

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0702 of 4 September 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Deutsches Institut für Bautechnik

beko Injection mortar for concrete

Bonded fastener for use in concrete

beko GmbH Rappenfeldstraße 5 86653 Monheim DEUTSCHLAND

Beko Plant 1 Germany

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of 25 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0702

Page 2 of 25 | 4 September 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 4 September 2018

Specific Part

1 Technical description of the product

The "beko injection mortar for concrete" is a bonded anchor consisting of a cartridge with injection mortar beko Injektionsmörtel and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

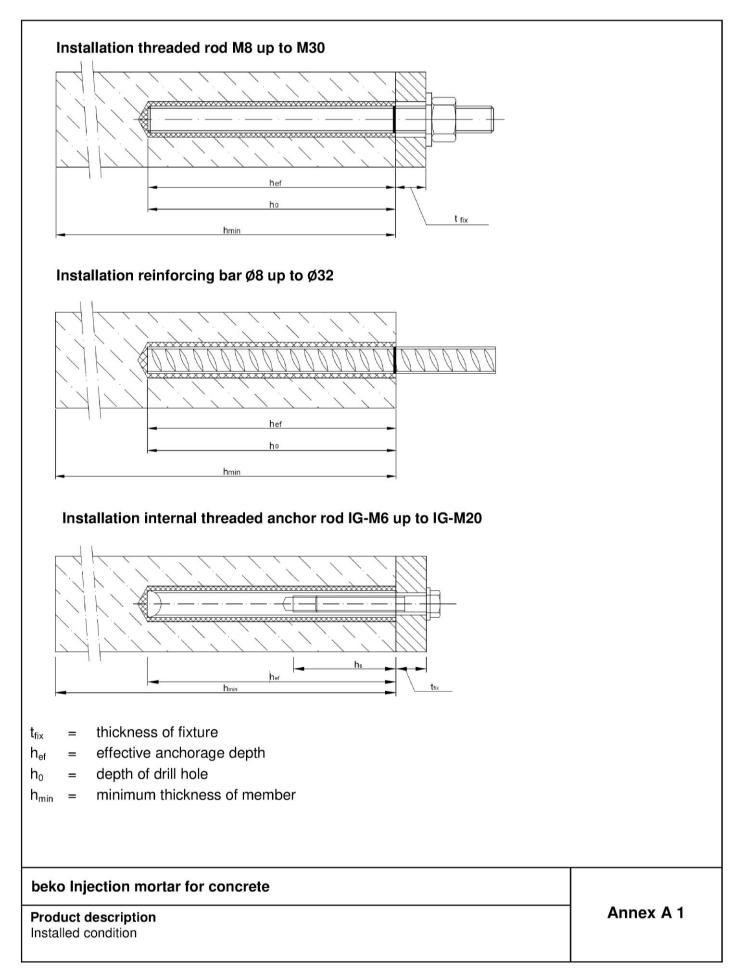
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

