



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-18/0616 of 12 July 2018

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE Injection system ONE for rebar connections

Systems for post-installed rebar connections with mortar

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

21 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



## European Technical Assessment ETA-18/0616

Page 2 of 21 | 12 July 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 21 | 12 July 2018

European Technical Assessment ETA-18/0616 English translation prepared by DIBt

#### Specific Part

#### 1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "ESSVE Injection system ONE for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter  $\phi$  from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar ESSVE ONE are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                        | Performance   |
|-----------------------------------------------------------------|---------------|
| Characteristic resistance under static and quasi-static loading | See Annex C 1 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic Performance |                       |
|--------------------------------------|-----------------------|
| Reaction to fire                     | Class A1              |
| Resistance to fire                   | See Annex C 2 and C 3 |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1



#### European Technical Assessment ETA-18/0616 English translation prepared by DIBt

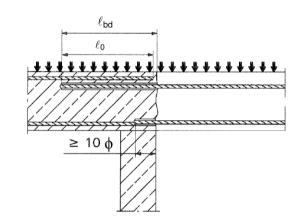
Page 4 of 21 | 12 July 2018

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

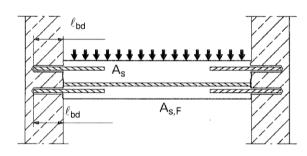
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 July 2018 by Deutsches Institut für Bautechnik

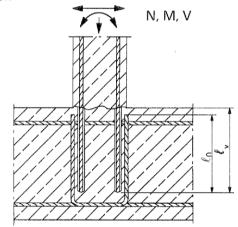
BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider


# Page 5 of European Technical Assessment ETA-18/0616 of 12 July 2018

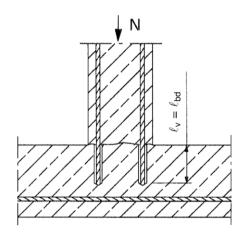
English translation prepared by DIBt

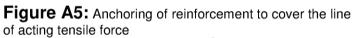


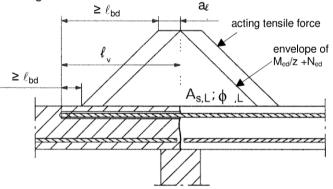

#### Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams




**Figure A3:** End anchoring of slabs or beams (e.g. designed as simply supported)





**Figure A2:** Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension



**Figure A4:** Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression





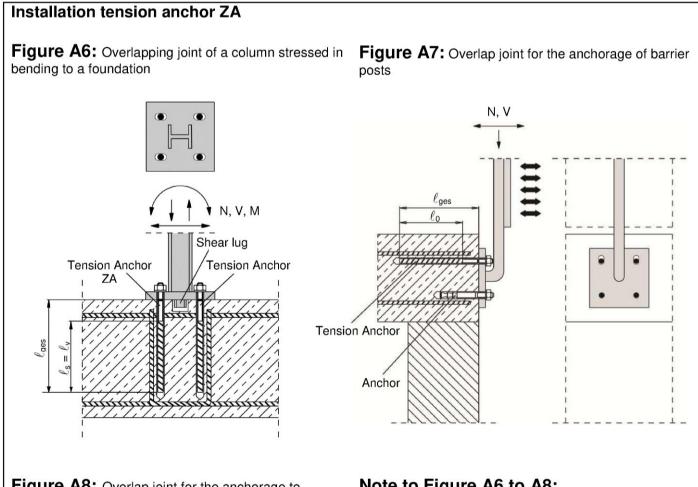


#### Note to Figure A1 to A5:

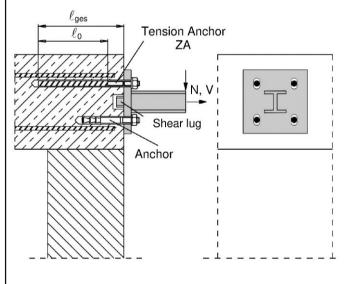
In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

