

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0590 of 12 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Fosroc Lokfix E75 for concrete Product family Bonded fastener for use in concrete to which the construction product belongs Manufacturer **Fosroc International Limited** Drayton Manor Business Park Coleshill Road TAMWORTH STAFFORDSHIRE; B78 3XN GROSSBRITANNIEN Fosroc Plant RC1 Manufacturing plant This European Technical Assessment 25 pages including 3 annexes which form an integral part contains of this assessment EAD 330499-00-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0590

Page 2 of 25 | 12 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 12 July 2018

European Technical Assessment ETA-18/0590 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Fosroc Lokfix E75 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Lokfix E75 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance and displacements for seismic	See Annex
performance categories C1 and C2	C 2, C 3, C 6 to C 8 and C 10

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

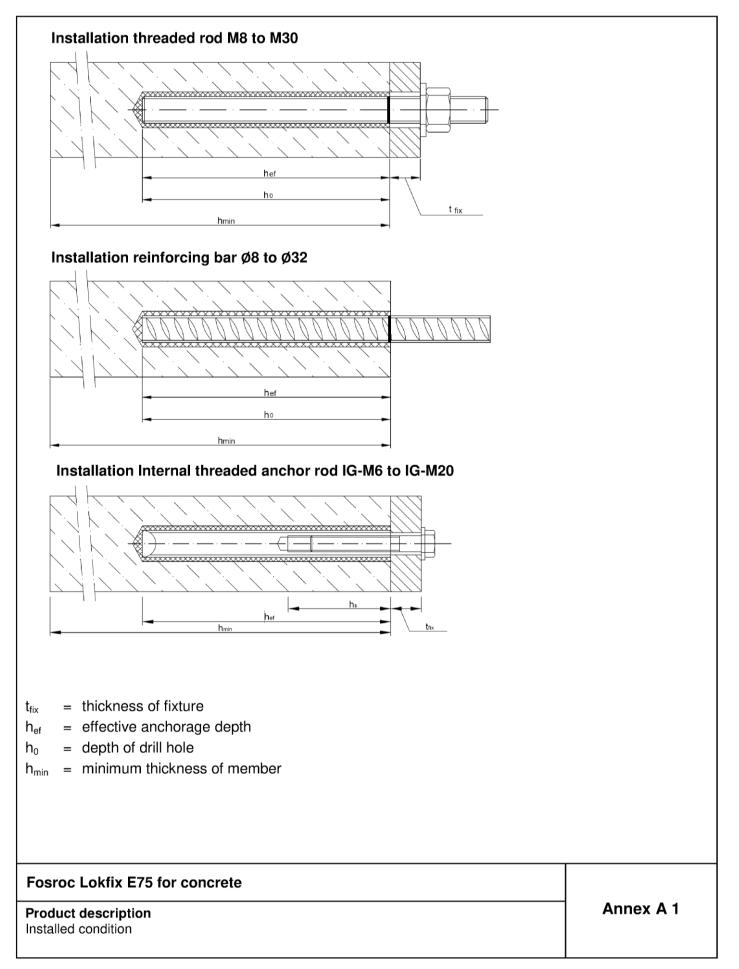
The system to be applied is: 1

European Technical Assessment ETA-18/0590

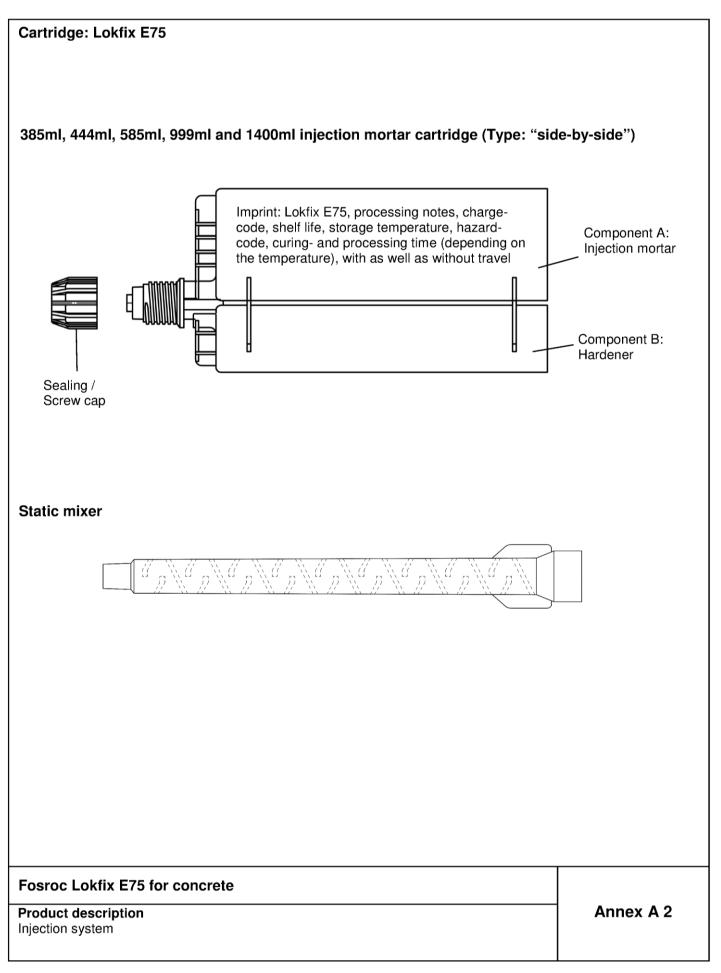
Page 4 of 25 | 12 July 2018

English translation prepared by DIBt

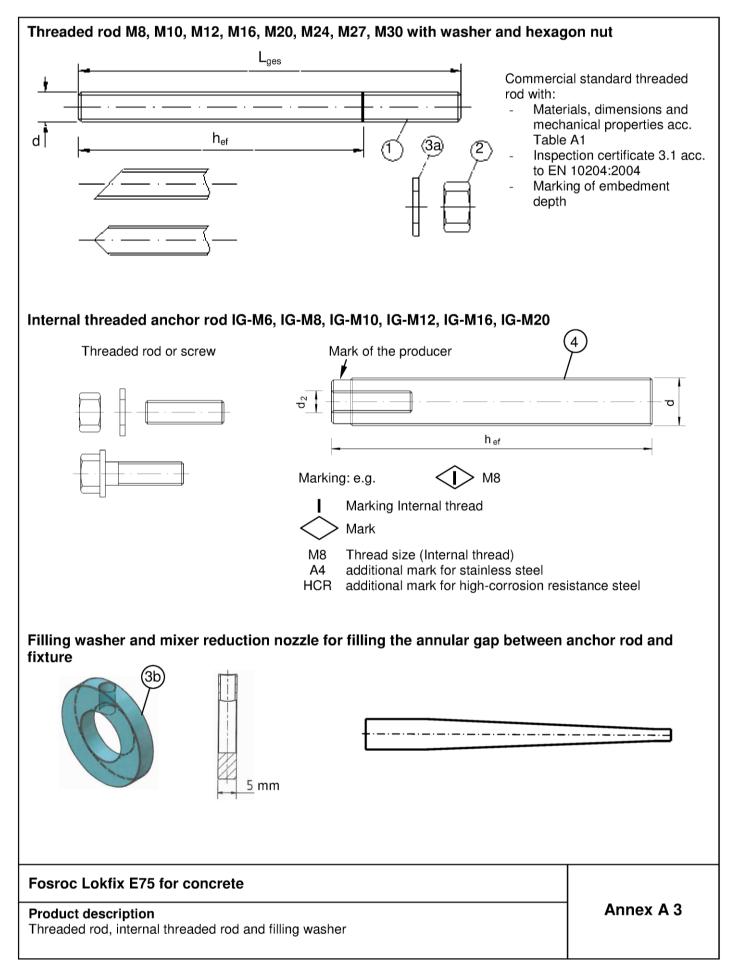
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

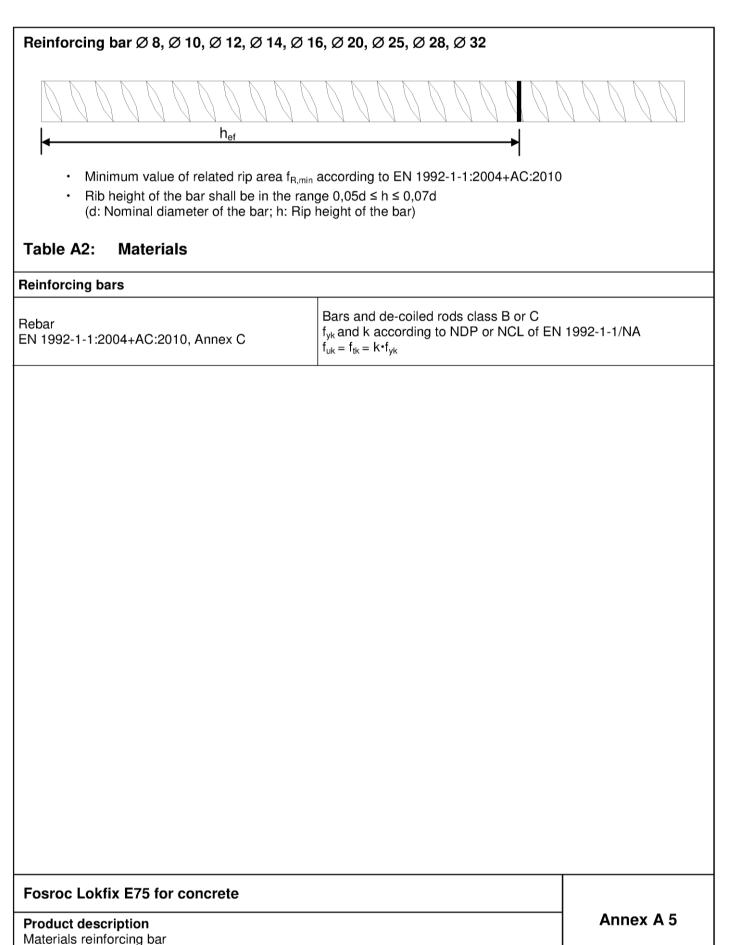

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 12 July 2018 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider





