

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0030 of 13 September 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Highload Anchor SZ

Mechanical anchor for use in concrete

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-02/0030 issued on 10 July 2018

European Technical Assessment ETA-02/0030

Page 2 of 22 | 13 September 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z51424.19 8.06.01-237/19

European Technical Assessment ETA-02/0030

Page 3 of 22 | 13 September 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Highload Anchor SZ is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type SZ-B with threaded bolt,
- Anchor type SZ-S with hexagon head screw,
- Anchor type SZ-SK with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 to C4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C5 to C6
Characteristic resistance for seismic performance category C1 and C2	See Annex C7 to C8
Displacements	See Annex C10 to C11
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C9

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z51424.19 8.06.01-237/19

European Technical Assessment ETA-02/0030

Page 4 of 22 | 13 September 2019

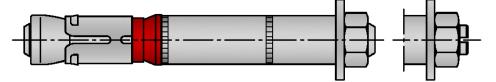
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

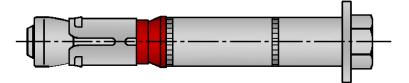
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 13 September 2019 by Deutsches Institut für Bautechnik

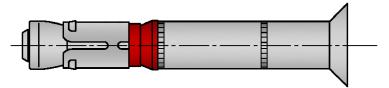
BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Lange

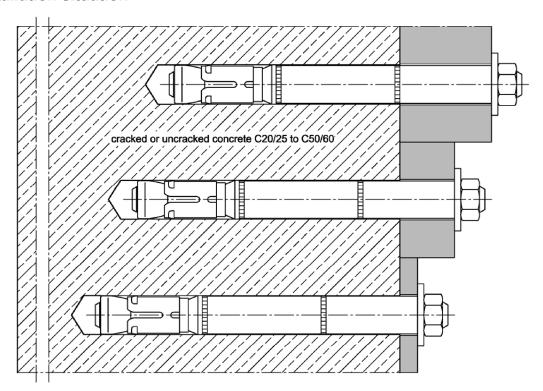
Z51424.19 8.06.01-237/19



Fastener type SZ-B with threaded bolt


SZ-B (M6-M24) SZ-B (M8-M16) A4

Fastener type SZ-S with hexagon head screw


SZ-S (M6-M24) SZ-S (M8-M16) A4

Fastener type SZ-SK with countersunk washer and countersunk screw

SZ-SK (M6-M12) SZ-SK (M8-M12) A4

Installation situation

Highload Anchor SZ

Product description

Product and installation situation

Annex A1

Electronic copy of the ETA by DIBt: ETA-02/0030

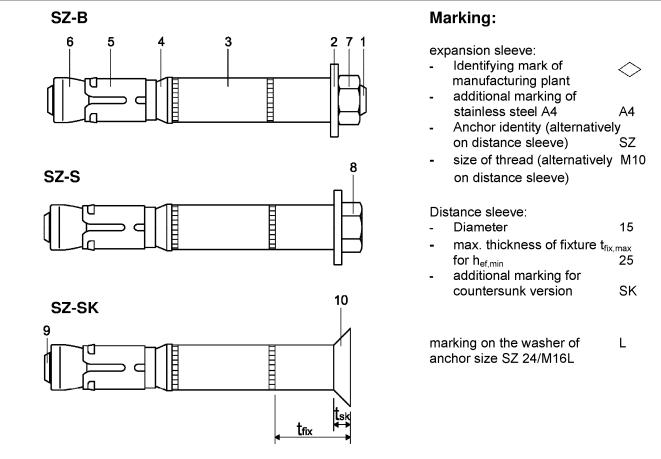


Table A1: Designation of fastener parts and materials

Part	Designation	Materials galvanized ≥ 5 μm, acc. to EN ISO 4042:1999	Stainless steel A4
1	Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
2	Washer	Steel, EN 10139:2016	Stainless steel, EN 10088:2014
3	Distance sleeve	Steel tube EN 10305-2:2016, EN 10305-3:2016;	Steel tube stainless steel, 1.4401, 1.4404 or 1.4571; EN 10217-7:2014, EN 10216-5:2013
4	Ring	Polyethylene	Polyethylene
5	Expansion sleeve	Steel, EN 10139:2016	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
6	Threaded cone	Steel EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
7	Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, strength class 70, EN ISO 3506-2:2009
8	Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009
9	Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009
10	Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014, zinc plated

