

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0487 of 4 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

PRO-DOMA Injection system vinylester

Bonded fastener for use in concrete

PRO-DOMA, SE Budcická 1479 190 00 PRAHA 9 - Újezd nad Lesy TSCHECHISCHE REPUBLIK

PRO-DOMA, SE

21 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-18/0487

Page 2 of 21 | 4 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0487

Page 3 of 21 | 4 July 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The PRO-DOMA injection system vinylester is a bonded anchor consisting of a cartridge with injection mortar Kotva chemická vinylester PRO-DOMA, Kotva chemická vinylester PRO-DOMA High Speed or Kotva chemická vinylester PRO-DOMA Low Speed and a steel element.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load	See Annex			
(static and quasi-static loading)	C 1 to C 5			
Characteristic resistance to shear load	See Annex			
(static and quasi-static loading)	C 1 to C 3			
Displacements	See Annex			
(static and quasi-static loading)	C 6			
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

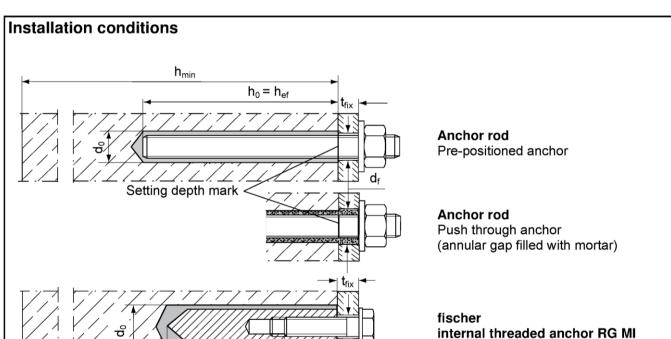
The system to be applied is: 1

European Technical Assessment ETA-18/0487

Page 4 of 21 | 4 July 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

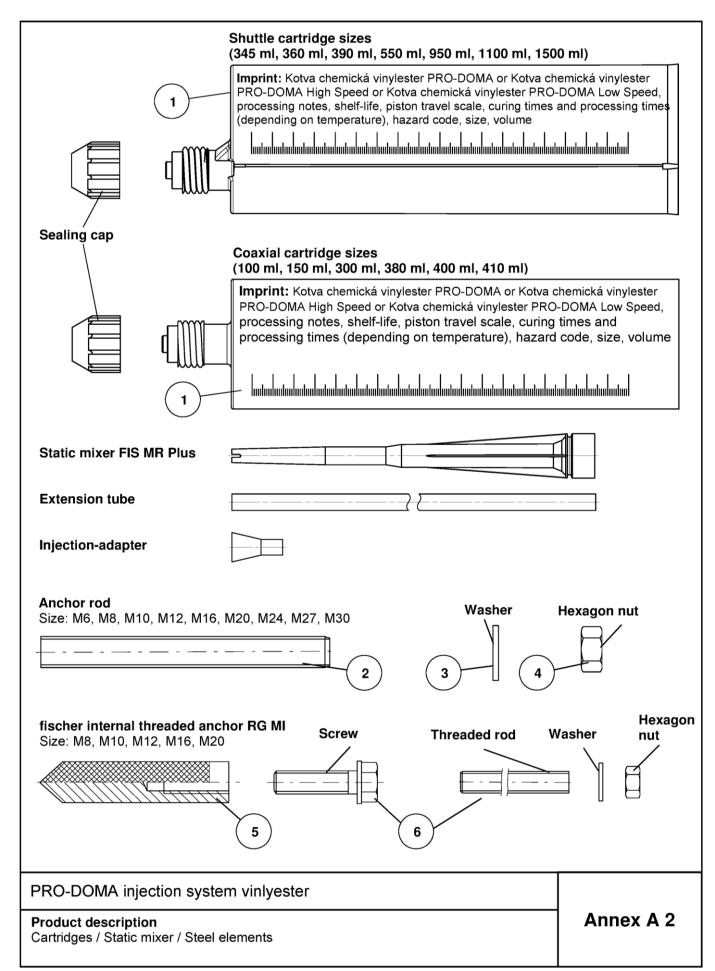
Issued in Berlin on 4 July 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Pre-positioned anchor only

h_{min}


PRO-DOMA injection system vinlyester

Product description Installation conditions

Annex A 1

electronic copy of the eta by dibt: eta-18/0487

Tabl	le A1: Materials				
Part	Designation		Material		
1	Mortar cartridge		Mortar, hardener, filler		
	Steel grade	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel C	
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8 \%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8$ % fracture elongation	
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014	
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014	
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014	
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 fracture elongation A ₅ > 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation A ₅ > 8 %	