 ESSVE Injection system ONE for rebar connection
 Annex A 1


 Product description
 Annex A 1

 Installed condition and examples of use for rebars
 Annex A 1


#### Page 6 of European Technical Assessment ETA-18/0616 of 12 July 2018

English translation prepared by DIBt





#### Figure A8: Overlap joint for the anchorage to centilever members



## Note to Figure A6 to A8:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2002+AC:2010

#### **ESSVE Injection system ONE for rebar connection**

## **Product description**

Installed condition and examples of use for tension anchors ZA

Annex A 2

#### Page 7 of European Technical Assessment ETA-18/0616 of 12 July 2018

English translation prepared by DIBt



| ESSVE Injection system ONE:                                                                                               |                              |                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Injection mortar: ESSVE ONE<br>Typ "coaxial": 150 ml, 280 ml,<br>300 ml up to 333 ml and<br>380 ml up to 420 ml cartridge | charge-code,<br>hazard-code, | VE ONE, processing notes,<br>shelf life, storage temperature,<br>curing- and processing time<br>in the temperature), optional with |
| <b>Type "side-by-side":</b><br>235 ml, 345 ml and 825 ml<br>cartridge                                                     | charge-code<br>hazard-code   | VE ONE, processing notes,<br>shelf life, storage temperature,<br>curing- and processing time<br>n the temperature), optional with  |
| Static Mixer                                                                                                              |                              |                                                                                                                                    |
| CRW 14W                                                                                                                   |                              |                                                                                                                                    |
| TAH 18W                                                                                                                   |                              |                                                                                                                                    |
| Piston plug VS and mixer extension                                                                                        |                              |                                                                                                                                    |
| Reinforcing bar (rebar): ø8                                                                                               | to ø32                       |                                                                                                                                    |
|                                                                                                                           |                              |                                                                                                                                    |
| Tension Anchor ZA: M12 to                                                                                                 | o M24                        |                                                                                                                                    |
| <u>00 k</u> z z 0000                                                                                                      | 0000000                      |                                                                                                                                    |
|                                                                                                                           |                              |                                                                                                                                    |
| ESSVE Injection system ONE for I                                                                                          | rebar connection             |                                                                                                                                    |
| <b>Product description</b><br>Injection mortar / Static mixer / Reba                                                      | ar / Tension Anchor ZA       | Annex A 3                                                                                                                          |




| Reinforcing bar (rebar): ø8, ø10, ø12, ø14, ø16, ø20, ø22, ø24, ø25, ø28, ø32                                                                                                                                                    |                                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                  |                                                                                                                                  |  |  |  |
| <ul> <li>Minimum value of related rip area f<sub>B,min</sub> according</li> <li>Rib height of the bar shall be in the range 0,05¢ (\$\phi: Nominal diameter of the bar; h: Rip height of</li> <li>Table A1: Materials</li> </ul> | -<br>≤ h ≤ 0,07φ                                                                                                                 |  |  |  |
| Designation                                                                                                                                                                                                                      | Material                                                                                                                         |  |  |  |
| Rebar EN 1992-1-1:2004+AC:2010, Annex C                                                                                                                                                                                          | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |  |  |  |
|                                                                                                                                                                                                                                  |                                                                                                                                  |  |  |  |

ESSVE Injection system ONE for rebar connection

Product description Specifications Rebar Annex A 4





#### ESSVE Injection system ONE for rebar connection

## Product description

Annex A 5

Specifications Tension Anchor ZA



## Specifications of intended use

#### Anchorages subject to:

- Static and quasi-static loads.
- Fire exposure

#### Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of  $\phi$  + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

#### **Temperature Range:**

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

#### Use conditions (Environmental conditions):

• Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel).

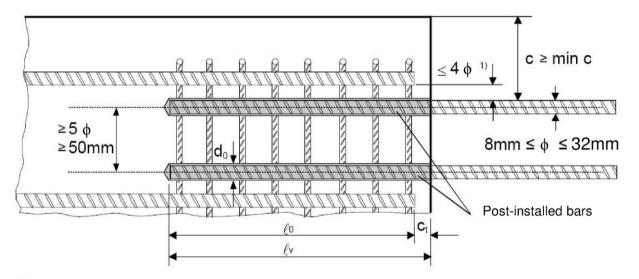
• Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

#### Installation:


- Dry or wet concrete.
- · It must not be installed in flooded holes.
- Hole drilling by hammer drill (HD), hollow drill (HDB) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

| ESSVE Injection system ONE for rebar connection |           |
|-------------------------------------------------|-----------|
| Intended use<br>Specifications                  | Annex B 1 |



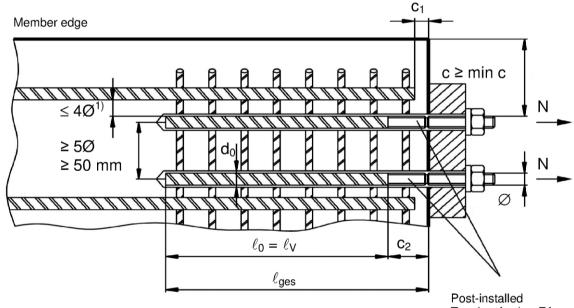
#### Figure B1: General construction rules for post-installed rebars

- · Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.



