ ($\stackrel{'3a)}{\leq} 3,8m$) W _{eff,y} already includes the effects of lateral torsional buckling. For the verification of stability in accordance with EN 15512:2009, 9.7.6.4 XLT may be set 1.						
4)	For the verifications of stability in accordance with EN 15512:2009, clause 9.7, all values to be used are either respecting ^{*5)} or respecting ^{*6)} .						

- $_{*5}^{*5}$ I_y = 52,8cm⁴, I_z = 29,6cm⁴ (for gross cross sections in accordance with EN 15512:2009, clause 9.7)
- $_{*6)}$ $I_y = 47,6cm^4$, $I_z = 25,5cm^4$ (for average net cross sections due to perforations)

Cross section-axes conventions of the profiles

Pallet racking system "META Multipal S"

Upright characteristics A_{eff}, W_{eff} , χ_{LT} , ($\chi(\bar{\lambda})$ no performance assessed)

Annex 7.1

Jpright	"Holm"	M _{Rk} [kNcm]	k _d (η=1) ^{*2)} [kNcm/rad]	M _{Rd} ^{*1)} [kNcm]	i) 1]
	85/15	190	8.170	173	3
	85/20	237	7.410	215	5
SR 85/17	100/20	240	10.100	218	8
	120/20	244	10.900	222	2
	140/20	244	10.900	222	2
	85/15	190	8.170	173	3
	85/20	263	7.400	239	9
	100/20	295	10.100	268	8
SR 85/20	120/20	331	11.000	301	1
	140/20	333	13.200	303	3
	140/15	333	13.200	303	3
	155/17	334	14.600	304	4
	85/15	202	9.540	184	4
	85/20	292	7.400	265	5
	100/20	328	10.100	298	8
SR 100/20	120/20	351	11.000	319	9
	140/20	353	13.200	321	1
	140/15	359	13.200	326	6
	155/17	362	14.600	329	9
	85/15	198	9.540	180	0
	85/20	282	9.180	256	6
	100/20	320	9.640	291	1
SR 100/21	120/20	350	11.900	318	8
	140/20	353	14.400	321	1
	140/15	350	13.200	318	8
	155/17	351	15.500	319	9
	85/15	202	10.300	184	4
	85/20	292	8.600	265	5
	100/20	328	9.640	298	8
SR 120/20	120/20	351	11.900	319	9
	140/20	353	14.400	321	1
	140/15	359	14.500	326	6
	155/17	362	15.100	329	9
	85/15	202	11.300	184	4
	85/20	323	8.080	294	4
	100/20	374	11.600	340	0
SR 120/25	120/20	439	14.000	399	9
	140/20	468	14.400	425	5
	140/15	495	14.700	450	0
	155/17	508	16,600	462	2

For verifications in accordance with EN 15512:2009, clause 9.5.4, a distance a = 40cm may be used.

Pallet racking system "META Multipal S"

BEC characteristics M = (k(n), k(0), no performance) Annex 7.2.1

 $M_{Rk}, \ (\, k(\eta), \, k(\theta) \,$ no performance assessed)

electronic copy of the eta by dibt: eta-18/0391

Bending strength $\mathbf{M}_{\mathbf{Rk}}$ and rotational stiffness of BECs for upward bending moments and looseness $\boldsymbol{\varphi}_{\ell}$

Upright	"Holm"	k _d (η=1) ^{*2)} [kNcm/rad]	M _{Rk} , M _{Rd} ^{*1)} [kNcm]	φ _ℓ [rad]		
SR 85/17+85/20	all	80% *)	60% ^{*)}	0,00005		
SR 100/20+/21+120/20 SR 120/25	all	80% *)	60% ^{*)}	0		
*)of the values of annex 7.2.1 *1,2)as in annex 7.2.1						

Shear strength V_{Rk} for downward shear loads

Upright	"Holm"	V _{Rk} [kN]	V _{Rd} ^{*1)} [kN]		
SR 85/17+85/20 SR 100/20+/21+120/20	all	36,0	32,7		
SR 120/25	all	62,2	56,5		
^{*1)} For the calculation of the design value of the shear strength V_{Rd} a partial factor of $\gamma_M = 1,1^{*2}$ was used.					
²⁾ In case of absence of other national regulations.					

The design value of the shear strength V_{Rd} represents the maximum downward shear load of the BEC bearable for the upright. For "Holm 155/17" this shear strength V_{Rd} also verifies sufficient load capacity of the welded joint between the "Holm 155/17" and the BEC. Separate verifications are required for other "Holm" profiles.