PRO-DOMA injection system vinlyester	
Product description Materials	Annex A 3

Specifications of intended use (part 1) Table B1: Overview use and performance categories Kotva chemická vinylester PRO-DOMA, Kotva chemická vinylester Anchorages subject to PRO-DOMA High Speed or Kotva chemická vinylester PRO-DOMA Low Speed with... Anchor rod fischer internal threaded anchor RG MI Hammer drilling with standard all sizes drill bit Hammer drilling with hollow drill bit (Heller Nominal drill bit diameter (d₀) 12 mm to 35 mm "Duster Expert" or Hilti "TE-CD, TE-YD") Tables: uncracked M6 to M30 M8 to M20 C2, C3, C5, C7 concrete Static and quasi Tables: static load, in C1, C3, C4, C6 cracked M10 to M20 not assessed concrete dry or wet M6 to M30 M8 to M20 concrete Use category flooded hole¹⁾ M12 to M30 M8 to M20 Installation 0 °C to +40 °C temperature (max. long term temperature +50 °C and Temperature -40 °C to +80 °C max. short term temperature +80 °C) range I In-service temperature (max. long term temperature +72 °C and Temperature -40 °C to +120 °C max. short term temperature +120 °C) range II 1) Only with coaxial cartridges: 380 ml, 400 ml, 410 ml PRO-DOMA injection system vinlyester Annex B 1 Intended Use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete without fibres Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

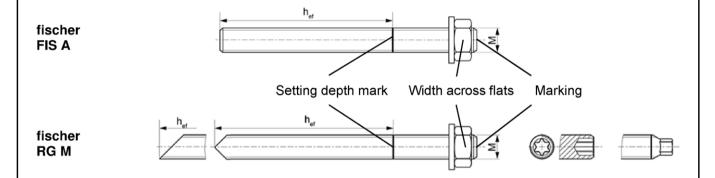
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4: 2009

Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Effective embedment depth should be marked and adhered to on installation
- · Overhead installation is allowed

PRO-DOMA injection system vinlyester	
Intended Use Specifications (part 2)	Annex B 2

Table B2: Installa	Table B2: Installation parameters for anchor rods											
Size				М6	М8	M10	M12	M16	M20	M24	M27	M30
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill bit diameter	d ₀			8	10	12	14	18	24	28	30	35
Drill hole depth							$h_0 = h_{ef}$					
Effective		$h_{\text{ef},\text{min}}$		50	60	60	70	80	90	96	108	120
embedment depth		$h_{\text{ef},\text{max}}$		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
Diameter of clearance hole in the fixture	pre- positioned anchorage	d _f		7	9	12	14	18	22	26	30	33
	push through anchorage	d _f		9	11	14	16	20	26	30	32	40
Minimum thickness of concrete member		h _{min}		h _{ef} + 30 (≥ 100)						0		
Maximum installation torque		$T_{\text{inst},\text{max}}$	[Nm]	5	10	20	40	60	120	150	200	300

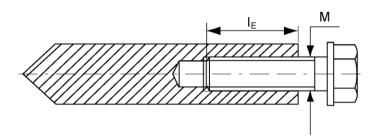
Anchor rods:

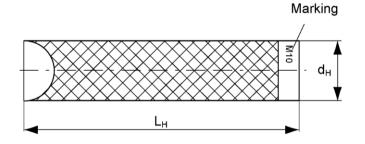
Marking (on random place) fischer anchor rod:

Property class 8.8, stainless steel A4 property class 80 and

high corrosion resistant steel C property class 80: •

Stainless steel A4 property class 50 and high corrosion resistant steel C property class 50: •• Or colour coding according to DIN 976-1


Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:


- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- · Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

PRO-DOMA injection system vinlyester	
Intended Use Installation parameters anchor rods	Annex B 3