<sup>1)</sup> If the clear distance between lapped bars exceeds 4¢, then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B1:


- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2 diameter of post-installed rebar
- $\ell_0$  lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- $\ell_v$  effective embedment depth,  $\geq \ell_0 + c_1$
- d<sub>0</sub> nominal drill bit diameter, see Annex B 6

| ESSVE Injection system ONE for rebar connection                      |           |
|----------------------------------------------------------------------|-----------|
| Intended use<br>General construction rules for post-installed rebars | Annex B 2 |



#### Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.



Tension Anchor ZA

1) If the clear distance between lapped bars exceeds  $4\phi$ , then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B2:

- С concrete cover of tension anchor ZA
- $C_1$ concrete cover at end-face of existing rebar
- Length of bonded thread  $C_2$
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- diameter of tension anchor φ
- lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3  $\ell_0$
- effective embedment depth,  $\geq \ell_0 + c_1$  $\ell_{\mathbf{v}}$
- overall embedment depth,  $\geq \ell_0 + c_2$  $\ell_{\text{ges}}$
- nominal drill bit diameter, see Annex B 6  $d_0$

#### ESSVE Injection system ONE for rebar connection

#### Intended use

General construction rules for tension anchors

Annex B 3



| Table B1: Minimum concrete cover min c <sup>1)</sup> of         post-installed rebar depending of         drilling method |                                                                     |                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Rebar diameter                                                                                                            | Without drilling aid                                                | With drilling aid                                           |  |  |
| < 25 mm                                                                                                                   | $30 \text{ mm} + 0,06 \cdot \ell_{v} \ge 2 \phi$                    | $30 \text{ mm} + 0.02 \cdot \ell_{v} \ge 2 \phi$            |  |  |
| ≥ 25 mm                                                                                                                   | $40 \text{ mm} + 0,06 \cdot \ell_{v} \geq 2 \phi$                   | $40 \text{ mm} + 0.02 \cdot \ell_{v} \geq 2 \phi$           |  |  |
| < 25 mm                                                                                                                   | 50 mm + 0,08 · $\ell_v$                                             | 50 mm + 0,02 · $\ell_v$                                     |  |  |
| ≥ 25 mm                                                                                                                   | 60 mm + 0,08 · <b>ℓ</b> <sub>v</sub>                                | 60 mm + 0,02 · $\ell_v$                                     |  |  |
|                                                                                                                           | ebar depending o<br>Rebar diameter<br>< 25 mm<br>≥ 25 mm<br>< 25 mm | Bebar depending ofRebar diameterWithout drilling aid< 25 mm |  |  |

see Annex B2, Figures B1 and Annex B3, Figure B2

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

#### Table B2: maximum embedment depth $\ell_{v,max}$

| Rebar | Tension anchor | 0                   |
|-------|----------------|---------------------|
| φ     | φ              | $\ell_{v,max}$ [mm] |
| 8 mm  |                | 1000                |
| 10 mm |                | 1000                |
| 12 mm | M12            | 1200                |
| 14 mm |                | 1400                |
| 16 mm | M16            | 1600                |
| 20 mm | M20            | 2000                |
| 22 mm |                | 2000                |
| 24 mm |                | 2000                |
| 25 mm | M24            | 2000                |
| 28 mm |                | 1000                |
| 32 mm |                | 1000                |

#### Table B3: Base material temperature, gelling time and curing time

| Concrete temperature |    | perature | Gelling<br>working time <sup>1)</sup> | Minimum curing time<br>in dry concrete | Minimum curing time<br>in wet concrete |
|----------------------|----|----------|---------------------------------------|----------------------------------------|----------------------------------------|
| -10°C                | to | -6°C     | 90 min <sup>2)</sup>                  | 24 h                                   | 48 h                                   |
| - 5 °C               | to | - 1 °C   | 90 min <sup>3)</sup>                  | 14 h                                   | 28 h                                   |
| 0 °C                 | to | + 4 °C   | 45 min <sup>3)</sup>                  | 7 h                                    | 14 h                                   |
| + 5 °C               | to | + 9 °C   | 25 min <sup>3)</sup>                  | 2 h                                    | 4 h                                    |
| + 10 °C              | to | + 19 °C  | 15 min <sup>3)</sup>                  | 80 min                                 | 160 min                                |
| + 20 °C              | to | + 24 °C  | 6 min <sup>3)</sup>                   | 45 min                                 | 90 min                                 |
| + 25 °C              | to | + 29 °C  | 4 min <sup>3)</sup>                   | 25 min                                 | 50 min                                 |
| + 30 °C              | to | + 40 °C  | 2,5 min <sup>4)</sup>                 | 15 min                                 | 30 min                                 |