10	ble A1: Materials	Mataria							
	Designation	Material	.0001	<u> </u>					
	I, zinc plated (Steel acc. to EN 10 plated ≥ 5 µm acc. to EN ISO 4042:				9 and				
	SO 10684:2004+AC:2009 or sherard				5 anu				
			4.6	f _{uk} =400 N/mm ² ; f _{vk} =240 N/mm ² ; A	8% fracture elongation				
		Duananta alara	4.8						
1	Anchor rod	Property class acc. to	5.6	f _{uk} =500 N/mm ² ; f _{yk} =300 N/mm ² ; A	-				
'	Anchoritod	EN ISO 898-1:2013	5.8	f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ; A					
				f _{uk} =800 N/mm ² ; f _{vk} =640 N/mm ² ; A					
			8.8		5 > 12% fracture elongation				
0	Lloveren nut	Property class	4	for anchor rod class 4.6 or 4.8					
2	Hexagon nut	acc. to EN ISO 898-2:2012	<u>5</u> 8	for anchor rod class 5.6 or 5.8 for anchor rod class 8.8					
	Washer,	LIN 100 000 2.2012	0	Tor anchor rod class 8.8					
3a	(z.B.: EN ISO 887:2006, EN ISO 7089:2000,			han al an ab an all an al					
	EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, not-	aib ge	Ivanised or sherardized					
3b	Filling washer			1					
4	Internal threaded anchor rod	Property class	5.8	f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ;	$A_5 > 8\%$ fracture elongation				
4		acc. to EN ISO 898-1:2013	8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ;	$A_5 > 8\%$ fracture elongation				
itair	⊥ nless steel A2 (Material 1.4301 / 1				-				
nd			ouoi		•)				
tair	nless steel A4 (Material 1.4401 / 1	.4404 / 1.4571 / 1.4362	or 1.4	578, acc. to EN 10088-1:2014)					
		Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A	$_{5}$ > 12% fracture elongation				
1	Anchor rod ¹⁾⁴⁾	acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A	$_{5}$ > 12% fracture elongation				
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	$_{5}$ > 12% fracture elongation				
		Property class	50	for anchor rod class 50					
2	Hexagon nut ¹⁾⁴⁾	acc. to	70	for anchor rod class 70					
		EN ISO 3506-1:2009	80	for anchor rod class 80					
	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁵⁾			/ 1.4307 / 1.4567 or 1.4541, EN / 1.4571 / 1.4362 or 1.4578, EN					
4	Internal threaded anchor rod ¹⁾²⁾	Property class acc. to	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ;					
		EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ;	$A_5 > 8\%$ fracture elongation				
ligh	corrosion resistance steel (Mate	erial 1.4529 or 1.4565, a	acc. to	DEN 10088-1: 2014)					
		Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A					
1	Anchor rod ¹⁾	acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A	-				
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	$_{5}$ > 12% fracture elongation				
		Property class	50	for anchor rod class 50					
2	Hexagon nut 1)	acc. to	70	for anchor rod class 70					
		EN ISO 3506-1:2009	80	for anchor rod class 80					
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,								
Ja	EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.4	565, a	cc. to EN 10088-1: 2014					
3b	Filling washer								
		Property class	50	f _{uk} =500 N/mm ² ; f _{vk} =210 N/mm ² ;	$A_5 > 8\%$ fracture elongation				
4	Internal threaded anchor rod ^{1) 2)}	acc. to	70	f _{uk} =700 N/mm ² ; f _{vk} =450 N/mm ² ;					
1)		EN ISO 3506-1:2009		,					
	Property class 70 for anchor rods up	p to M24 and Internal th	reade	d anchor rods up to IG-M16,					
	for IG-M20 only property class 50								
	$A_5 > 8\%$ fracture elongation if <u>no</u> red		ce ca	egory C2 exists					
	Property class 80 only for stainless								
5)	Filling washer only with stainless sto	eel A4							
Fa	sroc Lokfix E75 for concret	0							
-0	SIDE LONIX E75 IOF CONCRED	C							
Pr/	oduct description				Annex A 4				
	oduct description terials								

Z44644.18

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 and M16 (except hot-dip galvanised rods).

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30. Rebar Ø8 to Ø32. IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C) II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to: FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete.
- Flooded holes (not sea water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded sleeve.

Fosroc Lokfix E75 for concrete

Intended Use Specifications

Deutsches Institut für Bautechnik

Table B1: Installation	Table B1: Installation parameters for threaded rod										
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30		
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35		
Effective embedment denth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120		
Effective embedment depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33		
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200		
Minimum thickness of member	h _{min} [mm]		_{∍f} + 30 m ≥ 100 mn				h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150		

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
	h _{ef,max} [mm] =		120	144	168	192	240	300	336	384
Minimum thickness of member	h _{min} [mm]	h _{ef} + 3 ≥ 100	80 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internally threaded sleeve

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20		
Outer diameter of anchor ¹⁾	d _{nom} [mm] =	10	12	16	20	24	30		
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	24	28	35		
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120		
Ellective ellibedillent deptil	h _{ef,max} [mm] =	120	144	192	240	288	360		
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22		
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100		
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/20	12/30	16/40	20/50		
Minimum thickness of member	h _{min} [mm]		80 mm 0 mm		h _{ef} +	h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150		
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150		

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Fosroc Lokfix E75 for concrete

Intended Use Installation parameters

2					*****							
Threaded Rod	Rebar	Internal threaded Anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d Brusl	-	d _{b,min} min. Brush - Ø	Piston plug		on direction piston plu			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		Ļ	\rightarrow	T		
M8			10	RBT10	12	10,5						
M10	8	IG-M6	12	RBT12	14	12,5		la nistan n	luas require	bd		
M12	10	IG-M8	14	RBT14	16	14,5	. '	No piston plugs required				
	12		16	RBT16	18	16,5						
M16	14	IG-M10	18	RBT18	20	18,5	VS18	_				
	16		20	RBT20	22	20,5	VS20	_				
M20	20	IG-M12	24	RBT24	26	24,5	VS24	– h _{ef} > 250 mm	h _{ef} >			
M24		IG-M16	28	RBT28	30	28,5	VS28		250 mm	all		
M27	25		32	RBT32	34	32,5	VS32					
M30	28 32	IG-M20	35 40	RBT35 RBT40	37 41,5	35,5 40,5	VS35 VS40	_				
Drill bit dia	meter (d_0) : lepth (h_0) : <					- Rec. com bit diameter (d			(min 6 bar	r)		
Piston p		verhead or h	orizontal			eel brush F		diameters	WW	a ↓ d⊾		

Fosroc Lokfix E75 for concrete

Intended Use Cleaning and setting tools

Drilling of the bore	hole						
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammor compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mort	ner (HD), hollow (HDB) y in combination with a					
	Attention! Standing water in the bore hole must be removed bef	ore cleaning.					
	fore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ and bore hole depth $h_0 \le 10d_{nom}$						
2x	 2a. Starting from the bottom or back of the bore hole, blow the hole c (Annex B 3) a minimum of two times. 	lean by a hand pump ¹⁾					
<u>********</u> 2x	 2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used. 						
	2c. Finally blow the hole clean again with a hand pump ¹⁾ (Annex B 3) times.	a minimum of two					
2x	¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment up to 10d _{nom} also in cracked concrete with hand-pump.						
CAC: Cleaning for a	Il bore hole diameter in uncracked and cracked concrete						
2x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of two times stream is free of noticeable dust. If the bore hole ground is not recent extension must be used.	until return air					
<u>*********</u> 2x	 Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used. 						
2x	 Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used. 						
	After cleaning, the bore hole has to be protected against re-ca an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,					
Fosroc Lokfix E7	5 for concrete						
		1					