Highload Anchor SZ	
Product description Marking and materials	Annex A2

Specification of intended use								
Highload Anchor SZ, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Static or quasi-static action					√			
Seismic action (SZ-B and SZ-S)	-	- C1 + C2						
Seismic action (SZ-SK)	-		C1 + C2				_	
Fire exposure		•		R 30	. R 120			
Highload Anchor SZ, stainless steel A4		12/M8	15/M10	18/M12	24/M16			
Static or quasi-static action			,	/				

Base materials:

Fire exposure

Seismic action (SZ-SK)

· Cracked and uncracked concrete

Seismic action (SZ-B and SZ-S)

 Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013 + A1:2016

C1 + C2

R30 ... R120

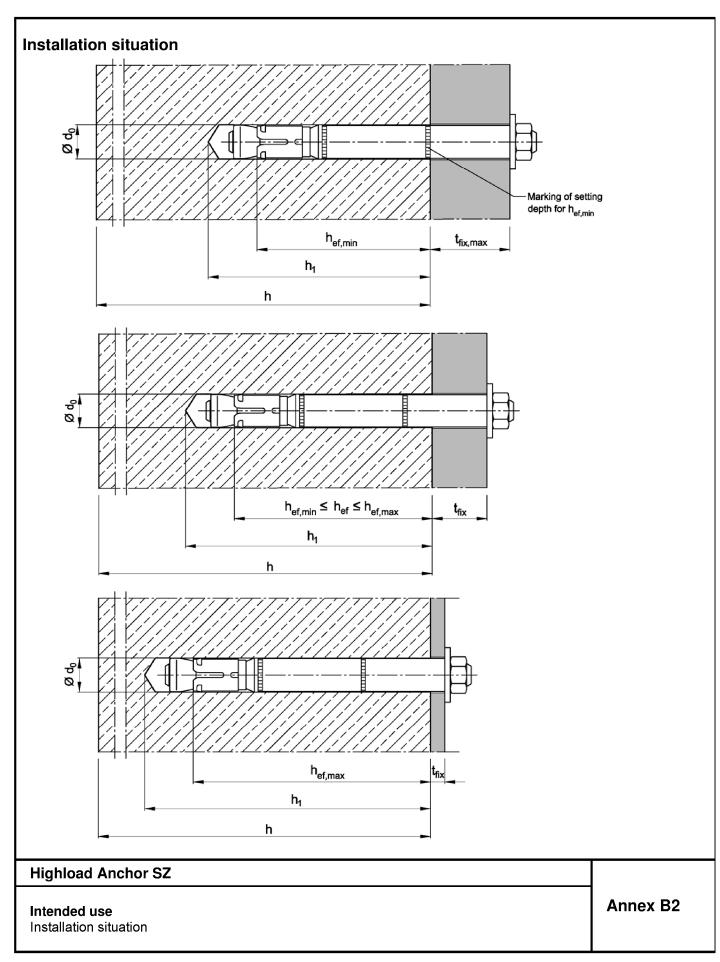
C1 + C2

Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)


Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to
 reinforcement or to supports, etc.).
- Design according to EN 1992-4:2018 and Technical Report TR055

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the obligation of the person responsible for technical matters on site.
- Compliance with the effective anchorage depth. For fastenings with anchorage depths $h_{ef} > h_{ef,min}$ the usable thickness of fixture is reduced by $h_{ef} h_{ef,min}$.
- Use as supplied by the manufacturer without replacing individual parts.
- Drilling of hole only by hammer drilling (use of vacuum drill bits is admissible)

Highload Anchor SZ	
Intended use Specification of intended use	Annex B1

Installation parameters, steel zinc plated Table B1:

