

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen:

06.12.2018 | 123-1.21.5-51/18

Nummer:

Z-21.5-1758

Antragsteller:

Halfen GmbH Liebigstraße 14 40764 Langenfeld

Geltungsdauer

vom: 24. Oktober 2018 bis: 24. Oktober 2023

Gegenstand dieses Bescheides:

Halfen - Ankerbolzen HAB MH

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst sieben Seiten und sieben Anlagen.

Der Gegenstand ist erstmals am 6. Mai 2004 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 7 | 6. Dezember 2018

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungsbzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

Seite 3 von 7 | 6. Dezember 2018

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

1.1 Regelungsgegenstand

Der Halfen - Ankerbolzen HAB MH (im weiteren Ankerbolzen genannt) besteht aus einem Stahlbolzen (Gewindeteil) mit an einem Ende aufgerolltem Gewinde, zwei Sechskantmuttern und zwei Scheiben. Am anderen Ende des Stahlbolzens sind Stäbe aus geripptem Betonstahl mit einseitig aufgestauchtem Kopf (Kopfbolzen) angeschweißt. In Tabelle 1.1 sind die Ankerbolzentypen zusammengestellt.

Tabelle 1.1 Ankerbolzentypen, Anzahl und Größe der angeschweißten Kopfbolzen

Ankerbolzentyp HAB MH (Gewindegröße des Bolzens)	22	27	36	39	45	52	60
Anzahl der Kopfbolzen Ø	2 Ø20	2 Ø25	4 ∅20	3 ∅25	4 ∅25	4 ∅32	4 ∅32

Der Ankerbolzen wird bis zur Markierung der Verankerungstiefe einbetoniert.

Auf der Anlage 1 ist der Ankerbolzen im eingebauten Zustand dargestellt.

1.2 Verwendungs bzw. Anwendungsbereich

Der Ankerbolzen darf nur zum Anschluss von Stahlbeton-Fertigteilstützen mit den zugehörigen Halfen Stützenschuhen und von Stahl- bzw. Stahlverbundstützen mit Fußplatte verwendet werden.

Die Ankerbolzen dürfen unter statischer oder quasi-statischer Belastung in Normalbeton der Festigkeitsklassen von mindestens C12/15 und höchstens C50/60 nach DIN EN 206:2017-01 verwendet werden. Die Ankerbolzen dürfen im gerissenen und ungerissenen Beton verankert werden

Zur Sicherung des Korrosionsschutzes der Ankerbolzen beim Anschluss von Stahlbeton-Fertigteilstützen mit den zugehörigen Halfen-Stützenschuhen sind die Fugen zwischen dem Betonbauteil und dem Stützenschuh sowie die Aussparungen für die Muttern nachträglich mit einem stützenbündigen Verguss aus Vergussmörtel oder Vergussbeton gemäß DAfStb-Richtlinie "Herstellung und Verwendung von zementgebundenem Vergussbeton und Vergussmörtel" vollflächig zu vergießen. Hierbei darf die Betondeckung die in DIN EN 1992-1-1:2011-01 mit DIN EN 1992-1-1/NA:2013-04 angegebenen Mindestwerte nicht unterschreiten.

Der Ankerbolzen darf beim Anschluss von Stahlstützen nur in geschlossenen Räumen, z. B. Wohnungen, Büroräume, Schulen, Krankenhäusern, Verkaufsstätten - mit Ausnahme von Feuchträumen - verwendet werden.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

Die Abmessungen der Ankerbolzen müssen den Werten der Tabelle 1, Anlage 2 entsprechen.

Die in dieser allgemeinen bauaufsichtlichen Zulassung nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen der Ankerbolzen müssen den beim Deutschen Institut für Bautechnik, bei der Zertifizierungsstelle und der fremdüberwachenden Stelle hinterlegten Angaben entsprechen.

Für die angeschweißten Kopfbolzen in den Größen 20 und 25 ist ein gerippter Betonstahl B500B nach DIN 488-1:2009-01 mit einer 0,2 % Dehngrenze von 500 N/mm^2 und einer Mindestzugfestigkeit von 550 N/mm^2 zu verwenden.

Nr. Z-21.5-1758

Seite 4 von 7 | 6. Dezember 2018

Für die angeschweißten Kopfbolzen der Größe 32 ist ein gerippter Betonstahl B500B entsprechend einer allgemeinen bauaufsichtlichen Zulassung mit einer 0,2 % Dehngrenze von 500 N/mm² und einer Mindestzugfestigkeit von 550 N/mm² zu verwenden.