Installation inst	ructions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	-
Case are an and the case of th	4. Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey or red colour.	
	6. Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static r hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe the given in Table B5.	nixing nozzle as the nchor hole is not
	 ✓ Piston plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 50mm
	8. Push the anchor rod or reinforcing bar into the anchor hole while tu positive distribution of the adhesive until the embedment depth is reader. The anchor shall be free of dirt, grease, oil or other foreign material	eached.
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fix	ned, the application has
20°C e.g.	10. Allow the adhesive to cure to the specified time prior to applying an not move or load the anchor until it is fully cured (attend Table B5).	
	11. After full curing, the add-on part can be installed with up to the max (Table B1 or B3) by using a calibrated torque wrench. It can be opt gap between anchor and fixture with mortar. Therefor substitute the washer and connect the mixer reduction nozzle to the tip of the mix filled with mortar, when mortar oozes out of the washer.	tional filled the annular e washer by the filling
Fosroc Lokfix E7	5 for concrete	
Intended Use Installation instruction	ons (continuation)	Annex B 5

Table B5:	Mi	nimum cu	ring time		
Concrete	Concrete temperature		Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+ 5 °C	to	+ 9 °C	120 min	50 h	100 h
+ 10 °C	to	+ 19 °C	90 min	30 h	60 h
+ 20 °C	to	+ 29 °C	30 min	10 h	20 h
+ 30 °C	to	+ 39 °C	20 min	6 h	12 h
+	+ 40 °C		12 min	4 h	8 h
Cartridge	temp	perature		+5°C to +40°C	

Fosroc Lokfix E75 for concrete

Intended Use Curing time

Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic tension resistance, Steel failure ¹⁾										
Steel,	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Stainl	ess steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Stainl	ess steel A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Stainl	ess steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Chara	acteristic tension resistance, Partial factor ²⁾										
Steel,	Property class 4.6	γMs,V	[-]				2	,0			
Steel,	Property class 4.8	γ̂Ms,∨	[-]				1	,5			
Steel,	Property class 5.6	γMs,V	[-]				2	,0			
Steel,	Property class 5.8	γ̂Ms,∨	[-]				1	,5			
Steel,	Property class 8.8	γ̃Ms,V	[-]				1	,5			
Stainl	ess steel A2, A4 and HCR, Property class 50	γMs,∨	[-]	2,86							
Stainl	ess steel A2, A4 and HCR, Property class 70	γMs,∨	[-]				1,	87			
Stainl	ess steel A4 and HCR, Property class 80	γMs,V	[-]				1	,6			
Chara	acteristic shear resistance, Steel failure 1)										
	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9 (8)	15 (13)	21	39	61	88	115	140
Without lever arm	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
out le	Stainless steel A2, A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Nithe	Stainless steel A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
-	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
E	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
With lever arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
th lev	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Mit	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
Chara	acteristic shear resistance, Partial factor ²⁾										
Steel,	Property class 4.6	γMs,V	[-]				1,	67			
Steel,	Property class 4.8	γMs,∨	[-]				1,	25			
Steel,	Property class 5.6	γMs,V	[-]	1,67							
Steel,	Property class 5.8	γMs,∨	[-]	1,25							
Steel,	Property class 8.8	γMs,V	[-]				1,	25			
Stainl	ess steel A2, A4 and HCR, Property class 50	γMs,∨	[-]				2,	38			
Stainl	ess steel A2, A4 and HCR, Property class 70	γ̃Ms,∨	[-]				1,	56			
Stainl	ess steel A4 and HCR, Property class 80	γMs,V	[-]				1	33			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
 ²⁾ in absence of national regulation

Fosroc Lokfix E75 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Anchor size threaded Steel failure	rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure		N _{Rk,s}	[kN]			Δ.	• f _{uk} (or se	e Table	C1)		
Characteristic tension	resistance	N _{Rk,eq,C1}	[kN]			,	1,0 •		01)		
		N _{Rk,eq,C2}	[kN]	NPA 1,0 • N _{Bks} No Performance Assessed							(NPA)
Partial factor		γms,N	[-]				see Ta	lble C1			
	id concrete cone failur sistance in non-cracked		25								
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	25 [N/mm ²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Jnaracleristic bond res	sistance in cracked conc	$\tau_{\rm Rk,cr}$	[N/mm²]	7,0	7,0	7,5	6,5	6.0	5,5	5,5	5,5
	dry and wet concrete	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,0	6,2	5,7	5,5	5,5	5,5
Temperature range I:		τ _{Rk.eq.C2}	[N/mm ²]		PA	2,4	2,2	,	,	Assessed	,
40°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,eq,C1}	[N/mm ²]	5,9	7,0	7,1	5,8	4,8	4,5	4,0	4,0
		$\tau_{\rm Rk,eq,C2}$	[N/mm ²]		PA	2,4	2,1			Assessed	
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,5	4,5	4,5	4,0	3,5	3,5	3,5	3,5
-	dry and wet concrete	$\tau_{\rm Rk,eq,C1}$	[N/mm ²]	3,7	4,5	4,3	3,8	3,4	3,5	3,5	3,5
Temperature range II: 60°C/43°C		$\tau_{\rm Rk,eq,C2}$	[N/mm ²]		PA	1,4	1,4 4.0	3.5		Assessed	
50°C/43°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²] [N/mm ²]	4,5 3,7	4,5 4,5	4,5 4,3	4,0	3,5	3,5 3,5	3,5 3,5	3,5 3,5
	nooded bore noie	$\tau_{\text{Rk,eq,C1}}$ $\tau_{\text{Rk,eq,C2}}$	[N/mm ²]		PA -,5	1,4	1,4	- , .		Assessed	,
		τ _{Rk,cr}	[N/mm ²]	4,0	4.0	4,0	3,5	3.0	3.0	3,0	3.0
	dry and wet concrete	τ _{Rk.eq.C1}	[N/mm ²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
Femperature range III: 72°C/43°C	-	$\tau_{\rm Rk,eq,C2}$	[N/mm ²]	N	PA	1,3	1,2	No Pe	erformance	Assessed	(NPA)
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,0	3,0	3,0	3,0
	flooded bore hole	$\tau_{\text{Rk,eq,C1}}$	[N/mm ²]	3,2	4,0	3,9	3,4	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,eq,C2}$	[N/mm ²]	N	PA	1,3	1,2		erformance	Assessed	(NPA)
		C25						02			
Increasing factors for c		C35					1,				
(For static or quasi-stat	tic loading)	C40		1,08							
ψ_{c}		C45		1,09							
Concusto cono failuro		C50)/60				1,	10			
Concrete cone failure Non-cracked concrete		k	[[]]					,0			
Cracked concrete		k _{ucr,N}	[-]					,0 ,7			
Edge distance		k _{cr,N}	[-] [mm]					,7 i h _{ef}			
Axial distance		C _{cr,N} S _{cr,N}	[mm]					cr,N			
Splitting failure		Ocr,N						CI,IN			
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
							(.	-h			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} = 2$	$5-\frac{1}{h}$			
	h/h < 1.0	-						h h			
Axial distance	h/h _{ef} ≤ 1,3	S _{cr,sp}	[mm]				2,4 2 c				
Installation factor		Scr.sp	, inni				20	cr,sp			
for dry and wet concret	e	γinst	[-]		1,	2			1	,4	
for flooded bore hole		Yinst	[-]		.,	-	1	,4		,.	