Table B3: Installation para		101 1100		T timedada	41101101011	J 1411	ı
Size			М8	M10	M12	M16	M20
Diameter of anchor	d_H		12	16	18	22	28
Nominal drill bit diameter	d ₀		14	18	20	24	32
Drill hole depth	ho				$h_0 = h_{ef} = L_H$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	s _{min} = c _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22
Minimum thickness of concrete member	\mathbf{h}_{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20
Maximum installation torque	$T_{inst,max}$	[Nm]	10	20	40	80	120

fischer internal threaded anchor RG MI

electronic copy of the eta by dibt: eta-18/0487

Marking: Anchor size

e. g.: M10

Stainless steel additional A4

e.g.: M10 A4

High corrosion resistant steel

additional C e. g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

PRO-DOMA injection system vinlyester	
Intended Use Installation parameters fischer internal threaded anchors RG MI	Annex B 4

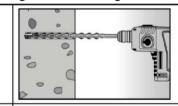
Table B4: Diameters of cleaning brush BS (steel brush)											
The size of the steel brush refers to the nominal drill bit diameter											
Nominal drill bit diameter	d_0	[mama]							35		
Steel brush diameter	d _b	[mm]	9	11	14	16	16 20 25 26 27 30			4	0

Table B5: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

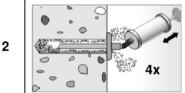
	Maxir	num processing t _{work}	g time	Minimum curing time ¹⁾ t _{cure}				
System temperature [°C]	Kotva chemická vinylester PRO-DOMA High Speed	Kotva chemická vinylester PRO-DOMA	Kotva chemická vinylester PRO-DOMA Low Speed	Kotva chemická vinylester PRO-DOMA High Speed	Kotva chemická vinylester PRO-DOMA	Kotva chemická vinylester PRO-DOMA Low Speed		
±0	5 min			3 h	24 h			
> ±0 to +5	5 min	13 min		3 h	3 h	6 h		
> +5 to +10	3 min	9 min	20 min	50 min	90 min	3 h		
> +10 to +20	1 min	5 min	10 min	30 min	60 min	2 h		
> +20 to +30		4 min	6 min		45 min	60 min		
> +30 to +40		2 min	4 min		35 min	30 min		

¹⁾ In wet concrete or flooded holes the curing times must be doubled

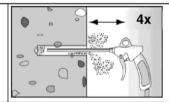
electronic copy of the eta by dibt: eta-18/0487

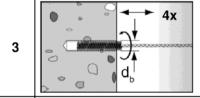

PRO-DOMA injection system vinlyester	
Intended Use Cleaning tools Processing times and curing times	Annex B 5

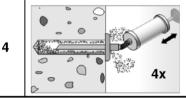
1

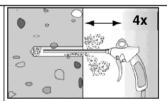


Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

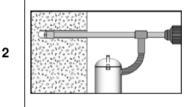

Drill the hole. Drill hole diameter \textbf{d}_0 and drill hole depth $\textbf{h}_0\,\text{see}$ Tables B2, B3


Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **Table B4**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

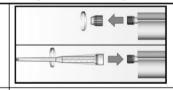

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e. g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

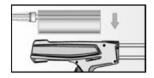

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Diameter of drill hole \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **Tables B2, B3**

Go to step 5

PRO-DOMA injection system vinlyester	
Intended use Installation instructions part 1	Annex B 6

Installation instructions part 2

Preparing the cartridge



Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

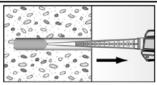
6

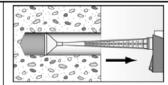
5

Place the cartridge into the dispenser

7

8




Extrude approximately 10 cm of material until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to step 8

Mörtelinjektion

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid

For drill hole depth ≥ 150 mm use an extension tube

For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter (d₀ ≥ 40 mm) use an injection-adapter

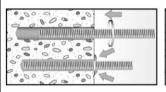
Go to step 9

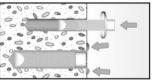
bubbles

PRO-DOMA injection system vinlyester

Intended use

Installation instructions part 2

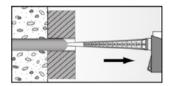

Annex B 7


electronic copy of the eta by dibt: eta-18/0487

Installation instructions part 3

Installation of anchor rods or fischer internal threaded anchors RG MI

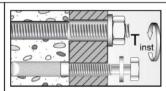
9


Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

For overhead installations support the anchor rod with wedges.