Der Ankerbolzen besteht aus einem nichtbrennbaren Baustoff der Klasse A nach DIN 4102-1:1998-05 Brandverhalten von Baustoffen und Bauteilen; Baustoffe- Begriffe, Anforderungen und Prüfungen.

2.2 Verpackung, Lagerung und Kennzeichnung

2.2.1 Verpackung und Lagerung

Der Ankerbolzen darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2.2 Kennzeichnung

Verpackung, Beipackzettel oder Lieferschein der Ankerbolzen muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Zusätzlich sind das Werkzeichen, die Zulassungsnummer und die vollständige Bezeichnung der Ankerbolzen anzugeben. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Der Ankerbolzen wird nach dem Typ und dem Gewindedurchmesser des Ankerbolzens bezeichnet, z. B. HAB MH 22.

Jedem Ankerbolzen ist das Werkzeichen und die Gewindegröße nach Anlage 4 einzuprägen. Die Verankerungstiefe ist durch das Gewindeende markiert.

2.3 Übereinstimmungsbestätigung

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Ankerbolzens mit den Bestimmungen der von diesem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einer Übereinstimmungserklärung des Herstellers auf der Grundlage einer werkseigenen Produktionskontrolle und eines Übereinstimmungszertifikates einer hierfür anerkannten Zertifizierungsstelle sowie einer regelmäßigen Fremdüberwachung durch eine anerkannte Überwachungsstelle nach Maßgabe der folgenden Bestimmungen erfolgen:

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Ankerbolzen eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung des Bauprodukts mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik, ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte der von diesem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung entsprechen.

Für Umfang, Art und Häufigkeit der werkseigenen Produktionskontrolle ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüf- und Überwachungsplan maßgebend.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile

Nr. Z-21.5-1758

Seite 5 von 7 | 6. Dezember 2018

- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrolle und Prüfungen und soweit zutreffend Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die bestehende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch einmal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Ankerbolzen durchzuführen und es sind Stichproben zu entnehmen. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Für Umfang, Art und Häufigkeit der Fremdüberwachung ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüf- und Überwachungsplan maßgebend.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Planung, Bemessung und Ausführung

3.1 Planung

3.1.1 Allgemeines

Die Verankerungen sind ingenieurmäßig zu planen. Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen, die die Lage der Verankerungen einschließlich möglicher Maßabweichungen enthält.

3.1.2 Minimale Achs- und Randabstände

Die in Anlage 3, Tabelle 3 angegebenen minimalen Achs- und Randabstände dürfen nicht unterschritten werden.

3.1.3 Minimale Bauteildicke

Die erforderliche Bauteildicke h_{min} ergibt sich aus der Einbautiefe I_2 nach Anlage 2 und der erforderlichen Betondeckung c_{nom} .

 $h_{\min} = l_2 + c_{\text{nom}} \tag{3.1}$

l₂ = Einbautiefe nach Anlage 2, Tabelle 1

c_{nom} = Nennmaß der Betondeckung nach DIN EN 1992-1-1:2011-01 mit DIN EN 1992-1-1/NA:2013-04

Seite 6 von 7 | 6. Dezember 2018

3.2 Bemessung

3.2.1 Allgemeines

Die Bemessung der Verankerung erfolgt gemäß DIN SPEC 1021-4:2009-08 "Bemessung der Verankerung von Befestigungen in Beton", Teil 1 und 2. Die zugehörigen charakteristischen Werte sind in den Anlagen 4 bis 5 angegeben.

Der Nachweis der unmittelbaren örtlichen Krafteinleitung in den Beton ist erbracht.

Die Weiterleitung der zu verankernden Lasten im Bauteil ist nachzuweisen.

Beanspruchungen, die in der Verankerung oder im angeschlossenen Bauteil aus behinderter Formänderung (z. B. bei Temperaturwechseln) entstehen können, sind zu berücksichtigen.

Ergänzend zur Tabelle 1 der DIN SPEC 1021-4:2009-08, Teil 1, Abschnitt 5.2.3.1 ist die Tabelle 3.1 dieser Zulassung zu verwenden.