Performances

Characteristic values of tension loads under static, quasi-static action and seismic action (performance category C1 and C2)

Table C3: Characteristic seismic actio							uasi-st	atic ac	tion an	d
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]			0,6	$\cdot A_{s} \cdot f_{uk}$ (or see Tal	ole C1)		
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5	∙A₅ • f _{uk} (or see Tal	ole C1)		
Characteristic shear resistance	$V_{Rk,eq,C1}$	[kN]	0,87 ·	$V^0_{Rk,s}$),88 ∙ V ⁰ _{Rk}	,S		0,80 • V ⁰ _{Rk,}	s
	$V_{Rk,eq,C2}$	[kN]	NF	PA	0,80 •	$V^0_{\ Rk,s}$	No P	erformand	ce Assessed	(NPA)
Partial factor	γMs,V	[-]				see	Table C1			
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]			1,2	$\cdot W_{el} \cdot f_{uk}$	(or see Ta	ble C1)		
Characteristic bending moment	$M^0_{\rm Rk,eq,C1}$	[Nm]			No P	erformand	e Assess	ad (NPA)		
	$M^0_{\rm Rk,eq,C2}$	[Nm]			NO P	enormand	C A330330			
Partial factor	γ̂Ms,V	[-]				see	Table C1			
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	ŀ	[mm]			min(h _{ef} ;	12 • d _{nom})			max(8 • d _{nor}	ո, 300 mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			
Factor for annular gap	α_{gap}	[-]				0,5	5 (1,0) ¹⁾			

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Fosroc Lokfix E75 for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2)

Characteristic values of tension loads for internal threaded sleeves under Table C4: static and quasi-static action

	threaded sleeves			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 2
Steel failure ¹⁾									
Characteristic tension re Steel, strength class 5.8		N _{Rk,s}	[kN]	10	17	29	42	76	123
Partial factor		γMs,N	[-]			1	,5		
Characteristic tension re		N _{Rk,s}	[kN]	16	27	46	67	121	196
Steel, strength class 8.8 Partial factor	3		[-]				,5		
Characteristic tension re	esistance	ΎMs,N							
Stainless Steel A4 and	HCR, Strength class 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial factor		γMs,N	[-]			1,87			2,86
•	d concrete cone failure								
	stance in non-cracked concre	ete C20/25							
Temperature range I: 40°C/24°C	dry and wet concrete flooded bore hole	$ \tau_{\rm Rk,ucr}$	[N/mm ²]	15	15	14	13	12	12
Temperature range II:	dry and wet concrete			14 9,5	13 9,0	10 8,5	9,5 8,0	8,5 7,5	7,0 7,5
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	9,5	9,0	8,5	7,5	7,0	6,0
Temperature range III:	dry and wet concrete	-	[N/mm ²]	8,5	8,0	7,5	7,0	7,0	6,5
72°Ċ/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	8,5	8,0	7,5	7,0	6,0	5,5
	stance in cracked concrete C	20/25			_ -				
Temperature range I: 40°C/24°C	dry and wet concrete	$ \tau_{\rm Rk,cr}$	[N/mm ²]	7,0	7,5	6,5	6,0	5,5	5,5
Temperature range II:	flooded bore hole dry and wet concrete			7,0 4,5	7,5 4,5	6,0 4,0	5,0 3,5	4,5 3,5	4,0 3,5
60°C/43°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm²]	4,5	4,5	4,0	3,5	3,5	3,5
Temperature range III:	dry and wet concrete	-	[N/mm ²]	4,0	4,0	3,5	3,0	3,0	3,0
72°C/43°C	flooded bore hole	τ _{Rk,cr}		4,0	4,0	3,5	3,0	3,0	3,0
			25/30			/	02		
Increasing factors for co	perete		30/37 35/45				04 07		
Ψ_c	JICIELE		40/50				08		
			45/55				09		
		C	50/60			1,	10		
Concrete cone failure									
Non-cracked concrete		k _{ucr,N}	[-]			1	1,0		
Cracked concrete		k _{cr,N}	[-]			7	,7		
Edge distance		C _{cr,N}	[mm]			1,5	i h _{ef}		
Axial distance		S _{cr,N}	[mm]			2 (C _{cr,N}		
Splitting failure									
	h/h _{ef} ≥ 2,0					1,0) h _{ef}		
						($\begin{bmatrix} h \end{bmatrix}$		
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]			$2 \cdot h_{ef}$ 2	$5-\frac{n}{b}$		
						(n _{ef})		
	h/h _{ef} ≤ 1,3					2,4	h _{ef}		
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp		
Installation factor									
for dry and wet concrete	9	γinst	[-]		1,2			1,4	
for flooded bore hole		γinst	[-]			1	,4		
threaded roc and the faste	rews or threaded rods (incl. r I. The characteristic tension r ening element. strength class 50 is valid	nut and wash	er) must cor						
²⁾ For IG-M20 :									