(e. g. fischer centering wedges)


For push through installation fill the annular gap with mortar

10

Wait for the specified curing time t_{cure} see **Table B5**

11

Mounting the fixture $T_{inst,max}$ see **Tables B2 and B3**

PRO-DOMA injection system vinlyester

Intended use

Installation instructions part 3

Annex B 8

electronic copy of the eta by dibt: eta-18/0487

Table	Table C1: Characteristic values for the steel bearing capacity of anchor rods under tensile / shear load												
Size					М6	M8	M10	M12	M16	M20	M24	M27	M30
Bearir	ng capacity under	r tensile load	d, stee	el fail	ure						-		
ng s	Steel zinc plated		5.8		10	19	29	43	79	123	177	230	281
Charact.bearing capacity N _{RKs}			8.8		16	29	47	68	126	196	282	368	449
ct.b	Stainless steel A4 and	Property class	50	[kN]	10	19	29	43	79	123	177	230	281
haract.b	High corrosion	Siass	70		14	26	41	59	110	172	247	322	393
	resistant steel C		80		16	30	47	68	126	196	282	368	449
Partia	l factors ¹⁾	I		I									
5	Steel zinc plated		5.8 8.8						1,50 1,50				
fact(Stainless steel	Property	50						2,86				
Partial factor	A4 and	class	70	[-]				1	50 ²⁾ / 1,	87			
Ра	High corrosion resistant steel C		80					• • •					
Rearin	ng capacity under	r chear load		failu	re				1,60				
	ut lever arm	i Sileai loau	, Sieci	Tanu	16								
			5.8		5	9	15	21	39	61	89	115	141
act.beari acity V ⁰ ™	Steel zinc plated		8.8		8	15	23	34	63	98	141	184	225
	Stainless steel	Property class	50	[kN]	5	9	15	21	39	61	89	115	141
	A4 and High corrosion		70		7	13	20	30	55	86	124	161	197
දු _{ගි}	resistant steel C		80		8	15	23	34	63	98	141	184	225
Ductili	ty factor		k ₇	[-]					1,0				
with le	ever arm												
ing sp	Steel zinc plated		5.8		7	19	37	65	166	324	560	833	1123
endi M ^o rk			8.8		12	30	60	105	266	519	896	1333	1797
ct. b lent	Stainless steel A4 and	Property class	50	[Nm]	7	19	37	65	166	324	560	833	1123
Charact. bending moment M ⁰ Rk,s	High corrosion		70		10	26	52	92	232	454	784	1167	1573
	resistant steel C		80		12	30	60	105	266	519	896	1333	1797
Partia	l factors ¹⁾	I											
<u> </u>	Steel zinc plated		5.8 8.8						1,25				
Partial factor	Stainless steel	Property	50		1,25 2,38								
tial . ^{Yмs}	A4 and	class	70	[-]				1	· · · · · · · · · · · · · · · · · · ·	56			
Par	High corrosion resistant steel C				1,25 ²⁾ / 1,56								
1) :			80						1,33				
¹⁷ In ²⁾ Or	absence of other r	national regu A and RG M	lations made	s of hig	h corro	sion-res	sistant s	steel C					
PRO	D-DOMA injection	on system	vinly	ester						Т			
	ormances acteristic steel bea	aring capacity	/ anch	or roc	ls						Anı	nex C	1