 Tabelle 3.1
 Durchmesser des Durchgangslochs in der Fußplatte

Ankerbolzen HAB MH (Gewindegröße)	22	27	36	39	45	52	60
Durchmesser Durch- gangsloch [mm]	24	30	39	42	48	55	63

3.2.2 Verschiebungsverhalten

Die Verschiebungen bei Zugbeanspruchungen sind in Anlage 4, Tabelle 5 dargestellt.

Die Verschiebungen bei Querbeanspruchungen sind in Anlage 5, Tabelle 7 dargestellt.

3.3 Ausführung

3.3.1 Einbau der Verankerungen

Die Verankerungen sind entsprechend den anzufertigenden Konstruktionszeichnungen einzubauen. Die Konstruktionszeichnungen müssen die genaue Lage und die Ausführungsangaben (Lage, Größe und Längen der Ankerbolzen) der Verankerungen enthalten.

Die Montageanleitung des Herstellers auf den Anlagen 6 und 7 ist einzuhalten.

Die Verankerungen sind so auf der Schalung zu fixieren, dass sie sich beim Verlegen der Bewehrung sowie beim Einbringen und Verdichten des Betons nicht verschieben.

Beim Betonieren ist darauf zu achten, dass unter den Köpfen der Ankerbolzen der Beton besonders gut verdichtet wird.

Beim Anschluss von Stahlbeton-Fertigteilstützen mit den zugehörigen Halfen-Stützenfüßen sind die Fugen zwischen dem Betonbauteil und dem Stützenfuß sowie die Aussparungen für die Muttern nachträglich mit einem stützenbündigen Verguss aus Vergussmörtel oder Vergussbeton gemäß DAfStb-Richtlinie "Herstellung und Verwendung von zementgebundenem Vergussbeton und Vergussmörtel" vollflächig zu vergießen.

Das maximale Installationsmoment T_{inst} gemäß Anlage 3, Tabelle 3 darf nicht überschritten werden.

Für die Tragfähigkeit des Ankerbolzens ist das Aufbringen eines Installationsmoments nicht erforderlich.

3.3.2 Kontrolle der Ausführung

Bei dem Einbau der Verankerungen muss der mit der Verankerung von Ankerbolzen betraute Unternehmer oder der von ihm beauftragte Bauleiter oder ein fachkundiger Vertreter des Bauleiters auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten zu sorgen. Insbesondere muss er die Ausführung und Lage der Verankerungen sowie einer eventuellen Rückhängebewehrung kontrollieren.

Nr. Z-21.5-1758

Seite 7 von 7 | 6. Dezember 2018

Die Aufzeichnungen hierüber müssen während der Bauzeit auf der Baustelle bereitliegen und sind dem mit der Kontrolle Beauftragten auf Verlangen vorzulegen. Sie sind ebenso wie die Lieferscheine nach Abschluss der Arbeiten mindestens 5 Jahre vom Unternehmen aufzubewahren.

Beatrix Wittstock Referatsleiterin Beglaubigt

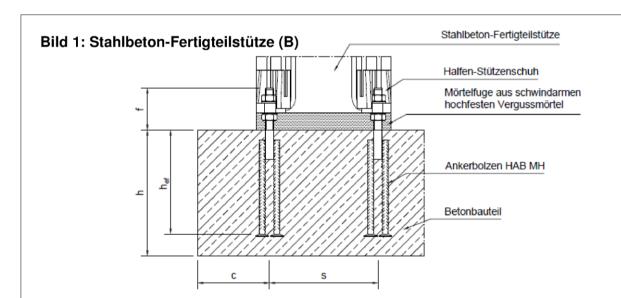


Bild 2: Stahlverbundstütze mit Mörtelfuge (B)

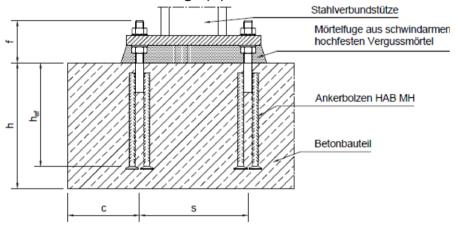
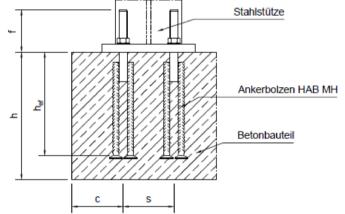