Characteristic values of tension loads for internal threaded sleeves under static and quasi-static action

	d sleeves		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾						1		
Characteristic shear resistance, Steel, strength class 5.8	$V^0_{Rk,s}$	[kN]	5	9	15	21	38	61
Partial factor	γMs,V	[-]				1,25		
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γMs,V	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,V	[-]			1,56			2,38
Ductility factor	k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾	•							
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γMs,V	[-]				1,25		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γMs,V	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γMs,V	[-]			1,56			2,38
Concrete pry-out failure								
actor	k ₈	[-]				2,0		
nstallation factor	γinst	[-]				1,0		
Concrete edge failure	-							
Effective length of fastener	l _f	[mm]		r	nin(h _{ef} ; 12 • d _{no}	om)		max(8 • d _{nom} , 300 mi
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor	γinst	[-]				1,0		
 Eastening screws or three 	aded rods teristic ter It.	(incl. nut a nsion resis	Ind washer) n tance for stee	nust comply v I failure of the	vith the approp given streng	oriate materia th class are v	and propert	y class of the internal ternal threaded rod

Performances

Characteristic values of shear loads for internal threaded sleeves under static and quasi-static action

Anchor size reinforcir	ng bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure				20		212	<i>b</i> 14	210	2.20	0 23	2 20	200
		N _{Rk,s}	[kN]					$A_s \cdot f_{uk}^{(1)}$				
Characteristic tension r	esistance	N _{Rk,eq,C1}	[kN]				1,	$0 \cdot A_{s} \cdot f_{u}$	1) k			
Cross section area		As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out an	d concrete cone failure											
	istance in non-cracked co	ncrete C20/	/25									
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:		τ _{Rk.ucr}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7.5	7,5	7,5	7,0	7,0	6.0	5,5	5.0	4,5
Characteristic bond res	istance in cracked concre			. ,=	.,=	.,_	- ,=	- / -	- , -	- , -	- / -	.,=
		τ _{Rk.cr}	[N/mm ²]	7,0	7,0	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	dry and wet concrete	T _{Rk.eq.C1}	[N/mm ²]	5,9	7,0	7,1	6,4	6,2	5,7	5,5	5,5	5,5
40°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,0	7,0	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk.eq.C1}	[N/mm ²]	5,9	7,0	7,0	6,0	5.7	4,8	4,5	4.0	4,0
			[N/mm ²]	4,5	4,5	4,5	4,0	4.0	3,5	3,5	3,5	3,5
Temperature range II:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C		τ _{Rk,eq,C1}	[N/mm ²]	4,5	4,5	4,5	4,0	4,0	3,5	3,5	3,5	3,0
00 0/43 0	flooded bore hole	$\tau_{\rm Rk,cr}$,				
		$\tau_{\rm Rk,eq,C1}$	[N/mm ²]	3,7	4,5	4,3	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:		$\tau_{\rm Rk,eq,C1}$	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	3,5	3,5	3,0	3,0	3,0	3,0
		$\tau_{\rm Rk,eq,C1}$	[N/mm ²]	3,2	4,0	3,9	3,2	3,3	2,9	3,0	3,0	3,0
		C2	25/30					1,02				
		C3	30/37					1,04				
Increasing factors for co		C3	35/45					1,07				
(For Static or quasi-stat	tic loading)		0/50					1,08				
Ψc								,				
			5/55					1,09				
		C5	50/60					1,10				
Concrete cone failure												
Non-cracked concrete		k _{ucr,N}	[-]					11,0				
Cracked concrete		k _{cr,N}	[-]					7,7				
Edge distance		C _{cr.N}	[mm]					1,5 h _{ef}				
Axial distance												
		S _{cr,N}	[mm]					$2 c_{\text{cr,N}}$				
Splitting failure								1.01				
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
								(h			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{a}$	f = 2,5 - 1	<u></u>			
									n_{ef}			
	h/h _{ef} ≤ 1,3							2,4 h _{ef}				
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation factor		- or, sp	- <u>6</u> 1					= eciap				
	2		I			1.0					4	
for dry and wet concret	е	γinst	[-]			1,2				1	,4	
for flooded bore hole		γinst	[-]					1,4				
¹⁷ f _{uk} shall be take ²⁾ in absence of n	en from the specifications ational regulation	of reinforcin	ig bars									
Fosroc Lokfix I	E75 for concrete											
Performances Characteristic value (performance catego	s of tension loads und	er static, qu	uasi-static a	action a	nd seis	mic acti	on		1	Anne	ex C 6	;

		ic values o on (perforn					atic, c	uasi-	static	actio	n and	
Anchor size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lev	er arm											
Characteristic shear resis	tanaa	$V^0_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	[kN]				0,5	50 • A _s • 1	: 1) uk			
	Starice	$V_{Rk,eq,C1}$	[kN]	0,40 • <i>/</i>	A _s ∙ f _{uk} ¹)			0,4	14 ∙ A _s ∙ f	: 1) uk		
Cross section area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		Ϋ́Ms,V	[-]					1,5 ²⁾				
Ductility factor		k7	[-]					1,0				
Steel failure with lever a	arm											
Characteristic bending m	oment	M ⁰ _{Rk,s}	[Nm]				1.2	2 ∙ W _{el} ∙ f	1) uk			
	oment	$M^0_{\rm Rk,eq,C1}$	[Nm]			No	Performa	ance Ass	essed (N	PA)		
Elastic section modulus		W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor		γMs,V	[-]					1,5 ²⁾				
Concrete pry-out failure	9		_									
Factor		k ₈	[-]					2,0				
Installation factor		γinst	[-]					1,0				
Concrete edge failure												
Effective length of fastene	er	lf	[mm]			min(h _{ef} ; ⁻	12 · d _{nom})			max(8	• d _{nom} , 30)0 mm)
Outside diameter of faste	ner	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor		γinst	[-]					1,0				
Factor for annular gap		$lpha_{gap}$	[-]					0,5 (1,0) ^s	;)			
 f_{uk} shall be taken from in absence of national Value in brackets valic required. 	the specification regulation d for filled annula	ns of reinforcing b ar gab between a	oars nchor and	d clearan	ce hole ii	n the fixtu	ıre. Use d	of specia	filling wa	asher Anr	nex A 3 is	5
Fosroc Lokfix E	75 for conc	rete								Ann	ex C	7