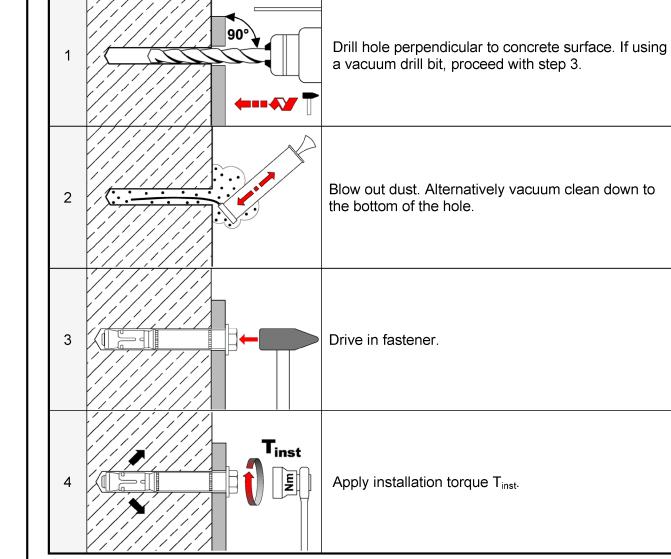
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20	M24
Minimum effective anchorage depth	$h_{\text{ef},\text{min}}$	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	$h_{\text{ef,max}}$	[mm]	76	100	110	130	114	150	185	210
Nominal diameter of drill bit	$d_0 =$	[mm]	10	12	15	18	24	24	28	32
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Depth of drill hole	$h_1 \geq$	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Diameter of clearance hole in the fixture	$d_{f} \! \leq \!$	[mm]	12	14	17	20	26	26	31	35
Thickness of countersunk washer SZ-SK	\mathbf{t}_{sk}	[mm]	4	5	6	7	-	-	-	-
Minimum thickness of fixture SZ-SK	t _{fix min} 2)	[mm]	8	10	14	18	-	-	-	-
Installation T _{inst} (SZ	Z-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
torque T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimum spacing 1) 3)	S _{min}	[mm]	50	50	60	70	100	100	125	150
cracked concrete	for c≥	[mm]	50	80	120	140	180	180	300	300
Minimum edge distance 1) 3)	C _{min}	[mm]	50	55	60	70	100	100	200	150
cracked concrete	$ \text{for s} \geq$	[mm]	50	100	120	160	220	220	350	300
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	60	70	100	100	125	150
uncracked concrete	for c ≥	[mm]	80	100	120	140	180	180	300	300
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	60	70	100	100	200	150
uncracked concrete	for s ≥	[mm]	100	120	120	160	220	220	350	300

¹⁾ Intermediate values by linear interpolation

Highload Anchor SZ	
Intended use Installation parameters, steel zinc plated	Annex B3

Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

3) For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.


Installation parameters, stainless steel A4 Table B2:

Fastener size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Minimum effective anchorage depth	$\mathbf{h}_{ef,min}$	[mm]	60	71	80	100
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	$h_1 \ge$	[mm]	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30
Diameter of clearance hole in the fixtu	re d _f ≤	[mm]	14	17	20	26
Thickness of countersunk washer SZ-	[mm]	5	6	7	-	
Minimum thickness of fixture SZ-SK	t _{fix min} 2)	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Installation torque	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
cracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	70	80
cracked concrete	for s ≥	[mm]	80	120	160	200
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
uncracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	85	70	180
uncracked concrete	for s ≥	[mm]	80	185	160	80

Highload Anchor SZ	
Intended use Installation parameters, stainless steel A4	Annex B4

¹⁾ Intermediate values by linear interpolation $^{2)}$ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). 3) For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

Installation instructions

Highload Anchor SZ	
Intended use Installation instructions	Annex B5

Table C1: Characteristic values for tension load, cracked concrete, static or quasi-static action, steel zinc plated

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation factor	γ _{inst}	[-]				1	,0			
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Partial factor	γ̃Ms	[-]				1	,5		•	
Pull-out failure										
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	12	16	25	36	44	50	65
Increasing factor for N _{Rk,p}	Ψc	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Concrete cone failure										
Minimum effective anchorage depth	$h_{\text{ef,min}}$	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Factor for cracked k-concrete k-	$_{1} = k_{cr,N}$	[-]				7	,7			