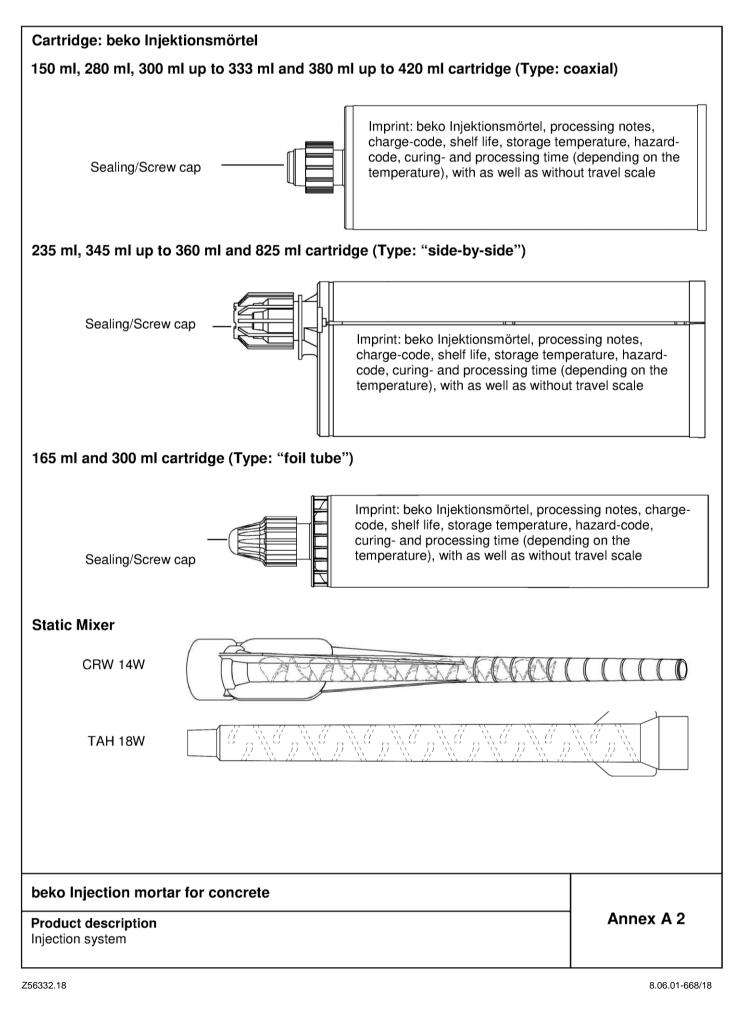
The system to be applied is: 1

European Technical Assessment ETA-18/0702 English translation prepared by DIBt

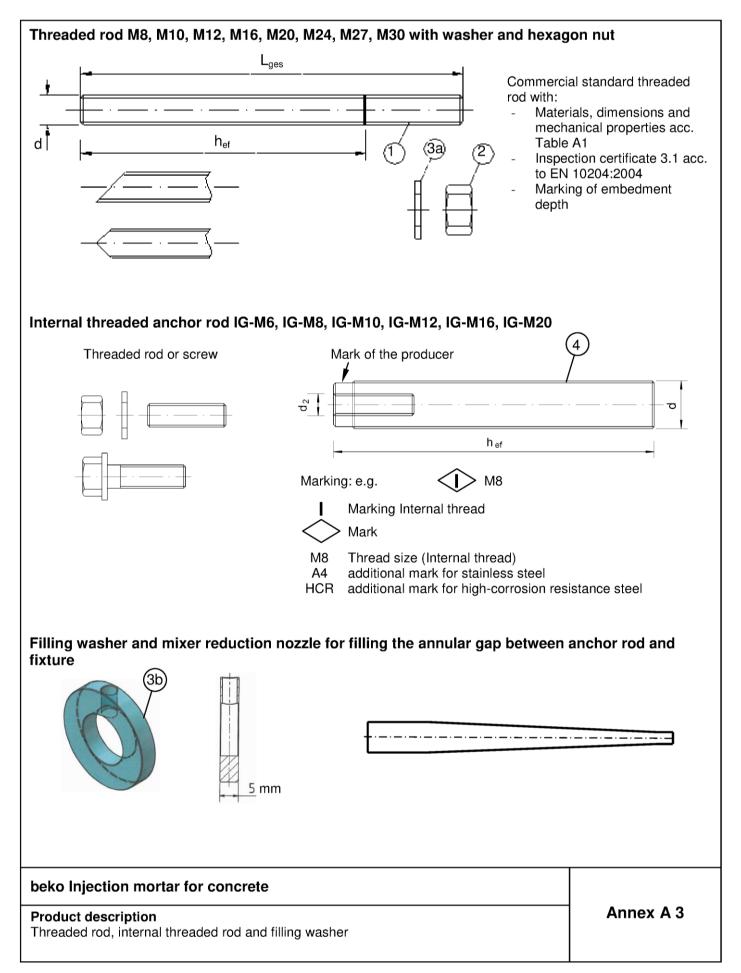
Page 4 of 25 | 4 September 2018


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 4 September 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider