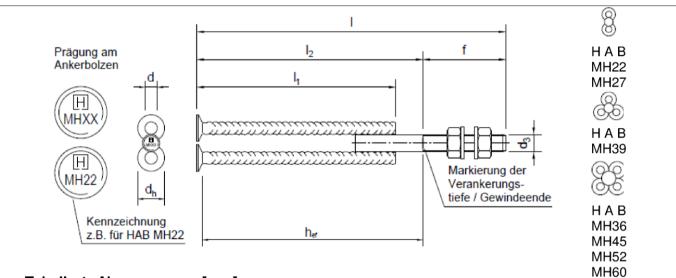
Bild 3: Stahlstütze ohne Mörtelfuge (A)

Bauteildickeeffektive

Verankerungstiefe

h

c - Randabstand s - Achsabstand


f - Überstand Ankerbolzen

Halfen - Ankerbolzen HAB MH

Einbauzustand

Anlage 1

Tabelle 1: Abmessungen [mm]

Ankerbolzenbezeichnung HAB	иH		22	27	36	39	45	52	60
Ankerbolzen									
Gesamtlänge	ı	[mm]	510	650	740	880	980	1140	1330
Anzahl Kopfbolzen	n	[-]	2	2	4	3	4	4	4
Einbautiefe	I_2	[mm]	380	500	575	695	785	900	1020
Ankerbolzenlänge über Betonoberfläche	f	[mm]	130	150	165	185	195	240	310
effektive Verankerungslänge	h _{ef}	[mm]	368	487	563	682	772	885	1000
Verankerungslänge	I ₁	[mm]	320	450	520	640	730	860	1000
Ø - Ankerstab	d	[mm]	20	25	20	25	25	32	32
Ø - Ankerkopf	d _h	[mm]	46	55	46	55	55	70	70
Ø - Gewindestab	d₃	[mm]	22	27	36	39	45	52	60
Gewindespannungs- querschnitt	A_{sp}	[mm²]	303	459	817	976	1306	1758	2362
Aufstandsfläche	A_h	[mm ²]	2695	3770	5391	5655	7540	12177	12177
Scheibe									
Außendurchmesser	d_2	[mm]	39	50	80	90	105	110	110
Innendurchmesser	d	[mm]	23	28	38	41	48	55	66
Dicke	t_{wh}	[mm]	3	4	8	10	12	12	10
Mutter									
SW / Höhe	gemäß DIN EN ISO 4032:2013-04								

Halfen – Ankerbolzen HAB MH	
Abmessungen	Anlage 2

Tabelle 2: Werkstoffe

Ankerstab	Ø 16 - Ø 40 B500B nach DIN 488-2:2009-8						
Gewindestab	S690 nach DIN EN 10025-6:2009-08 bzw. IMACRO M						
Scheiben	S355J0 nach DIN EN 10025-2:2005-04						
6KT-Muttern	Sechskantmuttern nach DIN EN ISO 4032:2013-04 Festigkeitsklasse 8 nach DIN EN ISO 898-2:2012-08						

Tabelle 3: Kennwerte der Ankerbolzen

Ankerbolzenbezeichnung HAB MH			22	27	36	39	45	52	60
effektive Verankerungstiefe	h _{ef}	[mm]	368	487	563	682	772	885	1000
Mindestachsabstand	S _{min}	[mm]	130	130	160	180	200	280	280
Mindestrandabstand	C _{min}	[mm]	100	120	140	150	160	180	180
Ankerbolzenlänge über Betonoberfläche	f	[mm]	130	150	165	185	195	240	310
Bauteildicke	h _{min}	[mm]	h _{ef} + k + C _{nom} 1)						
max. Installationsmoment direkte Montage (A) 2)	T _{inst,A}	[Nm]	90	170	400	520	800	1250	1800
max. Installationsmoment Stahl-Stahl (B) 3)	T _{inst,B}	[Nm]	250	550	1200	1400	2000	3300	3800

Nennmaß der Betondeckung gemäß DIN EN 1992-1-1:2011,01 mit DIN EN 1992-1-1/NA:2013-04
 Anbauteil ist in Kontakt mit Betonoberfläche (Siehe Anlage1, Bild 3)

Mindestbewehrung

Eine Bewehrung zur Aufnahme der Spaltzugkräfte ist einzubauen, die die Rissbreite auf $w_k \le 0.3 \text{ mm begrenzt.}$

Siehe DIN SPEC 1021-4-2:2009-08, Abschnitt 6.2.6.2

Halfen – Ankerbolzen HAB MH		
Werkstoffe & Ankerbolzenkennwerte	Anlage 3	

Albauteil wird zwischen den beiden Muttern verspannt (Siehe Anlage1, Bild 1 und 2)