<sup>1)</sup>  $t_{gel}$ : maximum time from starting of mortar injection to completing of rebar setting. <sup>2)</sup> Cartridge temperature <u>must</u> be at minimum +15°C <sup>3)</sup> Cartridge temperature <u>must</u> be between +5°C and +25°C

4) Cartridge temperature must be below +20°C

#### ESSVE Injection system ONE for rebar connection

## Intended use

Minimum concrete cover Maximum embedment depth / working time and curing times Annex B 4

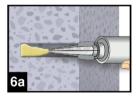


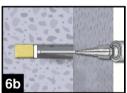
| Cartridge<br>type/size                              | Hand tool            |                          | Pneumatic tool      |
|-----------------------------------------------------|----------------------|--------------------------|---------------------|
| Coaxial cartridges<br>150, 280,<br>300 up to 333 ml |                      |                          |                     |
|                                                     | e.g. Type H          | 297 or H244C             | e.g. Type TS 492 X  |
| Coaxial cartridges<br>380 up to 420 ml              |                      | R                        | <b></b>             |
|                                                     | e.g. Type CCM 380/10 | e.g. Type H 285 or H244C | e.g. Type TS 485 LX |
| Side-by-side<br>cartridges<br>235, 345 ml           |                      | R                        |                     |
|                                                     | e.g. Type CBM 330A   | e.g. Type H 260          | e.g. Type TS 477 LX |
| Side-by-side<br>cartridge<br>825 ml                 | -                    | -                        |                     |
|                                                     |                      |                          | e.g. Type TS 498X   |

All cartridges could also be extruded by a battery tool.

| ESSVE Injection system ONE for rebar connection |           |
|-------------------------------------------------|-----------|
| Intended Use<br>Dispensing tools                | Annex B 5 |




| A) Bore hole           | e drilling                                                                                                                                               |                      |                |                 |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-----------------|
|                        | 1. Drill a hole into the base material to<br>selected reinforcing bar with carbic<br>(CD). In case of aborted drill hole:                                | de hammer drill (HD  | ) or a compre  | essed air drill |
|                        |                                                                                                                                                          | Rebar - φ            | ZΑ- φ          | Drill - Ø [mm]  |
| 1                      |                                                                                                                                                          | 8 mm                 | · · ·          | 12              |
| -                      |                                                                                                                                                          | 10 mm                |                | 14              |
| Addition of the second |                                                                                                                                                          | 12 mm                | M12            | 16              |
|                        |                                                                                                                                                          | 14 mm                |                | 18              |
|                        |                                                                                                                                                          | 16 mm                | M16            | 20              |
|                        |                                                                                                                                                          | 20 mm                | M20            | 25              |
|                        |                                                                                                                                                          | 22 mm                |                | 28              |
|                        | ,                                                                                                                                                        | 24 mm                |                | 32              |
| Hammer drill (I        | HD) Compressed air drill (CD)                                                                                                                            | 25 mm                | M24            | 32              |
| Hollow drill (H        |                                                                                                                                                          | 28 mm                |                | 35              |
|                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                  | 32 mm                |                | 40              |
| B) Bore hole           | cleaning (HD, HDB and CD)                                                                                                                                |                      |                |                 |
| -                      | bore hole diameter $d_0 \le 20$ mm and bore h                                                                                                            | nole depth h₀ ≤ 10c  | s              |                 |
|                        | 2a. Starting from the bottom or back of the                                                                                                              | • •                  | -              |                 |
| 2a 4x                  | (Annex B 7) a minimum of four times.                                                                                                                     |                      |                |                 |
| 2b 4×                  | 2b. Check brush diameter (Table B5). Bru<br>d <sub>b,min</sub> (Table B5) a minimum of four tir<br>If the bore hole ground is not reacher                | mes in a twisting mo | otion.         |                 |
| 2c 4x                  | 2c. Finally blow the hole clean again with times.                                                                                                        | a hand pump (Ann     | ex B 7) a mir  | nimum of four   |
| CAC: Cleaning for      | all bore hole diameter and bore hole dep                                                                                                                 | th                   |                |                 |
| 2a 4x                  | 2a. Starting from the bottom or back of th compressed air (min. 6 bar) (Annex E stream is free of noticeable dust. If th extension shall be used.        | 3 7) a minimum of fo | our times unti | l return air    |
| 2b 4×                  | 2b. Check brush diameter (Table B5). Bru<br>d <sub>b,min</sub> (Table B5) a minimum of four tir<br>If the bore hole ground is not reached<br>(Table B5). | nes.                 |                |                 |
| 2c 4x                  | 2c. Finally blow the hole clean again with minimum of four times until return air ground is not reached an extension s                                   | stream is free of no |                |                 |
| ESSVE Injection s      | stem ONE for rebar connection                                                                                                                            |                      |                |                 |
|                        |                                                                                                                                                          |                      |                |                 |