	Designation	Material		
tee	I, zinc plated (Steel acc. to EN 10		3:2001)	
inc	plated \geq 5 µm acc. to EN ISO 4042:	1999 odr hot-dip galvan	ised ≥ .	40 µm acc. to EN ISO 1461:2009 and
N	SO 10684:2004+AC:2009 or sherar	dized ≥ 40 µm acc. to E	N ISO '	
			4.6	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; A_5 > 8% fracture elongation
		Property class	4.8	$f_{uk}{=}400$ N/mm²; $f_{yk}{=}320$ N/mm²; $A_5>8\%$ fracture elongation
1	Anchor rod	acc. to	5.6	f_{uk} =500 N/mm ² ; f_{yk} =300 N/mm ² ; A_5 > 8% fracture elongation
		EN ISO 898-1:2013	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; $A_5 > 8\%$ fracture elongation
			8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; A_5 > 8% fracture elongation
		Property class	4	for anchor rod class 4.6 or 4.8
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8
		EN ISO 898-2:2012	8	for anchor rod class 8.8
	Washer,		-	
3a	(z.B.: EN ISO 887:2006, EN ISO 7089:2000,	Steel zinc plated hot-	din dal	vanised or sherardized
	EN ISO 7093:2000 oder EN ISO 7094:2000)		up gar	
3b	Filling washer	Droporty close		
4	Internal threaded anchor rod	Property class acc. to	5.8	f_{uk} =500 N/mm ² ; f_{yk} =400 N/mm ² ; A_5 > 8% fracture elongation
•		EN ISO 898-1:2013	8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; A_5 > 8% fracture elongat
tai	nless steel A2 (Material 1.4301 / 1		oder 1	.4541, acc. to EN 10088-1:2014)
nd				,
tai	nless steel A4 (Material 1.4401 / 1	.4404 / 1.4571 / 1.4362	or 1.45	578, acc. to EN 10088-1:2014)
		Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; A_5 > 8% fracture elongation
1 Ancho	Anchor rod ¹⁾³⁾	acc. to	70	f_{uk} =700 N/mm ² ; f_{yk} =450 N/mm ² ; A_5 > 8% fracture elongation
		EN ISO 3506-1:2009	80	f_{uk} =800 N/mm ² ; f_{yk} =600 N/mm ² ; A_5 > 8% fracture elongation
	Hexagon nut ¹⁾³⁾	Property class	50	for anchor rod class 50
2		acc. to	70	for anchor rod class 70
		EN ISO 3506-1:2009		
	Washer		80	for anchor rod class 80
	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾	A2: Material 1.4301 / 1	.4303	for anchor rod class 80 / 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014
3b	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class	.4303	/ 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014
3b	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to	.4303 / .4404 / 50	/ 1.4307 / 1.4567 or 1.4541, EN 10088-1:2014 / 1.4571 / 1.4362 or 1.4578, EN 10088-1:2014 f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; A_5 > 8% fracture elongati
3b 4	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009	.4303 / .4404 / <u>50</u> 70	
3b 4	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a	.4303 / .4404 / <u>50</u> 70 acc. to	$ f_{1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088-1:2014 \\ 1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088-1:2014 \\ f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongat } \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5 > 8\% \text{ fracture elongat } \\ EN 10088-1: 2014) $
3b 4 igl	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class	.4303 / .4404 / 50 70 acc. to 50	$ f_{1.4307} / 1.4567 \text{ or } 1.4541, \text{ EN } 10088-1:2014 \\ $
3b 4	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to	.4303 / .4404 / <u>50</u> 70 acc. to <u>50</u> 70	
3b 4 igl	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009	1.4303 / .4404 / 70 acc. to <u>50</u> 70 80	
3b 4 igl	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class	1.4303 / .4404 / 70 acc. to 50 70 80 50	
3b 4 igl	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to	1.4303 / 1.4404 / 70 acc. to 50 70 80 50 70	
3b 4 igl	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class	1.4303 / .4404 / 70 acc. to 50 70 80 50	
3b 4 igl 1 2	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	1.4303 1.4404 50 70 acc. to 50 70 80 50 70 80	
3b 4 igl 1 2 3a	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009	1.4303 1.4404 50 70 acc. to 50 70 80 50 70 80	
3b 4 igl 1 2 3a	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4	1.4303 / 1.4404 / 50 70 acc. to 50 70 80 50 70 80 565, ac	
3b 4 1 1 3a 3b	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class	1.4303 1.4404 50 70 acc. to 50 70 80 50 70 80	
3b 4 igl 1 2 3a 3b	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 rrial 1.4529 or 1.4565, a Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class acc. to	1.4303 / 1.4404 / 50 70 acc. to 50 70 80 50 70 80 565, ac	
3b 4 igh 1 2 3a 3b 4	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, 3 Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4	1.4303 / 1.4404 / 70 acc. to 50 70 80 50 70 80 565, ac 50 70 80	
1 1 2 3a 3b 4 1) 2) 3) 4)	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ A corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer Internal threaded anchor rod ^{1) 2)} Property class 70 for anchor rods up to I for IG-M20 only property class 50 Property class 80 only for stainless steel Filling washer only with stainless steel A	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, 1 Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 A4	1.4303 / 1.4404 / 70 acc. to 50 70 80 50 70 80 565, ac 50 70 80	
3b 4 1 1 2 3a 3b 4 1) 2) 3) 4)	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾ Internal threaded anchor rod ¹⁾²⁾ Corrosion resistance steel (Mate Anchor rod ¹⁾ Hexagon nut ¹⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7089:2000, Filling washer Internal threaded anchor rod ^{1) 2)} Property class 70 for anchor rods up to f for IG-M20 only property class 50 Property class 80 only for stainless steel	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 erial 1.4529 or 1.4565, 1 Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 Property class acc. to EN ISO 3506-1:2009 Material 1.4529 or 1.4 A4	1.4303 / 1.4404 / 70 acc. to 50 70 80 50 70 80 565, ac 50 70 80	

Reir	nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 10	6, Ø 20, Ø 25, Ø 28, Ø 32	
.	h _{ef}	1	
┥┫	· 'gi	•	
	 Minimum value of related rip area f_{R,min} ac Rib height of the bar shall be in the range (d: Nominal diameter of the bar; h: Rip hei 	0,05d ≤ h ≤ 0,07d	
Tab	le A2: Materials		
Part	Designation	Material	
Reinf	orcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA
bek	o Injection mortar for concrete		
	luct description		Annex A 5
Mate	rials reinforcing bar		

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- · Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to:
 FprEN 1992-4:2017 and Technical Report TR055