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25 unde	r static and qua	si-statio	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
60°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Cracked concrete	C20/25 under sta	tic, quasi-static	and sei	smic C	1 action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,032	0,037	0,042	0,048	0,053	0,05
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,21
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,06
60°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]				0,240			0,240	0,24
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,043	0,049	0,055	0,061	0,06
72°C/43°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,24
Cracked concrete	C20/25 under sei	smic C2 action								
Temperature range I:	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm ²)]			0.03	0.05				
40°C/24°C	$\delta_{N,eq(ULS)}$ -factor	//	1			,	-			
Temperature range II:	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm²)] 0,032 0,032 0,037 0,043 0,049 0,055 [mm/(N/mm²)] 0,240 0,055 0,055								
60°C/43°C	$\delta_{N,eq(ULS)}$ -factor	tor [mm/(N/mm²)] 0,032 0,032 0,037 0,043 0,049 0,055 0,061 tor [mm/(N/mm²)] 0,240		Assessec	d (NPA)					
					0,00	0.09				
Temperature range III:					0,00	,				
$\begin{array}{l} \mbox{Temperature range III:} \\ \mbox{72°C/43°C} \end{array} \\ \label{eq:alpha} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{l} \delta_{N,eq(DLS)} \ \ \ -factor \\ \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factore{}$ $\delta_{N,eq(ULS)} = \delta_{N,eq(ULS)}-factore{}$	pr·τ;		0,03 0,06	0,09 0,05 0,09 stress for	r tension			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\begin{array}{l} \delta_{N,eq(DLS)} \ \ \ -factor \\ \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factore{}$ $JLS) = \delta_{N,eq(ULS)}-factore{}$	or $\cdot \tau$; or $\cdot \tau$;	τ: acti	0,03 0,06	0,05 0,09 stress for	r tension			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\begin{array}{l} \delta_{N,eq(DLS)} \ \ -factor \\ \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}-factore{}$ $JLS) = \delta_{N,eq(ULS)}-factore{}$	or $\cdot \tau$; or $\cdot \tau$;	τ: acti	0,03 0,06	0,05 0,09 stress for	r tension M 20	M24	M 27	M 30
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread	$\begin{array}{c c} \delta_{N,eq(DLS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}$ -factors and the second	or · τ; or · τ; oad ¹⁾ (1 M 8	τ: acti thread M 10	0,03 0,06 on bond ed rod M 12	0,05 0,09 stress for) M 16	M 20		M 27	M 30
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o	$\begin{array}{c c} \delta_{N,eq(DLS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $[mm/(N/mm^{2})]$ $DLS) = \delta_{N,eq(DLS)}$ -factors and the second	or · τ; or · τ; oad ¹⁾ (1 M 8	τ: acti thread M 10	0,03 0,06 on bond ed rod M 12	0,05 0,09 stress for) M 16	M 20		M 27	
$72^{\circ}C/43^{\circ}C$ ¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size threac	$\begin{array}{c c} \delta_{N,eq(DLS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factore since a state of the second state of the se$	or · τ; or · τ; Dad ¹⁾ (1 <u>M 8</u> tatic, qu	τ: acti thread M 10 uasi-stat	0,03 0,06 on bond ed rod M 12 tic and s 0,05	0,05 0,09 stress for) M 16 seismic 0,04	M 20 C1 act 0,04	i on 0,03	0,03	M 30 0,03 0,05
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges	$\begin{array}{c c} \delta_{N,eq(DLS)} \ -factor \\ \hline \delta_{N,eq(ULS)} \ -factor \\ e \ displacement \\ \cdot \ \tau; & \delta_{N,eq(l} \\ \cdot \ \tau; & \delta_{N,eq(l)} \\ \hline splacements \ u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{V\infty} \ -factor \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factore since the second seco$	or · τ; or · τ; oad ¹⁾ (1 <u>M 8</u> tatic, qu	τ: acti thread M 10 lasi-sta	0,03 0,06 on bond ed rod M 12 tic and s	0,05 0,09 stress for) M 16 seismic	M 20 C1 act	ion		0,03
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete	$\begin{array}{c c} \delta_{N,eq(DLS)} \ -factor \\ \hline \delta_{N,eq(ULS)} \ -factor \\ e \ displacement \\ \cdot \ \tau; & \delta_{N,eq(l} \\ \cdot \ \tau; & \delta_{N,eq(l)} \\ \hline splacements u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline c20/25 \ under \ sei \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorethermodeling and the second s$	or · τ; or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 uasi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and s 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04	i on 0,03	0,03	0,03
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete All temperature	$\begin{array}{c c} \delta_{N,eq(DLS)} \ \ -factor \\ \hline \delta_{N,eq(ULS)} \ \ \ -factor \\ e \ \ displacement \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorether the second second$	Dr · τ; or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 Iasi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and s 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	i on 0,03	0,03 0,05	0,03
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete All temperature	$\begin{array}{c c} \delta_{N,eq(DLS)} \ -factor \\ \hline \delta_{N,eq(ULS)} \ -factor \\ e \ displacement \\ \cdot \ \tau; & \delta_{N,eq(l} \\ \cdot \ \tau; & \delta_{N,eq(l)} \\ \hline splacements u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline c20/25 \ under \ sei \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorethermodeling and the second s$	Dr · τ; or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 uasi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and s 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	ion 0,03 0,05	0,03 0,05	0,03
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Non-cracked and o All temperature ranges Cracked concrete All temperature	$\begin{array}{c} \delta_{N,eq(DLS)} \ -factor \\ \overline{\delta}_{N,eq(ULS)} \ -factor \\ e \ displacement \\ \cdot \ \tau; \qquad \delta_{N,eq(i)} \\ \cdot \ \tau; \qquad \delta_{N,eq(i)} \\ \hline \ splacements \ u \\ \hline \ ded \ rod \\ \hline \ \ cracked \ concrete \\ \hline \ \ \delta_{V,o} \ -factor \\ \hline \ \ \delta_{V,o} \ -factor \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorether the second second$	Dr · τ; or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 Iasi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and s 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	ion 0,03 0,05	0,03 0,05	0,03
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C9: Di Anchor size thread Anchor size thread Anchor sinter thread Anchor size thread Anchor size thread	$\begin{array}{c} \delta_{N,eq(DLS)} \ -factor \\ \overline{\delta}_{N,eq(ULS)} \ -factor \\ e \ displacement \\ \cdot \tau; \qquad \delta_{N,eq(l} \\ \cdot \tau; \qquad \delta_{N,eq(l} \\ \hline splacements u \\ \hline ded \ rod \\ \hline cracked \ concrete \\ \hline \delta_{Vo} \ -factor \\ \hline \delta_{Vo} \ -factor \\ \hline cracked \ concrete \\ \hline \delta_{V,o} \ -factor \\ \hline cracked \ concrete \\ \hline \delta_{V,eq(DLS)} \ -factor \\ \hline cracked \ concrete \\ \hline \delta_{V,eq(ULS)} \ -factor \\ \hline \delta_{V,eq(ULS)} \ -factor \\ e \ displacement \\ \cdot \ V; \\ \cdot \ V; \\ (ULS) \ -factor \ \cdot \ V; \\ (ULS) \ -factor \ \cdot \ V; \\ (ULS) \ -factor \ \cdot \ V; \\ \hline \end{array}$	$[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $[mm/(N/mm^2)]$ $DLS) = \delta_{N,eq(DLS)}-factorethermodeling and the second s$	Dr · τ; or · τ; Dad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 Iasi-stat 0,06 0,08	0,03 0,06 on bond ed rod M 12 tic and s 0,05 0,08	0,05 0,09 stress for) M 16 seismic 0,04 0,06	M 20 C1 act 0,04 0,06	ion 0,03 0,05	0,03 0,05	0,03