| Table B5<br>Brush RE | 5: Cleanin<br>3T:                                                                                                                                                                                                                                                                                                                                    | g tools<br>L        |                           |                         |                                         | SDS Plus Ac                                    | dapter:                                                                                         |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|-------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| L⊡<br>Brush e        | extension:                                                                                                                                                                                                                                                                                                                                           |                     |                           |                         | <b>d</b> d                              | b                                              |                                                                                                 |  |
| φ<br>Rebar           | φ<br>Tension<br>anchor                                                                                                                                                                                                                                                                                                                               | d₀<br>Drill bit - Ø |                           | l₀<br>h - Ø             | d <sub>b,min</sub><br>min.<br>Brush - Ø |                                                |                                                                                                 |  |
| (mm)                 | (mm)                                                                                                                                                                                                                                                                                                                                                 | (mm)                |                           | (mm)                    |                                         |                                                |                                                                                                 |  |
| 8                    |                                                                                                                                                                                                                                                                                                                                                      | 12                  | RBT12                     | 14                      | 12,5                                    | Hand                                           | pump (volume 750 ml)                                                                            |  |
| 10                   |                                                                                                                                                                                                                                                                                                                                                      | 14                  | RBT14                     | 16                      | 14,5                                    | Папа                                           | pump (volume 750 m)                                                                             |  |
| 12                   | M12                                                                                                                                                                                                                                                                                                                                                  | 16                  | RBT16                     | 18                      | 16,5                                    |                                                |                                                                                                 |  |
| 14                   |                                                                                                                                                                                                                                                                                                                                                      | 18                  | RBT18                     | 20                      | 18,5                                    |                                                |                                                                                                 |  |
| 16                   | M16                                                                                                                                                                                                                                                                                                                                                  | 20                  | RBT20                     | 22                      | 20,5                                    | *****                                          |                                                                                                 |  |
| 20                   | M20                                                                                                                                                                                                                                                                                                                                                  | 25                  | RBT25                     | 27                      | 25,5                                    |                                                |                                                                                                 |  |
| 22                   |                                                                                                                                                                                                                                                                                                                                                      | 28                  | RBT28                     | 30                      | 28,5                                    |                                                |                                                                                                 |  |
| 24                   | N04                                                                                                                                                                                                                                                                                                                                                  | 32                  | RBT32                     | 34                      | 32,5                                    |                                                |                                                                                                 |  |
| 25                   | M24                                                                                                                                                                                                                                                                                                                                                  | 32                  | RBT32                     | 34<br>37                | 32,5                                    | Bee e                                          | omproceed six tool                                                                              |  |
| 28<br>32             |                                                                                                                                                                                                                                                                                                                                                      | 35<br>40            | RBT35<br>RBT40            | 41,5                    | 35,5<br>40,5                            |                                                | ompressed air tool<br>slide valve (min 6 bar)                                                   |  |
|                      | <ul> <li>C) Preparation of bar and cartridge</li> <li>3. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.<br/>For every working interruption longer than the recommended working time (Table B3) as well as for every new cartridges, a new static-mixer shall be used.</li> </ul> |                     |                           |                         |                                         |                                                |                                                                                                 |  |
| 4                    |                                                                                                                                                                                                                                                                                                                                                      | embed<br>bar in e   | ment dept<br>empty hole   | h shall be<br>to verify | e marked (e.g<br>hole and de            | g. with tape) c<br>pth <b>l</b> <sub>v</sub> . | re hole, the position of the<br>on the reinforcing bar and insert<br>or other foreign material. |  |
| 5                    | min. 3 full<br>stroke                                                                                                                                                                                                                                                                                                                                | shows<br>uniform    | a consiste<br>Ily mixed a | adhesive                |                                         | ninimum of th                                  | It separately the mortar until it<br>iree full strokes, and discard non-                        |  |
| Intended I           | Use                                                                                                                                                                                                                                                                                                                                                  | Cleaning tools      |                           | nection                 |                                         |                                                | Annex B 7                                                                                       |  |