Highload Anchor SZ	
Performance Characteristic values for tension load, cracked concrete, static or quasi-static action, steel zinc plated	Annex C1

Table C2: Characteristic values for tension load, cracked concrete, static or quasi-static action, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16		
Installation factor	γ _{inst}	[-]	1,0					
Steel failure								
SZ-B								
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110		
Partial factor	γ̃Ms	[-]		1	,5	•		
SZ-S and SZ-SK								
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110		
Partial factor	γ̃Ms	[-]		1,	87	•		
Pull-out failure								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25	36		
Increasing factor for N _{Rk,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$					
Concrete cone failure								
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100		
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150		
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]	7,7					

Highload Anchor SZ	
Performance Characteristic values for tension load, cracked concrete, static or quasi-static action, stainless steel A4	Annex C2

Table C3: Characteristic values for **tension load, uncracked concrete**, static or quasi-static action, **steel zinc plated**

Static of quas				o p.c						
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation factor	γ_{inst}	[-]				1	,0			
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282
Partial factor	γ̃Ms	[-]				1	,5			
Pull-out failure										
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	17	20	30	36	50	1)	70	1)
Increasing factor for N _{Rk,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$					-	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	-
Splitting failure (The higher	resistance	of case	1 and ca	se 2 may	be applied	l)				
Case 1										
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	30	40	70	50	70
Edge distance	C _{cr,sp}	[mm]				1,5	h _{ef}			
Increasing factor for N ⁰ _{Rk,sp}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5			
Case 2										
Characteristic resistance in uncracked concrete	$N^0_{Rk,sp}$	[kN]				min (N _{Rk}	,p; N ⁰ _{Rk,c})			
Edge distance	C _{cr,sp}	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}	2 h _{ef}
Concrete cone failure										
Minimum effective anchorage depth	$h_{\text{ef,min}}$	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	$h_{\text{ef},\text{max}}$	[mm]	76	100	110	130	114	150	185	210
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}							
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]				11	,0			

 $^{^{\}mbox{\tiny 1)}}$ $N_{\mbox{\scriptsize Rk,p}}$ = $N^0_{\mbox{\scriptsize Rk,c}}$ calculated with $h_{\mbox{\scriptsize ef,min}}$

Highload Anchor SZ Performance

Characteristic values for **tension load**, **uncracked concrete**, static or quasi-static action, **steel zinc plated**

Annex C3

Table C4: Characteristic values for **tension load, uncracked concrete**, static or quasi-static action, **stainless steel A4**

Fastener size			12/M8	15/M10	18/M12	24/M16	
Installation factor	γ _{inst} [-] 1,0						
Steel failure							
SZ-B							
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110	
Partial factor	γ̃Ms	[-]		1	,5		
SZ-S and SZ-SK		1					
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110	
Partial factor	γ̃Ms	[-]		1,	87	•	
Pull-out failure							
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	16	25	35	50	
Increasing factor for N _{Rk,p}	Ψc	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$				
Splitting failure							
Edge distance	C _{cr,sp}	[mm]	180	235	265	300	
Concrete cone failure							
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100	
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150	
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}				
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]	11,0				

Highload Anchor SZ	
Performance Characteristic values for tension loads, uncracked concrete, static or quasi-static action, stainless steel A4	Annex C4

Table C5: Characteristic values of **shear load**, static or quasi-static action, **steel zinc plated**