The connector lock shown within annex 6.5 fulfills the requirements of EN 15512:2009, clause 6.4.2. The precondition for this is that the connector lock always remains fixed in its position and slipping out of the BEC is permanently prevented. This shall be ensured by appropriate means of control during all racking operations.

Pallet racking system "META Multipal S"

BEC characteristics M_{Rk} , (k(η), k(θ) no performance assessed), φ_{ℓ} , V_{Rk}

Annex 7.2.2

Ultimate moment of resistance $M_{y,Rk}$ and stiffness for a range of axial loads N

(Information concerning the orientation of the axes can be found with the upright characteristics)

Upright	Foot plate	N [kN]	M _{y,Rk} (N) [kNcm]	k _{y,d} (N) ^{*2)} [kNcm/rad]	M _{y,Rd} (N) ^{*1)} [kNcm]
		0	0	0	0
		14	54,1	4.810	49,2
00.05/47	140x130x6	28	103,0	8.760	94,0
SR 85/17	140x140x6	42	138,0	11.900	125,0
		56	145,0	14.100	132,0
		81	0	14.100	0
		0	0	0	0
		17	58,5	5.190	53,2
	140x130x6	33	112,0	9.460	102,0
SR 85/20	140x140x6	50	149,0	12.500	135,0
		66	156,0	15.200	142,0
		92	0	15.200	0
SR 100/20 SR 100/21		0	0	0	0
		20	91,6	6.140	83,3
	140x130x6	40	171,0	11.600	155,0
	140x140x6	60	230,0	16.300	209,0
		80	266,0	20.200	242,0
		123	0	20.200	0
		0	0	0	0
SR 120/20 SR 120/25		31	165,0	11.700	150,0
	140x130x8 140x140x6	62	277,0	21.400	252,0
		93	275,0	29.000	250,0
		124	187,0	34.500	170,0
		215	0	34.500	0

 $^{*1)}$ For the calculation of the design moment M_{Rd} in accordance with EN 15512:2009 (A.10) a partial factor of γ_M = 1,1 $^{'3)}$ was used.

^{*2)} For the calculation of the design value of the rotational stiffness k_d the procedure in accordance with EN 15512:2009 (Figure A.6) using a partial factor of $\gamma_M = 1,1^{*3}$ was executed.

^{*3)} In case of absence of other national regulations.

The design values apply to installations on concrete floors with sufficient strength to be able to bear the contact pressure. Sufficient strength of the substructure should be verified in accordance with EN 15512:2009. Precondition for the applicability of the design values is a sufficient planarity of the floor, so that a full-surface contact of the foot plates can be ensured. Anchoring of the foot plates in the concrete floor is not necessary for the application of the design values.

Pallet racking system "META Multipal S"

Floor connection characteristics MRk (N), (k (N) no performance assessed) Annex 7.3

Transverse shear stiffness ${\bf S}$ and range of transverse shear stiffness validity ${\bf V}_{max}$ of the upright frame

Upright frame		S [kN/rad]	V _{max} [kN]			
Uprights SR 85/17 Z-bracing	- Bracing C30/25/8/1.5	377	4,5			
Uprights SR 85/20 Z-bracing	- Bracing C30/25/8/1.5	399	4,5			
Uprights SR 100/20 Z-bracing	- Bracing C30/25/8/1.5	452	4,8			
Uprights SR 100/21	- Bracing C30/25/8/1.5	448	5,0			
Z-bracing	-	489 ^{*)}				
Uprights SR 100/21	- Bracing C50/25/12.5/1.5	1100	12,0			
D-bracing		1150 ^{*)}	10,8 ^{*)}			
Uprights SR 120/20+25 D-bracing	- Bracing C50/25/12.5/1.5	1190	11,0			
Values valid for frame depths 750mm $\leq T \leq 1100$ mm ^{*)} for T = 1300mm						

 V_{max} is the maximum permissible design value of the lateral force in the frame,

it limits the validity of S (see EN 15512:2009, Figure A.13)

For the design and structural analysis of the upright frame, S determined from tests, may be used to derive either a reduced bracing cross section area A_{red} or alternatively a spring characteristic k_{fd} for the bracing connection. A_{red} or k_{fd} will depend on the bracing-type (Z- or D-bracing) and the geometry (connection angle and dimensions of the bracings).

Pallet racking system "META Multipal S"

Upright frame characteristics S, V_{max}

Annex 7.4