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

beko Injection mortar for concrete

Intended Use Specifications

Anchor size				M	8 М	10 1	VI 12	M	16	M 20	M 24	4	M 27	M 30
Outer diameter of anchor		d _{nom} [mm] =	8	1	0	12		16	20	24		27	30
Nominal drill hole diameter		d₀ [mm] =	10) 1	2	14	·	18	24	28		32	35
Effective and advant depth		h _{ef,min} [mm] =	60) 6	0	70	8	80	90	96		108	120
Effective embedment depth		h _{ef,max} [mm] =		16	0 20	0	240	3	20	400	480)	540	600
Diameter of clearance hole in the fixture		d _f [mm]≤	9	1	2	14		18	22	26		30	33
Diameter of steel brush		d _b [mm]≥	12	2 1	4	16	2	20	26	30		34	37
Maximum torque moment		T _{inst} [Nm]≤	10) 2	0	40	8	80	120	160)	180	200
Minimum thickness of memb	er	h _{min} [m	m]	h _{ef} -	+ 30 mm	i ≥ 100) mm			r	n _{ef} + 2	$2d_0$		
Minimum spacing		s _{min} [m	m]	40) 5	0	60	8	80	100	120)	135	150
Minimum edge distance		c _{min} [m	m]	40) 5	0	60	8	80	100	120)	135	150
Rebar size	4	[mm]	Ø		Ø 10	Ø 12	Ø		Ø 16	Ø 20	Ø		Ø 28	
Outer diameter of anchor	d	nom [mm] =	8	3	10	12	14	ł	16	20	2	5	28	32
Nominal drill hole diameter		$d_0 [mm] =$	1:	2	14	16	18	3	20	24	3	2	35	40
Effective embedment depth -	h _{ef,}	_{.min} [mm] =	6	0	60	70	75	5	80	90	10	00	112	128
	h _{ef,r}	_{max} [mm] =	16	50	200	240	28	0	320	400	50	00	580	640
Diameter of steel brush		d _b [mm] ≥	14		16	18	20)	22	26	3	4	37	41,5
Minimum thickness of member		h _{min} [mm]	≥	100	0 mm mm					h _{ef} + 2d				
Minimum spacing		s _{min} [mm]	4	_	50	60	70		80	100	12		140	160
Minimum edge distance		c _{min} [mm]	4	0	50	60	70)	80	100	12	25	140	160
Table B3: Installation	-	arameters	s fo	r in	ternal	threa	ded	and	chor r	od				
Size internal threaded anchor	rod				IG-M 6	_	M 8	IG	-M 10	IG-M 1	12		/ 16	IG-M 20
Internal diameter of anchor			mm		6	_	8		10	12		1		20
Outer diameter of anchor ¹⁾		d _{nom} [10	_	2		16	20		2		30
Nominal drill hole diameter		a_ h _{ef,min} [mm		<u>12</u> 60	_	4 70		18 80	22 90		2 9		<u> </u>
Effective embedment depth		h _{ef,max} [200	_	40		320	400		48		600
Diameter of clearance hole in the fixture			mm		7	_	9		12	14		1		22
Maximum torque moment		T _{inst}	[Nm]]≤	10	1	0		20	40		6	0	100
Thread engagement length min/max			mm		8/20		20	1	0/25	12/30	D	16/	/32	20/40
Minimum thickness of memb	er		_n [m		≥ 1	30 mr 00 mm					n _{ef} + 2			
		<u> </u>	[m]	m1	50	6	20	I	00	100		12	20 L	150
Minimum spacing Minimum edge distance			<u>n [m</u> n [m		50	_	50 50	<u> </u>	80 80	100		12		150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

beko Injection mortar for concrete

Intended Use Installation parameters

	111111111111111111		d ₀ Drill bit - Ø HD, HDB, CA	- Constant and the second second									
Threaded Rod	Rebar	Internal threaded Anchor rod		d Brusl	-	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and of piston plug					
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		↓		1			
M8			10	RBT10	12	10,5							
M10	8	IG-M6	12	RBT12	14	12,5	1.	Ne states		al			
M12	10	IG-M8	14	RBT14	16	14,5	1	NO PISTON P	olug require	d			
	12		16	RBT16	18	16,5							
M16	14	IG-M10	18	RBT18	20	18,5	VS18						
	16		20	RBT20	22	20,5	VS20	1					
M20	20	IG-M12	24	RBT24	26	24,5	VS24	1	h .				
M24		IG-M16	28	RBT28	30	28,5	VS28	h _{ef} >	h _{ef} >	all			
M27	25		32	RBT32	34	32,5	VS32	- 250 mm	250 mm				
	25												
M30	28	IG-M20	35	RBT35	37	35,5	VS35						
		IG-M20	35 40	RBT35 RBT40		35,5 40,5	VS35 VS40	-					
M30 MAC - Ha Drill bit dia Drill hole c	28 32	(volume 75 10 mm to 20 10 d _{nom}	40		41,5		VS40		(min 6 ba	r)			

Intended Use Cleaning and setting tools

Installation instr	uctions								
Drilling of the bore	hole								
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hamm or compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mort	her (HD), hollow (HDB) y in combination with a							
Attention! Standing water in the bore hole must be removed before cleaning.									
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)									
4x	2a. Starting from the bottom or back of the bore hole, blow the hole c (Annex B 3) a minimum of four times.	lean by a hand pump ¹⁾							
 2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension mutation. 									
	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four times.							
4x	¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment de up to 10d _{nom} also in cracked concrete with hand-pump.								
CAC: Cleaning for a	Il bore hole diameter in uncracked and cracked concrete								
4x	2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.								
<u>*******</u> ***	 Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used. 								
Ax	2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hor ground is not reached an extension must be used.								
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,							
beko Injection mo	ortar for concrete								
Intended Use Installation instruction	กร	Annex B 4							