	zine pie	ileu								
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Steel failure without	lever arn	n								
SZ-B										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	16	25	36	63	91	91	122	200
Ductility factor	k_7	[-]				1	,0			
Partial factor	$\gamma_{\sf Ms}$	[-]				1,	25			
SZ-S and SZ-SK										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	18	30	48	73	126	126	150	200
Ductility factor	k ₇	[-]				1	,0			
Partial factor	γ_{Ms}	[-]				1,:	25			
Steel failure with lev	er arm									
SZ-B, SZ-S und SZ-S	SK									
Anchorage depth	h _{ef,min} ≥	[mm]	50	60	71	80	100	115	125	150
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	266	519	898
Partial factor	γ_{Ms}	[-]				1,:	25			
Anchorage depth	h _{ef} ≥	[mm]	64	73	90	106	138	138	158	188
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	40	58	119	234	529	529	847	1343
Partial factor	$\gamma_{\sf Ms}$	[-]				1,2	25			
Concrete pry-out fai	lure									
Pry-out factor	k ₈	[-]	1,8 ¹⁾				2,0			
Concrete edge failui	re									
Effective length of fastener in shear loading	l _f	[mm]	h _{ef}							
Outside diameter of fastener	d_{nom}	[mm]	10	12	15	18	24	24	28	32

 $[\]frac{1}{10}$ k₈ = 2,0 for h_{ef} \geq 60 mm

Highload Anchor SZ Performance Characteristic values for shear load, static or quasi-static action, steel zinc plated Annex C5

Table C6: Characteristic values for **shear load**, static or quasi-static action, **stainless steel A4**

Fastener size			12/M8	15/M10	18/M12	24/M16	
Steel failure without lever arm		'					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	24	37	62	92	
SZ-B	,						
Ductility factor	k ₇	[-]		1	,0		
Partial factor	γ _{Ms}	[-]		1,	25		
SZ-S							
Ductility factor	k ₇	[-]		1,	0		
Partial factor	$\gamma_{\sf Ms}$	[-]		1,	36		
SZ-SK				-			
Ductility factor	k ₇	[-]		0,8		-	
Partial factor	γ_{Ms}	[-]		1,36		-	
Steel failure with lever arm						_	
Anchorage depth	h _{ef,min} ≥	[mm]	60	71	80	100	
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232	
SZ-B							
Partial factor	γ_{Ms}	[-]		1,	25		
SZ-S and SZ-SK							
Partial factor	γ_{Ms}	[-]		1,	56		
SZ-B, SZ-S and SZ-SK							
Anchorage depth	h _{ef} ≥	[mm]	73	90	106	138	
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	103	211	374	847	
Partial factor	γ _{Ms}	[-]	1,25				
Concrete pry-out failure							
Pry-out factor	k ₈ [-] 2,0						
Concrete edge failure							
Effective length of fastener in shear loading	I _f	[mm]		h	ef		
Outside diameter of fastener	d_{nom}	[mm]	12	15	18	24	

Highload Anchor SZ	
Performance Characteristic values for shear load, static or quasi-static action, stainless steel A4	Annex C6

Deutsches
Institut
für
Bautechnik

Table C7	Characteristic values for	seismic action	Category C	1 and C2 steel zinc	nlated
liable C/.	Characteristic values for	Seisille action,	Calegory	i and CZ, Steel Zinc	vialtu

Fastener size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Tension load									
Installation factor	γ́inst	[-]				1,0			
Steel failure	l		I						
Characteristic resistance category C1	$N_{Rk,s,eq,C1}$	[kN]	29	46	67	126	126	196	282
Characteristic resistance category C2	$N_{Rk,s,eq,C2}$	[kN]	29	46	67	126	126	196	282
Partial factor	$\gamma_{\sf Ms}$	[-]				1,5			
Pull-out failure									
Characteristic resistance category C1	$N_{Rk,p,eq,C1}$	[kN]	12	16	25	36	44,4	50,3	63,3
Characteristic resistance category C2	$N_{Rk,p,eq,C2}$	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3
Shear load									
Steel failure without lever	r arm								
SZ-B									
Characteristic resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
SZ-S							•		
Characteristic resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
SZ-SK						•	•		
Characteristic resistance category C1	$V_{Rk,s,eq,C1}$	[kN]	25,2	36,5	50,4	_	_	-	-
Characteristic resistance category C2	$V_{Rk,s,eq,C2}$	[kN]	19,2	29,3	39,4	-	-	-	-
Factor for annular gap	$lpha_{\sf gap}$	[-]				0,5			
Partial factor	γ̃Ms	[-]				1,25			