#### D) Filling the bore hole



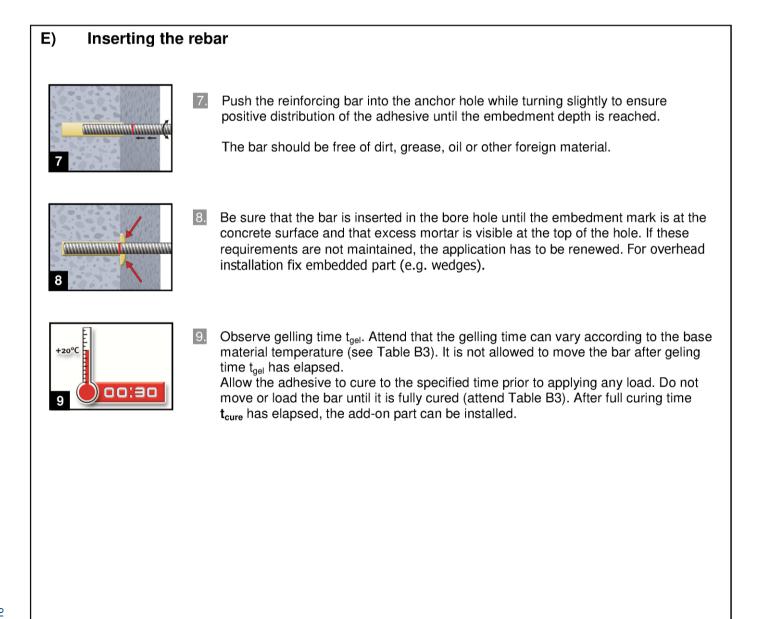


6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.

For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.

#### Table B6: Piston plugs, max anchorage depth and mixer extension


|                                                                                                                                               | Tension     | bit - Ø Piston |         |                | Cartr<br>All s            | Cartridge:<br>side-by-side (825 ml) |                |                           |                    |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------|----------------|---------------------------|-------------------------------------|----------------|---------------------------|--------------------|--------------------|
| Bar size                                                                                                                                      | anchor      |                |         | Piston<br>plug | Hand or b                 | attery tool                         | Pneumatic tool |                           | Pneumatic tool     |                    |
| ф                                                                                                                                             | φ           | HD,<br>HDB     | CD      | plug           | I <sub>v,max</sub>        | Mixer<br>extension                  | $I_{v,max}$    | Mixer<br>extension        | I <sub>v,max</sub> | Mixer<br>extension |
| [mm]                                                                                                                                          | [mm]        | [m             | m]      |                | [cm]                      |                                     | [cm]           |                           | [cm]               |                    |
| 8                                                                                                                                             |             | 12             | -       | -              |                           |                                     | 80             |                           | 80                 |                    |
| 10                                                                                                                                            |             | 14             | VS14    | VS14           |                           |                                     | 100            |                           | 100                | VL 10/0,75         |
| 12                                                                                                                                            | M12         | 1              | 6       | VS16           | 70                        |                                     |                |                           | 120                |                    |
| 14                                                                                                                                            |             | 1              | 8       | VS18           |                           |                                     |                | VL 10/0,75                | 140                |                    |
| 16                                                                                                                                            | M16         | 2              | 20      | VS20           |                           |                                     |                |                           | 160                |                    |
| 20                                                                                                                                            | M20         | 25             | VS25    | VS25           |                           | VL 10/0,75                          | 70             |                           | 200 VL 16          |                    |
| 22                                                                                                                                            |             | 2              | .8      | VS28           |                           |                                     |                |                           |                    |                    |
| 24                                                                                                                                            |             | З              | 2       | VS32           | 50                        |                                     | 50             |                           |                    |                    |
| 25                                                                                                                                            | M24         | 3              | 2       | VS32           | 50                        |                                     |                |                           |                    |                    |
| 28                                                                                                                                            |             | 3              | 5       | VS35           |                           |                                     |                |                           | 200                |                    |
| 32                                                                                                                                            |             | 4              | 0       | VS40           |                           |                                     |                |                           | 200                |                    |
| level mark                                                                                                                                    |             |                |         |                |                           |                                     |                |                           |                    |                    |
|                                                                                                                                               |             |                |         |                | $\ell_{ m V},\ell_{ m e}$ | ,ges                                |                |                           |                    |                    |
| Iniec                                                                                                                                         | tion tool n | nust be        | e marke | ed by mo       | rtar level ma             | ark $\ell_m$ and anc                | horage dept    | h $l_v$ resp. $l_{e,ges}$ | with tape or       | marker.            |
| -                                                                                                                                             |             |                |         | -              |                           |                                     | 0              |                           |                    |                    |
| Quick estimation: $\ell_m = 1/3 \cdot \ell_v$<br>Continue injection until the mortar level mark $\ell_m$ becomes visible.                     |             |                |         |                |                           |                                     |                |                           |                    |                    |
|                                                                                                                                               | -           |                |         |                |                           | 1                                   | `              |                           |                    |                    |
| Optimum mortar volume: $\ell_m = \ell_v \text{ resp. } \ell_{e,ges} \cdot \left( 1, 2 \cdot \frac{\Phi^2}{d_0^2} - 0, 2 \right) \text{ [mm]}$ |             |                |         |                |                           |                                     |                |                           |                    |                    |
| ESSVE                                                                                                                                         | Injection   | syste          | m ONE   | for reb        | ar connecti               | on                                  |                |                           |                    |                    |
|                                                                                                                                               |             |                |         |                |                           |                                     |                |                           |                    |                    |
| Intended Use                                                                                                                                  |             |                |         |                |                           |                                     |                |                           | Annex B            | 8                  |