Installation inst	ructions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	-
her	Prior to inserting the anchor rod into the filled bore hole, the positic depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour. For foil tube cartridges it must be discarded strokes.	il the mortar shows a
	6 Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static in hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe t given in Annex B 6.	nixing nozzle as the nchor hole is not
	 ✓ Piston plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 50mm
	Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de The anchor shall be free of dirt, grease, oil or other foreign material	pth is reached.
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fix	ned, the application has
+20°C	10. Allow the adhesive to cure to the specified time prior to applying an not move or load the anchor until it is fully cured (attend Annex B 6	
	11. After full curing, the add-on part can be installed with up to the max (Table B1 or B3) by using a calibrated torque wrench. It can be op gap between anchor and fixture with mortar. Therefor substitute th washer and connect the mixer reduction nozzle to the tip of the mix filled with mortar, when mortar oozes out of the washer.	tional filled the annular e washer by the filling
beko Injection m	ortar for concrete	
Intended Use	ons (continuation)	Annex B 5

Table B5:	Table B5: Maximum working time and minimum curing time beko Injektionsmörtel										
Concrete	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete ¹⁾							
0 °C	to	+4°C	45 min	7 h							
+5 °C	to	+9°C	25 min	2 h							
+ 10 °C	to	+19°C	15 min	80 min							
+ 20 °C	to	+29°C	6 min	45 min							
+ 30 °C	to	+34°C	4 min	25 min							
+ 35 °C	to	+39°C	2 min	20 min							
+	40 °C	C	1,5 min	15 min							
Cartridge	e temp	perature	+5°C to	+40°C							

¹⁾ In wet concrete the curing time must be doubled.

beko Injection mortar for concrete

Intended Use Curing time

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods Size M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Cross section area [mm²] 36,6 58 84,3 157 245 353 459 561 A_s Characteristic tension resistance, Steel failure 1) Steel, Property class 4.6 and 4.8 N_{Rk,s} [kN] 15 (13) 23 (21) 34 63 98 141 184 224 122 Steel, Property class 5.6 and 5.8 N_{Rk,s} [kN] 18 (17) 29 (27) 42 78 176 230 280 Steel, Property class 8.8 N_{Rk,s} [kN] 29 (27) 46 (43) 67 125 196 282 368 449 Stainless steel A2, A4 and HCR, Property class 50 29 79 123 177 230 281 N_{Rk.s} [kN] 18 42 N_{Rk,s} [kN] Stainless steel A2, A4 and HCR, Property class 70 26 41 59 110 171 247 _ _ Stainless steel A4 and HCR, Property class 80 [kN] 29 46 67 126 196 282 $N_{Rk,s}$ _ Characteristic tension resistance, Partial factor²⁾ Steel, Property class 4.6 [-] 2.0 γMs.V Steel, Property class 4.8 1,5 [-] γMs,V Steel, Property class 5.6 [-] 2,0 γMs,V Steel, Property class 5.8 [-] 1,5 γMs,V Steel, Property class 8.8 [-] 1,5 γMs.V Stainless steel A2, A4 and HCR, Property class 50 2.86 [-] γMs.V Stainless steel A2, A4 and HCR, Property class 70 1.87 [-] γMs.V Stainless steel A4 and HCR, Property class 80 γMs,V [-] 1,6 Characteristic shear resistance, Steel failure 1) Steel, Property class 4.6 and 4.8 V⁰_{Rk.s} [kN] 9 (8) 14 (13) 20 38 59 85 110 135 V⁰_{Rk,s} arm Steel, Property class 5.6 and 5.8 [kN] 9 (8) 15 (13) 39 61 88 115 140 21 lever Steel, Property class 8.8 V⁰_{Rk,s} 15 (13) 23 (21) 63 98 141 184 224 [kN] 34 Stainless steel A2, A4 and HCR, Property class 50 V⁰_{Rk,s} [kN] 9 15 21 39 61 88 115 140 Without Stainless steel A2, A4 and HCR, Property class 70 $V^0_{Rk,s}$ 124 [kN] 13 20 30 55 86 _ _ 141 Stainless steel A4 and HCR, Property class 80 V⁰_{Rk,s} 15 23 34 63 98 [kN] --Steel, Property class 4.6 and 4.8 M⁰_{Rk,s} [Nm] 15 (13) 30 (27) 52 133 260 449 666 900 Steel, Property class 5.6 and 5.8 M⁰_{Rk,s} [Nm] 19 (16) 37 (33) 65 166 324 560 833 1123 arm M⁰_{Rk,s} 896 Steel, Property class 8.8 [Nm] 30 (26) 60 (53) 105 266 519 1333 1797 lever Stainless steel A2, A4 and HCR, Property class 50 M⁰_{Rk,s} 19 37 167 325 561 832 1125 [Nm] 66 Nith Stainless steel A2, A4 and HCR, Property class 70 M⁰_{Rk.s} [Nm] 26 52 92 232 454 784 --Stainless steel A4 and HCR, Property class 80 M⁰_{Rk,s} [Nm] 30 59 105 266 519 896 --Characteristic shear resistance, Partial factor²⁾ Steel, Property class 4.6 [-] 1,67 γMs.V Steel, Property class 4.8 [-] 1,25 γMs,V Steel, Property class 5.6 [-] 1.67 γMs.V Steel, Property class 5.8 1,25 [-] γMs.V Steel, Property class 8.8 1,25 [-] γMs,V Stainless steel A2, A4 and HCR, Property class 50 2,38 [-] γMs.V Stainless steel A2, A4 and HCR, Property class 70 [-] 1,56 γMs,V Stainless steel A4 and HCR, Property class 80 1,33 γMs,V [-]