Table C10: Dis	splacements	under tension	load ¹⁾ (ii	nternally	threade	ed sleeve	e)	
Anchor size intern	ally threaded s	leeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked conc	rete C20/25 une	der static and quas	i-static ac	tion				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,020	0,024	0,029	0,035
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,061	0,079	0,096	0,114	0,140
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,015	0,018	0,023	0,028	0,033	0,043
່72°C/43°Cັ	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,060	0,070	0,091	0,111	0,131	0,161
Cracked concrete	C20/25 under s	tatic and quasi-sta	tic action		•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,037	0,042	0,048	0,058
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,037	0,043	0,049	0,055	0,067
72°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,240	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C11: Displacements under shear load¹⁾ (internally threaded sleeve)

Anchor size in	ernally threade	ed sleeve	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked con	crete C20/25 un	der static a	and quasi-s	tatic action	<u>ו</u>		
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06
$\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -fac	,							

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/	25 under static	and qua	asi-stati	c actior	้า					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete	C20/25 u	nder static, qua	asi-statio	c and se	eismic C	1 actio	n				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,032	0,032	0,035	0,037	0,042	0,049	0,055	0,06
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210	0,210
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N\infty}\text{-}factor$	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,032	0,032	0,037	0,040	0,043	0,049	0,056	0,063	0,070
72°C/43°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240	0,240
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: Di	· τ; · τ;	τ: action bonc									I
$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor}\\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \end{split}$ Table C13: Di	τ; τ; isplacen	τ: action bond				Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{array}{l} \delta_{N0} = \delta_{N0} \text{-factor} \\ \delta_{N\infty} = \delta_{N\infty} \text{-factor} \end{array}$	τ; τ; isplacen prcing bar	τ: action bond	hear lo Ø 8	9 ad¹⁾ (r Ø 10	ebar) Ø 12		Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \end{split}$ Table C13: Di Anchor size reinfo For concrete C20/2 All temperature	τ; τ; isplacen prcing bar	τ: action bond	hear lo Ø 8	9 ad¹⁾ (r Ø 10	ebar) Ø 12		Ø 16 0,04	Ø 20 0,04	Ø 25 0,03	Ø 28 0,03	Ø 32 0,03
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C13: Di Anchor size reinfo For concrete C20 /2 All temperature ranges ¹⁾ Calculation of th	τ; τ; isplacen orcing bar 25 under s δ_{V0} -factor $\delta_{V\infty}$ -factor le displacen	τ: action bond nent under s static, quasi-st [mm/kN] [mm/kN] nent	hear lo Ø 8 atic and 0,06 0,09	øad ¹⁾ (r Ø 10 seismid	ebar) Ø 12 c C1 act	ion					
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-factor} \end{split}$ Table C13: Di Anchor size reinfo For concrete C20/2 All temperature ranges	τ; τ; isplacen prcing bar 25 under s δ_{V0} -factor $\delta_{V\infty}$ -factor le displacen V;	τ: action bond nent under s static, quasi-st [mm/kN] [mm/kN]	hear lo Ø 8 atic and 0,06 0,09	øad ¹⁾ (r Ø 10 seismic 0,05	ebar) Ø 12 c C1 act 0,05	i on 0,04	0,04	0,04	0,03	0,03	0,03

Z44644.18