English translation prepared by DIBt

	Table C2: Characteristic values for the steel bearing capacity of fischer internal threaded anchors RG MI under tensile / shear load											
Size					M8	M10	M12	M16	M20			
Bearing capacity	unde	r tensile loa	ad, stee	el failu	ıre							
		Property	5.8		19	29	43	79	123			
Characteristic bearing capacity with screw	N.I	class	8.8	[kN]	29	47	68	108	179			
	$N_{Rk,s}$	Property	A4	[KIN]	26	41	59	110	172			
		class 70	С		26	41	59	110	172			
Partial factors ¹⁾												
		Property	5.8				1,50					
Partial factor	$\gamma_{Ms,N}$	class	8.8	[-]	1,50							
Partial factor		Property	A4		1,87							
		class 70	С				1,87					
Bearing capacity	unde	r shear load	d, steel	failu	re							
without lever arn	n											
0		Property	5.8	[kN]	9,2	14,5	21,1	39,2	62,0			
Characteristic bearing capacity	$V^0_{Rk,s}$	class	8.8		14,6	23,2	33,7	54,0	90,0			
with screw	V Rk,s	Property	_A4		12,8	20,3	29,5	54,8	86,0			
		class 70	С		12,8	20,3	29,5	54,8	86,0			
Ductility factor			k ₇	[-]			1,0					
with lever arm												
Obti-ti-		Property	5.8		20	39	68	173	337			
Characteristic bending moment	M ⁰	class	8.8	[Nm]	30	60	105	266	519			
with screw	IVI RK,S	Property	_A4	ניאווון	26	52	92	232	454			
		class 70	С		26	52	92	232	454			
Partial factors ¹⁾												
		Property	5.8				1,25					
Partial factor	2/	class	8.8	, ,			1,25					
i artial lactor	γMs,V	Property	_A4	[-]			1,56					
		class 70	С				1,56					

¹⁾ In absence of other national regulations

PRO-DOMA injection system vinlyester	
Performances Characteristic steel bearing capacity of fischer internal threaded anchors RG MI	Annex C 2

Table C3: General desig	n factors for the bearing capacity under tensile / shear load;
uncracked or	cracked concrete

u u	ioraonea or orac	JIKC G	001101									
Size							ļ	All size	s			
Bearing capac	ity under tensile lo	ad										
Factors for the	compressive strer	ngth of	conci	ete > C	20/25							
	C25/30			1,05								
<u>. </u>	C30/37							1,10				
Increasing factor	C35/45)T(., [1,15				
for τ_{Rk}	C40/50	Ψ_{c}	[-]					1,19				
	C45/55							1,22				
	C50/60							1,26				
Splitting failure	9											
	h / h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	$2.0 > h / h_{ef} > 1.3$	$\mathbf{c}_{cr,sp}$	[mm]				4,6	h _{ef} - 1,	8 h			
	h / h _{ef} ≤ 1,3		[[[2,26 h _e	f			
Spacing		S _{cr,sp}		2 c _{cr,sp}								
Concrete cone	failure											
Uncracked cond	crete	$k_{\text{ucr},N}$	[-]	11,0								
Cracked concre	te	$k_{\text{cr},N}$	[-]	7,7								
Edge distance		$c_{\text{cr},N}$	[mm]					$1,5 h_{ef}$				
Spacing		$s_{cr,N}$	[,,,,,,,					$2 c_{cr,N}$				
Bearing capac	ity under shear loa	d										
Installation fac	tors											
All installation c	onditions	γ_{inst}	[-]					1,0				
Concrete pry-	ut failure											
Factor		k ₈	[-]					2,0				
Concrete edge	failure											
The value of h _{ef} under shear loa			[mm]				mi	n (h _{ef} ; 8	Bd)			
Calculation dia	ımeters											
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
Anchor rods		d		6	8	10	12	16	20	24	27	30
fischer internal threade	d anchors RG MI	d_{nom}	[mm]	-	12	16	18	22	28			
Factor for annular gap α_{gap} [-] 0,5 $(1,0)^{1)}$												

¹⁾ Value in brackets valid for complete filled annular gap with mortar between anchor and the fixture

Performances General design factors relating to the characteristic bearing capacity under tensile / shear load Annex C 3