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

beko Injection mortar for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M3
Steel failure											
Characteristic tension re	esistance	N _{Rk,s}	[kN]			A _s ·	• f _{uk} (or se		C1)		
		N _{Rk,s, eq}	[kN]	1,0 • N _{RKs}							
Partial factor		γms,N	[-]	see Table C1							
Combined pull-out and	d concrete failure										
Characteristic bond resi	stance in non-cracked co	ncrete C20/25									
Temperature range I:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5		formance		<u>, </u>
Temperature range II: 80°C/50°C	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5
	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5		formance		<u>,</u>
Femperature range III: 120°C/72°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm ²] [N/mm ²]	5,5 4.0	6,5 5,0	6,5 5,0	6,5 5,0	6,5	6,5 formance	5,5	5,0
	stance in cracked concre	$\tau_{\rm Rk,ucr}$	[[N/1111-]	4,0	5,0	5,0	5,0	No Fei	Ionnance	Assessed	
Sharacteristic bond resi			[N/mm ²]	4.0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Tomporatura rango li	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,1	3,5	3,7	3,7	3.8	4.5	4.5
Temperature range I: 40°C/24°C		$\tau_{\text{Rk,eq}}$	[N/mm ²]	4,0	4,0	5,5	5,5	,	formance	-)	.,.
	flooded bore hole	τ _{Rk,eq}	[N/mm ²]	2,5	2,5	3,7	3,7		formance		`
		τ _{Rk,cr}	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,
Temperature range II:	dry and wet concrete	τ _{Rk,eq}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,
80°C/50°C	fleeded here hele	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,5	3,0	4,0	4,0	No Per	formance	Assessed	I (NPA
	flooded bore hole	$\tau_{\rm Rk,eq}$	[N/mm ²]	1,6	1,9	2,7	2,7	No Per	formance	Assessed	I (NPA
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III: 120°C/72°C	dry and wet concrete	$\tau_{\rm Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	No Per	formance	Assessed	I (NPA
		$\tau_{\rm Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0		formance	Assessed	I (NPA
		C25/30					1,0				
Increasing factors for co	increte	C30/37	1,04								
(only static or quasi-stat		C35/45		1,07							
Ψc		C40/50 C45/55		1,08							
		C50/60		1,09							
Concrete cone failure		000,00					.,				
Non-cracked concrete		k _{ucr,N}	[-]				11	.0			
Cracked concrete		k _{cr,N}	[-]				7,				
Edge distance		C _{cr,N}	[mm]				1,5				
Axial distance		S _{cr,N}	[mm]				2 c	cr,N			
Splitting	I										
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
							(h			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} 2,$	$5-\frac{n}{h}$			
		-					(n_{ef}			
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr.sp}	[mm]				2 c	cr.sp			
Installation factor											
			C 1	1.0				1.0			
for dry and wet concrete	}	γinst	[-]	1,0				1,2			
or flooded bore hole		γinst	[-]		1	,4		No Per	formance	Assessed	I (NPA
beko Injection r	nortar for concre	te									
Performances								_	Ann	ex C 2	2

Table C3: Characteristi seismic actio						tic, qu	asi-sta	atic ac	tion and	ł	
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	$0,6 \cdot A_s \cdot f_{uk}$ (or see Table C1)								
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	$0,5 \cdot A_s \cdot f_{uk}$ (or see Table C1)								
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]				0,7	70 ∙ V ⁰ _{Rk,s}				
Partial factor	[-]				see	Table C1					
Ductility factor	[-]	1,0									
Steel failure with lever arm											
Characteristic banding memort	M ⁰ _{Rk,s}	[Nm]	$1,2 \cdot W_{el} \cdot f_{uk}$ (or see Table C1)								
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]	No Performance Assessed (NPA)								
Partial factor	γ̂Ms,∨	[-]				see	Table C1				
Concrete pry-out failure											
Factor	k ₈	[-]	2,0								
Installation factor	γinst	[-]					1,0				
Concrete edge failure	·										
Effective length of fastener	l _f	[mm]	min(h _{ef} ; 12 · d _{nom}) max(8 · d _{nom} , 300 mm							m, 300 mm)	
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γinst	[-]		-			1,0				
Factor for annular gap	α_{gap}	[-]				0,	5 (1,0) ¹⁾				

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

beko Injection mortar for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1) $\,$