Installation instruction: Filling the bore hole

# Page 18 of European Technical Assessment ETA-18/0616 of 12 July 2018

English translation prepared by DIBt

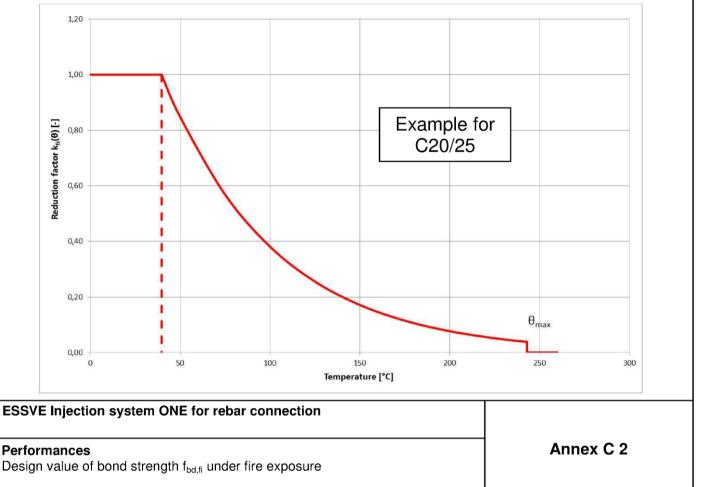




#### ESSVE Injection system ONE for rebar connection

Intended Use Installation instruction: Inserting rebar Annex B 9




#### Minimum anchorage length and minimum lap length The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 (*l*<sub>b,min</sub> acc. to Eq. 8.6 and Eq. 8.7 and *l*<sub>0,min</sub> acc. to Eq. 8.11) shall be multiply by the amplification factor $\alpha_{lb}$ according to Table C1. Table C1: Amplification factor α<sub>lb</sub> related to concrete class and drilling method **Concrete class Drilling method** Bar size Amplification factor α<sub>lb</sub> Hammer drilling (HD), hollow 8 mm to 32 mm C12/15 to C50/60 drilling (HDB) and 1,0 ZA-M12 to ZA-M24 compressed air drilling (CD) Table C2: Reduction factor k<sub>b</sub> for all drilling methods Rebar - Ø Concrete class C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 φ 8 to 25 mm 1,0 ZA-M12 to ZA-M24 28 to 32 mm 1,0 0,92 0,86 Table C3: Design values of the ultimate bond stress f<sub>bd.PIR</sub> in N/mm<sup>2</sup> for all drilling methods and for good conditions $\mathbf{f}_{bd,PIR} = \mathbf{k}_b \cdot \mathbf{f}_{bd}$ with $f_{bd}$ : Design value of the ultimate bond stress in N/mm<sup>2</sup> considering the concrete classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010. (for all other bond conditions multiply the values by 0.7) k<sub>b</sub>: Reduction factor according to Table C2 Rebar - Ø Concrete class C12/15 C16/20 C20/25 C25/30 C30/37 C50/60 φ C35/45 C40/50 C45/55 8 to 25 mm 1.6 2.0 2.3 2.7 3.0 3.4 3.7 4.0 4.3 ZA-M12 to ZA-M24 28 to 32 mm 2,0 2,3 3,0 1,6 2,7 3,4 3,7 3,7 3,7 ESSVE Injection system ONE for rebar connection Performances