Table C4: Characteristic v	/alues	of resist	ance	for an	chor r	ods ir	uncr	acked	or cr	acked	
Size			М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and concre	ete cone	failure							-		
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resistand	e in un	cracked c	oncret	e C20/2	25						
Hammer-drilling with standard of	drill bit o	hollow dr	ill bit (d	ry and	wet con	crete)					
Tem- 1: 50 °C / 80 °C		FN1/21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard of	rill bit o	hollow dr	ill bit (fl	ooded	hole) ¹⁾						
Tem- I: 50 °C / 80 °C		[N/mm ²]				9,5	8,5	8,0	7,5	7,0	7,0
perature II: 72 °C / 120 °C	τ _{Rk,ucr}					7,5	7,0	6,5	6,0	6,0	6,0
Installation factors									•		
Dry and wet concrete	.,	[-]					1,2				
Flooded hole	γinst	[-]				1,41)					
Cracked concrete											
Characteristic bond resistant	e in cra	cked con	crete (20/25							
Hammer-drilling with standard of	drill bit o	r hollow dr	ill bit (d	ry and	wet con	crete)					
Tem- I: 50 °C / 80 °C	-	[N/mm ²]			6,0	6,0	6,0	5,5			
range II: 72 °C / 120 °C	$ au_{Rk,cr}$	[[14/11111]			5,0	5,0	5,0	5,0			
Hammer-drilling with standard of	rill bit o	r hollow dr	ill bit (fl	ooded	nole) ¹⁾						
Tem- I: 50 °C / 80 °C		[N/mm ²]				5,0	5,0	4,5			
range II: 72 °C / 120 °C	$ au_{Rk,cr}$					4,0	4,0	4,0			
Installation factors											
Dry and wet concrete		r 1					1,2				
Flooded hole	γ inst	[-]		1,4 ¹⁾							

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

PRO-DOMA injection system vinlyester

Performances

Characteristic values for static or quasi-static action under tensile load for anchor rods (uncracked or cracked concrete)

Annex C 4

Table C5: Characteristi RG MI in un				scher inte	rnal thread	led anchor	'S	
Size			M8	M10	M12	M16	M20	
Combined pullout and con	crete cone	failure						
Calculation diameter	d	[mm]	12	16	18	22	28	
Jncracked concrete								
Characteristic bond resista	nce in un	cracked c	concrete C20)/25				
Hammer-drilling with standar	d drill bit o	r hollow dı	rill bit (dry an	d wet concret	<u>e)</u>			
Tem- I: 50 °C / 80 °C		[N/mm ²]	10,5	10,0	9,5	9,0	8,5	
ange II: 72 °C / 120 °C	T _{Rk,ucr}		9,0	8,0	8,0	7,5	7,0	
lammer-drilling with standar	d drill bit o	r hollow di	rill bit (floode	d hole) ¹⁾				
Tem- I: 50 °C / 80 °C	_	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	
perature	T _{Rk,ucr}	[[14/11111]	7,5	6,5	6,5	6,0	6,0	
nstallation factors								
Ory and wet concrete			1,2					
Flooded hole	γ _{inst}	[-]			1,4 ¹⁾			

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

PRO-DOMA injection system vinlyester

Performances
Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI and reinforcing bars (uncracked concrete)

Annex C 5

Table C6: Displacements for anchor rods											
Size		М6	М8	M10	M12	M16	M20	M24	M27	M30	
Displacement-Factors for tensile load ¹⁾											
Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12	
$\delta_{\text{N}\infty\text{-Faktor}}$	[[ווווו/(וא/ווווו)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14	
Cracked	concrete; Ten	nperature	range I, I	l							
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	-		0,12	0,12	0,13	0,13				
$\delta_{\text{N}\infty\text{-Faktor}}$	[[[[[[]]]]	-		0,27	0,30	0,30	0,30				
Displace	ment-Factors	for shear	load ²⁾								
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II						
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07	
$\delta_{V\infty ext{-Faktor}}$	[IIIIII/KIN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09	

¹⁾ Calculation of effective displacement:

 $\delta_{N0} = \delta_{N0\text{-Factor}} \cdot \tau_{Ed}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C7: Displacements for fischer internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20					
Displace	Displacement-Factors for tensile load ¹⁾										
Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,10	0,11	0,12	0,13	0,14					
$\delta_{\text{N}\infty\text{-Faktor}}$	[[[[[[]]]]	0,13	0,14	0,15	0,15 0,16						
Displace	ment-Factors	for shear load ²⁾									
Uncrack	ed concrete; T	emperature rang	e I, II								
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,12	0,12	0,12	0,12					
$\delta_{V\infty\text{-Faktor}}$	[IIIII/KIN]	0,14	0,14	0,14	0,14	0,14					

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \cdot \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

PRO-DOMA injection system vinlyester

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 6