Ankerbolzenbezeichnung HAB MH			22	27	36	39	45	52	60
Stahlversagen									
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	242	367	654	781	1045	1406	1769
Teilsicherheitsbeiwert	γ_{Ms}	[-]				1,4			
Herausziehen									
Charakteristische Tragfähigkeit in Beton C20/25 bei Herausziehen	N _{Rk,p}	[kN]	404	565	809	848	1131	1827	1827
Teilsicherheitsbeiwert	γ_{Mp}	[-]	1,5						
Betonausbruch									
effektive Verankerungstiefe	h _{ef}	[mm]	368	487	563	682	772	885	1000
charakteristischer Achsabstand	S _{cr,N}	[mm]				3 * h	ef		
charakteristischer Randabstand	C _{cr,N}	[mm]				1,5 *	h _{ef}		
Teilsicherheitsbeiwert	γ_{Mc}	[-]				1,5			
Faktor zur Berücksichtigung des Verankerungsmechanismus:									
- in gerissenem Beton	k _{cr}	[-]				8,5			
- in ungerissenem Beton	k _{ucr}	[-]	11,9						
Spalten									

Tabelle 5: Verschiebung unter Zuglast

Lokaler Betonausbruch (blow-out)

Teilsicherheitsbeiwert

Ankerbolzenbezeichnung HAB MH		22	27	36	39	45	52	60
Zuglast	[kN]	112	171	212	283	340	418	502
zugehörige Verschiebung	[mm]	0,6	1,6	3,7	3,9	5,4	3,7	5,2

[-]

 γ_{Mcb}

1,5

¹⁾ Bei Dauerbelastung können sich die Verschiebungen das bis zu 2,0-fache erhöhen.

Halfen – Ankerbolzen HAB MH	
Charakteristische Widerstände und Verschiebungen unter Zuglast	Anlage 4

Tabelle 6: Charakteristische Widerstände bei Querbeanspruchung

Tabelle O. Charakteristische Widers						,			
Ankerbolzenbezeichnung HAB MH			22	27	36	39	45	52	60
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s}	[kN]	109	165	294	351	470	633	850
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]				1,5			
Stahlversagen mit Hebelarm									
Charakteristische Quertragfähigkeit	M ⁰ _{Rk,s}	[Nm]	714	1330	3160	4130	6390	9980	15500
Teilsicherheitsbeiwert	γ_{Mp}	[-]	1,5						
Rückwärtiger Betonausbruch (pry-c	ut)								
Faktor zur Berechnung nach DIN SPEC 1021-4-2:2009-08, Gl. (32)	k ₃ 1)	[-]				2,0			
Teilsicherheitsbeiwert	γ_{Mcp}	[-]				1,5			
Betonkantenbruch									
Wirksame Ankerbolzenlänge bei Querlast	I _f =h _{ef}	[mm]	368	487	563	682	772	885	1000
Wirksamer Außendurchmesser	d _{nom} =d ₃	[mm]	22	27	36	39	45	52	60
Teilsicherheitsbeiwert	γ_{Mc}	[-]	-] 1,5						

¹⁾ Ist eine Zusatzbewehrung vorhanden, ist der Faktor k₃ mit 0,75 zu multiplizieren.

Tabelle 7: Verschiebung unter Querlast

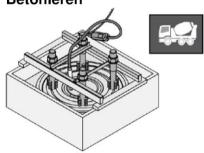
Ankerbolzenbezeichnung HAB MH		22	27	36	39	45	52	60
Querlast	[kN]	62	94	168	201	269	362	486
zugehörige Verschiebung	[mm]	1,7	2,4	4,9	5,2	7,1	9,7	13,3

²⁾ Bei Dauerbelastung können sich die Verschiebungen auf das ca. 1,3-fache erhöhen.