#### Design value of the ultimate bond stress fbd,fi under fire exposure for concrete classes C12/15 to C50/60, (all drilling methods): The design value of the bond strength f<sub>bd,fi</sub> under fire exposure has to be calculated by the following equation: $\mathbf{f}_{bd,fi} = \mathbf{k}_{fi}(\mathbf{\theta}) \cdot \mathbf{f}_{bd,PIR} \cdot \mathbf{\gamma}_{c} / \mathbf{\gamma}_{M,fi}$ $k_{fi}(\theta) = 18,88 \cdot e^{(\theta \cdot \cdot 0,016)} / (f_{bd,PIR} \cdot 4,3) \leq 1,0$ θ ≤ 243°C: with: $\theta > 243^{\circ}C$ : $k_{fi}(\theta) = 0$ Design value of the ultimate bond stress in case of fire in N/mm<sup>2</sup> f<sub>bd,fi</sub> θ Temperature in °C in the mortar layer. k<sub>fi</sub>(θ) Reduction factor under fire exposure. Design value of the ultimate bond stress in N/mm<sup>2</sup> in cold condition according to Table C3 f<sub>bd,PIR</sub> considering the concrete classes, the rebar diameter and the bond conditions according to EN 1992-1-1:2004+AC:2010. partially safety factor according to EN 1992-1-1:2004+AC:2010 $\gamma_{\rm c}$ partially safety factor according to EN 1992-1-2:2004+AC:2008 ΥM,fi

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress  $f_{bd,fi}$ .

# Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:





| Table C4:                        | Characteristic tension strength for tension anchor ZA under fire exposure, |                                       |                 |                 |                   |                    |     |  |
|----------------------------------|----------------------------------------------------------------------------|---------------------------------------|-----------------|-----------------|-------------------|--------------------|-----|--|
|                                  | concrete cl                                                                | asses C12/                            | 15 to C50/60, a | according to Te | echnical Report T | <sup>-</sup> R 020 |     |  |
| Tension Anch                     | or                                                                         |                                       |                 | M12             | M16               | M20                | M24 |  |
| Steel, zinc plat                 | ed (ZA vz)                                                                 |                                       |                 |                 |                   |                    |     |  |
| Characteristic<br>steel strength | R30                                                                        | $\sigma_{Rk,s,fi}$                    |                 | 20              |                   |                    |     |  |
|                                  | R60                                                                        |                                       | [N1/mm2]        | 15              |                   |                    |     |  |
|                                  | R90                                                                        |                                       | [N/mm²]         | 13              |                   |                    |     |  |
|                                  | R120                                                                       |                                       |                 |                 | 1                 | 0                  |     |  |
| Stainless Steel                  | (ZA A4 or Z                                                                | A HCR)                                |                 |                 |                   |                    |     |  |
| Characteristic<br>steel strength | R30                                                                        |                                       |                 |                 | 3                 | 0                  |     |  |
|                                  | R60                                                                        |                                       | [NI/mm2]        | 25              |                   |                    |     |  |
|                                  | R90                                                                        | $\sigma_{\scriptscriptstyle Rk,s,fi}$ | [N/mm²] —       | 20              |                   |                    |     |  |
|                                  | R120                                                                       |                                       |                 |                 | 1                 | 6                  |     |  |

## Design value of the steel strength $\sigma_{\mbox{\tiny Rd},\mbox{\tiny s,fi}}$ under fire exposure

The design value of the steel strength  $\sigma_{\rm Rd,s,fi}$  under fire exposure has to be calculated by the following equation:

 $\sigma_{\rm Rd,s,fi} = \sigma_{\rm Rk,s,fi} \ / \ \gamma_{\rm M,fi}$ 

with:

| $\sigma_{Rk,s,fi}$ | characteristic steel strength according to Table C4           |
|--------------------|---------------------------------------------------------------|
| ŶM,fi              | partially safety factor according to EN 1992-1-2:2004+AC:2008 |

| ESSVE Injection system ONE for rebar connection                                                     |           |  |
|-----------------------------------------------------------------------------------------------------|-----------|--|
| Performances                                                                                        | Annex C 3 |  |
| Design value of the steel strength $\sigma_{\rm Rd,s,fi}$ for tension anchor ZA under fire exposure |           |  |