Highload Anchor SZ	
Performance Characteristic values for seismic action, steel zinc plated	Annex C7

Table C8: Characteristic values for seismic action, Category C1 and C2, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Tension load						
Installation factor	[-]					
Steel failure						
Characteristic resistance, category C1	$N_{Rk,s,eq,C1}$	[kN]	26	41	60	110
Characteristic resistance, category C2	$N_{Rk,s,eq,C2}$	[kN]	26	41	60	110
Partial factor SZ-B	γ_{Ms}	[-]		1,	5	
Partial factor SZ-S and SZ-SK	γ̃Ms	[-]		1,	87	
Pull-out failure						
Characteristic resistance, category C1	$N_{Rk,p,eq,C1}$	[kN]	9	16	26	36
Characteristic resistance, category C2	$N_{Rk,p,eq,C2}$	[kN]	4,8	16,5	24,8	44,5
Shear load						
Steel failure without lever arm						
SZ-B						
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Partial factor	γ̃Ms	[-]		1,	25	
SZ-S			-		•	
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Partial factor	γ̃Ms	[-]	1,36			
SZ-SK						
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	_
Partial factor	γ̃Ms	[-]		1,36		-
Factor for annular gap	$lpha_{\sf gap}$	[-]		0	,5	

Highload Anchor SZ	
Performance Characteristic values for seismic action, stainless steel A4	Annex C8

Table C9: Characteristic values under **fire exposure** in cracked and uncracked concrete C20/25 to C50/60

	,20/25 ti	0 030/0					ı				
Fastener size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Tension load										•	•
Steel failure											
Steel zinc plate	d										
	R30	_		1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Characteristic	R60	_ N	[kN]	0,8	1,5	3,2	4,6	8,	,6	13,5	19,5
resistance	R90	- N _{Rk,s,fi}	נאואן	0,6	1,0	2,1	3,0	5,	,0	7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,	,1	4,9	9,2
Stainless steel	A 4										
	R30			-	6,1	10,2	15,7	29,2	ı	-	-
Characteristic	R60	_ N	[LNI]	-	4,4	7,3	11,1	20,6	ı	-	-
resistance	R90	- N _{Rk,s,fi}	[kN]	-	2,6	4,3	6,4	12,0	-	-	-
	R120	_		-	1,8	2,8	4,1	7,7	-	-	-
Shear load											
Steel failure wit	hout leve	er arm									
Steel zinc plate	d										
-	R30		[kN]	1,0	1,9	4,3	6,3	11	11,6		26,3
Characteristic	R60	-		0,8	1,5	3,2	4,6	8,	,6	13,5	19,5
resistance	R90	$-V_{Rk,s,fi}$		0,6	1,0	2,1	3,0	5,	,0	7,7	12,6
	R120	_		0,4	0,8	1,5	2,0	3,	,1	4,9	9,2
Stainless steel	A4				<u> </u>	•					
	R30			-	14,3	22,7	32,8	61,0	-	-	_
Characteristic	R60	-	[kN]	-	11,1	17,6	25,5	47,5	-	-	-
resistance	R90	$-V_{Rk,s,fi}$		-	7,9	12,6	18,3	34,0	-	-	-
	R120	_		-	6,3	10,0	14,6	27,2	-	-	-
Steel failure wit	h lever a	rm				•					
Steel zinc plate	d										
•	R30			0,8	2,0	5,6	9,7	24	,8	42,4	83,6
Characteristic	R60	0		0,6	1,5	4,1	7,2		3,3	29,8	61,9
bending resistance	R90	- M ⁰ _{Rk,s,fi}	[NM]	0,4	1,0	2,7	4,7		,9	17,1	40,1
i Colotali CC	R120	_		0,3	0,8	1,9	3,1		,6	10,7	29,2
Stainless steel	A4					•					
	R30			_	6,2	13,2	24,4	61,8	_	_	-
Characteristic	R60	0	<u> </u>	-	4,5	9,4	17,2	43,6	-	_	_
bending resistance	R90	- M ⁰ _{Rk,s,fi}	[Nm]	-	2,7	5,6	10,0	25,3	-	-	_
rosistance	R120	_		_	1,8	3,6	6,4	16,2	-	_	_