Annex C 3

Anchor size internal th	readed anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension re		N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, strength class 5.8	}			10	17			70	120
Partial factor Characteristic tension re	aistance	γMs,N	[-]			1	,5		
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γMs,N	[-]			1	,5		
Characteristic tension re		N _{Rk.s}	[kN]	14	26	41	59	110	124
	HCR, Strength class 70				20				
Partial factor	d concrete conc feilure	γMs,N	[-]			1,87			2,86
•	d concrete cone failure stance in non-cracked concre	oto C20/25							
	dry and wet concrete		[N/mm ²]	12	12	12	12	11	9
Temperature range I: 40°C/24°C	flooded bore hole	$ au_{\mathrm{Rk,ucr}}$	[N/mm ²]	8,5	8,5	8,5		mance Asses	-
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9	9	9	9	8,5	6.5
80°C/50°C	flooded bore hole		[N/mm ²]	6,5	6,5	6,5	•	mance Asses	- / -
Temperature range III:	dry and wet concrete		[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,0	5,0	5,0	,	mance Asses	-,-
Characteristic bond resi	stance in cracked concrete C					- / -			. ,
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
40°Ċ/24°C	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	5,5	5,5	No Perfor	mance Asses	sed (NPA)
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
80°C/50°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	3,0	4,0	4,0	No Perfor	mance Asses	sed (NPA)
Temperature range III:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	2,5	3,0	3,0	3,0	3,0	3,5
120°C/72°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	No Perfor	mance Asses	sed (NPA)
			25/30			,	02		
			30/37	1,04					
Increasing factors for co	oncrete		C35/45			-			
ψ_{c}			40/50			,	08		
			45/55 50/60	1,09					
Concrete cone failure		0.	50/60			1,	10		
Non-cracked concrete		k _{ucr,N}	[-]			11	.0		
Cracked concrete		Kucr,N K _{cr,N}	[-]				,7		
Edge distance		C _{cr,N}	[mm]				i h _{ef}		
Axial distance		S _{cr,N}	[mm]				cr,N		
Splitting failure		- 01,14					0,11		
	h/h _{ef} ≥ 2,0					1,0	h _{ef}		
						(•)		
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef}$ 2	$5-\frac{h}{l}$		
							n_{ef})		
	h/h _{ef} ≤ 1,3					2,4	h _{ef}		
Axial distance		S _{cr,sp}	[mm]			2 c	cr.sp		
Installation factor									
for dry and wet concrete	<u>, </u>		[-]			1	2		
		Yinst	_		1,2				
or flooded bore hole		γinst	[-]		1,4			-	
threaded rod	rews or threaded rods (incl. r . The characteristic tension r ening element. strength class 50 is valid								
	mortar for concrete								

Anchor size for internal threaded	l anchor ro	ods	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾								
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Partial factor	γMs,∨	[-]			1	1,25	1	1
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,∨	[-]			1,56			2,38
Ductility factor	k ₇	[-]				1,0		·
Steel failure with lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γMs,V	[-]			1	1,25	1	
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γMs,∨	[-]				1,25		•
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure								•
Factor	k ₈	[-]				2,0		
nstallation factor	γinst	[-]				1,0		
Concrete edge failure								
Effective length of fastener	lf	[mm]		m	iin(h _{ef} ; 12 • dո	om)		max(8•d _{nom} ; 300 mm
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor	γinst	[-]				1,0		
 Fastening screws or threaded rod. The chara and the fastening eleme For IG-M20 strength cla 	acteristic tei ent.	nsion resist	nd washer) n tance for stee	nust comply v el failure of th	with the appro	priate materi gth class are	al and proper valid for the i	ty class of the internal nternal threaded rod
	or conc							

Anchor size reinforcin	ig bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension re	esistance		N _{Rk,s}	[kN]					$A_s \cdot f_{uk}^{(1)}$				
			N _{Rk,s, eq}	[kN]				1,	0 ∙ A _s ∙ f	uk'			
Cross section area			As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor			γMs,N	[-]					1,4 ²⁾				
Combined pull-out and													
Characteristic bond resi	1		ncrete C20		10	10	10	10	10	10			
Temperature range I: 40°C/24°C	dry and wet		$\tau_{\rm Rk,ucr}$	[N/mm ²]	10	12	12	12	12	12 No Dor	11	10	8,5
	flooded bord		τ _{Rk,ucr}	[N/mm ²] [N/mm ²]	7,5 7,5	8,5 9	8,5 9	8,5 9	8,5 9	9	8,0	Assessed	6.0
Temperature range II: 80°C/50°C	flooded bor		$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	-	,	Assessed	- / -
Temperature range III:	dry and wet		$\tau_{\rm Rk,ucr}$ $\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6.5	6.0	5,0	4.5
120°C/72°C	flooded bor		τ _{Rk,ucr}	[N/mm ²]	4,0	5.0	5,0	5,0	5,0	- / -	- / -	Assessed	/
Characteristic bond resi				[]	.,e	0,0	0,0	0,0	0,0				. (
			$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet	concrete	$\tau_{\rm Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded here	a hala	$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	4,0	5,5	5,5	5,5	No Per	formance	Assessed	d (NPA
	flooded bor		$\tau_{\rm Rk,eq}$	[N/mm ²]	2,5	2,5	3,7	3,7	3,7	No Per	formance	Assessed	(NPA
	dry and wet	concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	ury and wet	concrete	$\tau_{\text{Rk,eq}}$	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bor	e hole	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,5	3,0	4,0	4,0	4,0			Assessed	· ·
			$\tau_{\text{Rk,eq}}$	[N/mm²]	1,6	1,9	2,7	2,7	2,7			Assessed	È
Temperature range III: 120°C/72°C	dry and wet	concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
	flooded bore hole		$\tau_{\rm Rk,eq}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
120-0/12-0			$\tau_{\rm Rk,cr}$	[N/mm ²]	2,0 1,3	2,5 1,6	3,0 2,0	3,0 2,0	3,0 2,0			Assessed	`
			τ _{Rk,eq}	[N/mm²] 5/30	1,3	1,0	2,0	2,0	2,0	No Per	formance	Assessed	I (NPA
)/37					1,02				
Increasing factors for co				5/45					1,07				
(only static or quasi-stat	tic actions)			0/50					1,08				
ψ_{c}				5/55					1,09				
			C50	0/60					1,10				
Concrete cone failure													
Non-cracked concrete			k _{ucr,N}	[-]					11,0				
Cracked concrete			k _{cr,N}	[-]					7,7				
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance			S _{cr,N}	[mm]					$2 c_{cr,N}$				
Splitting													
	h/h _{ef} ≥ 2,0								1,0 h _{ef}				
								2.1	(25	h			
Edge distance	2,0 > h/h _{ef} >	• 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{c}$	_f 2,5 –	$\overline{h_{at}}$			
	h/h _{ef} ≤ 1,3		•						2,4 h _{ef}	εj			
	n/⊓ef ≃ 1,3		-	F					, .				
Axial distance			S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation factor				r 1	1.0					0			
for dry and wet concrete for flooded bore hole	3		γinst	[-]	1,0		1 4		1	,2	6 m == + -	A	
¹⁾ f _{uk} shall be take	n from the en	ecifications	γ _{inst}	[-] a bars			1,4			_ No Per	ionnance	Assessed	A (INPA
²⁾ in absence of n	ational regula	tion		y bars									
	-												
beko Injection i	nortar fo	r concre	te										
											_	_	_
										1	A	ex C 6	