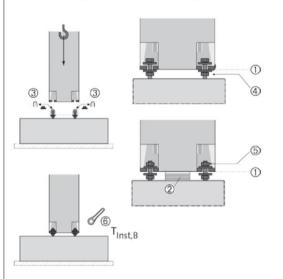
Kombinierte Zug- und Querlast

Faktor gemäß DIN SPEC 1021-4-2:2009-08, Abschnitt 6.4.1.3: $k_7 = 2/3$

Halfen – Ankerbolzen HAB MH	
Charakteristische Widerstände und Verschiebungen unter Querlast	Anlage 5


1. Anker positionieren

Lieferumfang: Ankerbolzen vormontiert mit je 2 Sechskantmuttern und Sonderunterlegscheiben


- (Wiederverwendbaren) Montagerahmen positionieren
- Bolzen mit Montagerahmen verschrauben
- Anordnung der Bolzen und ggf. Rückhängebewehrung gemäß Angaben des Tragwerkplaners und Bewehrungsplänen
- Ankerbolzen bauseits achs- und höhenrichtig einmessen.

2. Betonieren

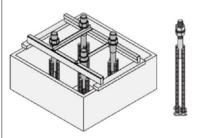
- Im Bereich der Ankerköpfe sorgsam verdichten
- · Ankerbolzen weder verschieben noch beschädigen
- Gewinde der Ankerbolzen vor Verschmutzung schützen
- Ankerbolzen erst nach Erreichen der Mindestbetonfestigkeit belasten

3. Montage und Justierung der Stütze

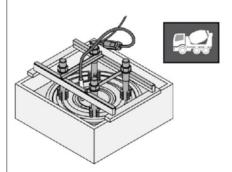
- Untere Muttern auf Sollhöhe ① vormontieren und Stütze am Kran einschwenken
- Zum Schutz der Gewinde Montagekappen (3) verwenden
- Nach Aufdrehen der oberen Muttern Stütze durch Drehen der unteren Muttern justieren ④
- Bei schweren Stützen Stapel Stahlplatten ② verwenden; Dafür untere Muttern 5mm tiefer montieren, Stütze auf Stahlplatten absetzen und über obere Muttern ⑤ justieren
- Schlagringschlüssel 6 nach DIN 7444 und Schlagmaulschlüssel 6 nach DIN 133 verwenden
- Das maximale Installationsmoment T_{inst,B} nach Anlage 3 darf nicht überschritten werden.

Ankerbolzeng	Ankerbolzengröße		HAB MH27	HAB MH36	HAB MH39	HAB MH45	HAB MH52	HAB MH60
max. Installations moment Stahl-Stahl	T _{inst,B} [Nm]	250	550	1200	1400	2000	3300	3800

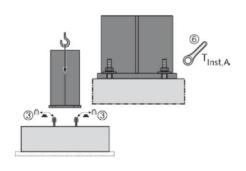
4. Fuge vergießen



- Montagefuge und Stützenaussparungen mit einem fließfähigen schwindarmen Vergussmörtel vergießen
- Mörtelfestigkeit muss mindestens Festigkeit des Stützenbetons entsprechen
- Volle Stützentragfähigkeit erst nach Aushärten des Mörtels


Halfen – Ankerbolzen HAB MH	
Montageanleitung für Stahlbeton-Fertigteilstützen (B)	Anlage 6

1. Anker positionieren


2. Betonieren

Lieferumfang: Ankerbolzen vormontiert mit je 2 Sechskantmuttern und Sonderunterlegscheiben

- (Wiederverwendbaren) Montagerahmen positionieren
- Bolzen mit Montagerahmen verschrauben
- Anordnung der Bolzen und ggf. Rückhängebewehrung gemäß Angaben des Tragwerkplaners und Bewehrungsplänen
- Ankerbolzen bauseits achs- und höhenrichtig einmessen.
- Im Bereich der Ankerköpfe sorgsam verdichten
- Ankerbolzen weder verschieben noch beschädigen
- Gewinde der Ankerbolzen vor Verschmutzung schützen
- Ankerbolzen erst nach Erreichen der Mindestbetonfestigkeit belasten

3. Montage der Stütze

- · Stütze am Kran einschwenken
- Zum Schutz der Gewinde Montagekappen ③ verwenden
- · Obere Muttern aufdrehen
- Schlagringschlüssel 6 nach DIN 7444 und Schlagmaulschlüssel 6 nach DIN 133 verwendbar
- Das maximale Installationsmoment T_{inst,A} nach Anlage 3 darf nicht überschritten werden.

Ankerbolzenbezeichnung		HAB						
		MH22	MH27	MH36	MH39	MH45	MH52	MH60
max. Installationsmoment direkte Montage	T _{inst,A} [Nm]	90	170	400	520	800	1250	1800

Halfen – Ankerbolzen HAB MH	
Montageanleitung für Stahlstützen (A)	Anlage 7