Highload Anchor S	Z
-------------------	---

Performance

Characteristic values under fire exposure

Annex C9

Table C10: Displacements under tension and shear load, s	steel zinc plated
--	-------------------

Fastener size			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24 /M16L	28/ M20	32/ M24
Tension load			IVIO	IVIO	IVITO	IVIIZ	IVIIO	/WITCL	IVIZU	10124
Tension load in	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
cracked concrete										·
Displacement	δ_{N0}	[mm]	0,5	0,5	0,5	0,7	0,8	0,7	0,9	1,4
-	$\delta_{N_{\infty}}$	[mm]	2,0	2,0	1,3	1,3	1,3	1,3	1,4	1,9
Tension load in uncracked concrete	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Displacement	$\underline{\hspace{1cm}}\delta_{N0}$	[mm]	0,8	1,0		1,1		1,3	0,3	0,7
Бюріцовіноні	$\delta_{N^{\infty}}$	[mm]	3	,4		1,7		2,3	1,4	0,7
Seismic action C2										
Displacement for DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Shear load										
SZ-B										
Shear load in cracked and uncracked concrete	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Dianlacoment	$\delta_{ m V0}$	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3	10,5
Displacement	$\delta_{V_{\infty}}$	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5	15,8
Seismic action C2										
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Displacement for ULS	$\delta_{V,eq\;(ULS)}$	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S										
Shear load in cracked and uncracked concrete	V	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
Displacement	$\delta_{ m V0}$	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3	10,5
Displacement	$\delta_{V^{\infty}}$	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5	15,8
Seismic action C2										
Displacement for DLS	$\delta_{V,\text{eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK										
Shear load in cracked a uncracked concrete	nd V	[kN]	10,1	17,1	27,5	41,5	-	-	-	-
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	-	-	-	-
Dishiacement	$\delta_{V^{\infty}}$	[mm]	4,4	3,8	5,4	5,3	-	-	-	-
Seismic action C2										
Displacement for DLS	$\delta_{V,eq\;(DLS)}$	[mm]	-	3,1	3,9	3,9	-	-	-	-
Displacement for ULS	$\delta_{V,eq\;(ULS)}$	[mm]	-	10,2	11,8	13,0	-	_	-	-

Highload Anchor SZ

Performance

Displacements under tension and shear load, steel zinc plated

Annex C10

Table C11: Displacements under tension and shear load, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Tension load						
Tension load in cracked concrete	N	[kN]	4,3	7,6	12,1	17,0
Dianlessment	δ_{N0}	[mm]	0,5	0,5	1,3	0,5
Displacement	$\delta_{N^{\scriptscriptstyle{\infty}}}$	[mm]	1,2	1,6	1,8	1,6
Tension load in uncracked concrete	N	[kN]	7,6	11,9	16,7	24,1
Displacement	δ_{N0}	[mm]	0,2	0,3	1,2	1,5
Displacement	$\delta_{N_{\infty}}$	[mm]	1,1	1,1	1,1	1,1
Seismic action C2						
Displacement for DLS	$\delta_{N,eq\;(DLS)}$	[mm]	4,7	4,5	4,3	4,9
Displacement for ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	13,3	12,7	9,7	10,1
Shear load						
Shear load in cracked concrete	V	[kN]	13,9	21,1	34,7	50,8
Dianlessment	$\delta_{ m V0}$	[mm]	3,4	4,9	4,8	6,7
Displacement	$\delta_{V^{\infty}}$	[mm]	5,1	7,4	7,1	10,1
Seismic action C2		·				
SZ-B and SZ-S						
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Displacement for ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Displacement for DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	2,5	2,8	2,9	-
Displacement for ULS	$\delta_{ m V,eq~(ULS)}$	[mm]	5,8	5,9	6,9	-

	Н	ia	hl	oa	d	Ar	ıcl	hor	SZ	
•	•	'9		ou	u	~;	10	1101	O_	

Performance

Displacements under tension and shear load, stainless steel A4

Annex C11