Table C7: Characteristic value seismic action (perf					atic,	quas	i-stat	ic ac	tion a	nd	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm								1			
Characteristic chase registeres	V ⁰ _{Rk,s}	[kN]				0,5	60 • A _s •	f _{uk} 1)			
Characteristic shear resistance	V _{Rk,s, eq}	[kN]				0,3	5 • A _s •	f _{uk} 1)			
Cross section area	As	[mm²]	50 79 113 154 201 314 491 616								804
Partial factor	γms,∨	[-]	1,5 ²⁾								
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	$M^{O}_{Rk,s}$	[Nm]				1.2	$2 \cdot W_{el} \cdot f$	f _{uk} 1)			
Characteristic beholing moment	$M^0_{\ Rk,s,\ eq}$	[Nm]			No P	erforma	nce Ass	essed (NPA)		
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γMs,V	[-]					1,5 ²⁾		•		
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ inst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]		r	nin(h _{ef} ; ⁻	l2•d _{nom})		max(8 ·	· d _{nom} , 3	00 mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				
Factor for annular gap	$lpha_{gap}$	[-]				(0,5 (1,0)	1)			
 ¹⁾ f_{uk} shall be taken from the specifications of reinfor ²⁾ in absence of national regulation ³⁾ Value in brackets valid for filled annular gab betw required 	-	nd clearar	nce hole	in the fi	xture. U	se of sp	ecial filli	ng wash	er Anne	x A 3 is	

beko Injection mortar for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Annex C 7

Table C8: Dis	splaceme	nts under tensi	on load ¹⁾	(threa	ded ro	od)				
Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25		L							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0	90			0,0)70		
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,1	05			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,2	255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
120°C/72°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,2	255			0,2	245		

 $^{1)}$ Calculation of the displacement $\delta_{N0}=\delta_{N0}\mbox{-factor}\,\cdot\,\tau;$

 τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C9: Displacements under shear load¹⁾ (threaded rod)

Anchor size three	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	d concrete C2	0/25								
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}\text{-}factor$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked cor	crete C20/25									
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10
$\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-}fact$	or · V;									
beko Injectior	n mortar for	concrete								

electronic copy of the eta by dibt: eta-18/0702

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,050 0,056 0		0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
i omporataro rango n	δ_{N0} -factor	[mm/(N/mm ²)]	0,090					0,070			
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,105					0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170						
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255	0,245						
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170						
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	· τ;	nent τ: action bonc	l stress fo	r tension							

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked co	ncrete C20/	25									
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concret	te C20/25										
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

 $\label{eq:constraint} \begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0} \mbox{-factor } \cdot V; & V; \\ \delta_{V\infty} = \delta_{V\infty} \mbox{-factor } \cdot V; \end{array}$

V: action shear load

beko Injection mortar for concrete

Performances Displacements (rebar) Annex C 9

Table C12: Dis	splacements	s under tension	load ¹⁾ (lı	nternal t	hreaded	anchor	rod)	
Anchor size Interna	al threaded and	chor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked concret	e C20/25 under	static and quasi-stati	c action					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C2	0/25 under stati	c and quasi-static ac	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,090			0,070		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,105			0,105		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,255			0,245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
120°C/72°Č	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} \text{-factor} \quad \cdot \ \tau; \qquad \qquad \tau: \text{ action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor τ ;

Table C13: Displacements under shear load¹⁾ (Internal threaded anchor rod)

	•			•			,	
Anchor size Int	ernal threaded	anchor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	ncrete C20/25 ui	nder static a	nd quasi-s	static action	n		
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06
beko Injection mortar for concrete Performances Displacements (Internal threaded anchor rod)								