

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0337 of 4 September 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

CELO Multifunction frame plug MFR

Plastic anchors for redundant non-structural systems in concrete and masonry

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

CELO Werk I Industriestrasse 6 D-86551 Aichach Germany

26 pages including 3 annexes which form an integral part of this assessment

EAD 330284-00-0604

ETA-07/0337 issued on 20 June 2019

European Technical Assessment ETA-07/0337

Page 2 of 26 | 4 September 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z40323.19 8.06.04-193/19

European Technical Assessment ETA-07/0337

Page 3 of 26 | 4 September 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Multifunction frame plug in the range of MFR 8, MFR 10 and MFR 14 is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel or stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Resistance to steel failure under tension loading	See Annex C 1
Resistance to steel or polymer failure under shear loading	See Annex C 1
Resistance to pull-out or concrete failure or polymer failure under tension loading (base material group a)	See Annex C 2
Resistance in any load direction without lever arm (base material group b, c and d)	See Annexes C 4 - C 9
Edge distance and spacing (base material group a)	See Annex B 3
Edge distance and spacing (base material group b, c and d)	See Annex B 4 – B 5
Displacements under short-term and long-term loading	See Annex C 7 - C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A 1		
Resistance to fire	See Annex C 3		

Z40323.19 8.06.04-193/19

European Technical Assessment ETA-07/0337

Page 4 of 26 | 4 September 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

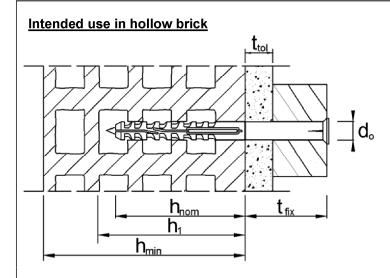
In accordance with the European Assessment Document EAD 330284-00-0604 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

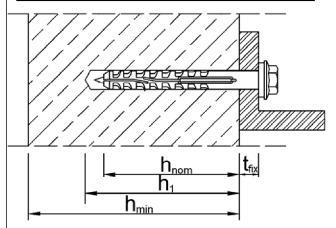
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

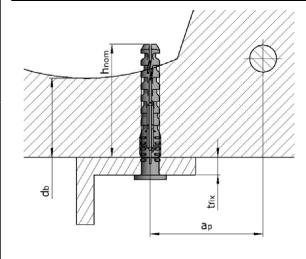
beglaubigt:


E. Aksünger

Issued in Berlin on 4 September 2019 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

Z40323.19 8.06.04-193/19



Intended use in concrete or solid base material

Intended use in precast prestressed hollow core slabs

- h_{nom} = overall plastic anchor embedment depth in the base material
 - = depth of drilled hole to deepest point
- h_{min} = Minimum thickness of member
- t_{fix} = thickness of fixture
 - = thickness of layer or non-load bearing coating
 - = mirror thickness
 - = distance between plug and reinforcement

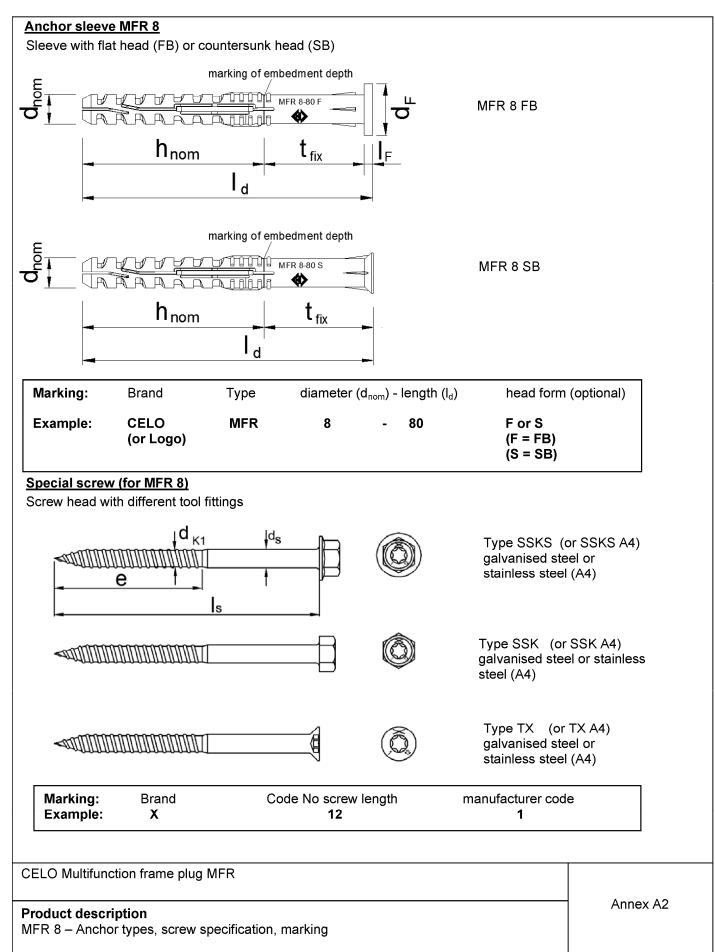
CELO Multifunction frame plug MFR

Product description

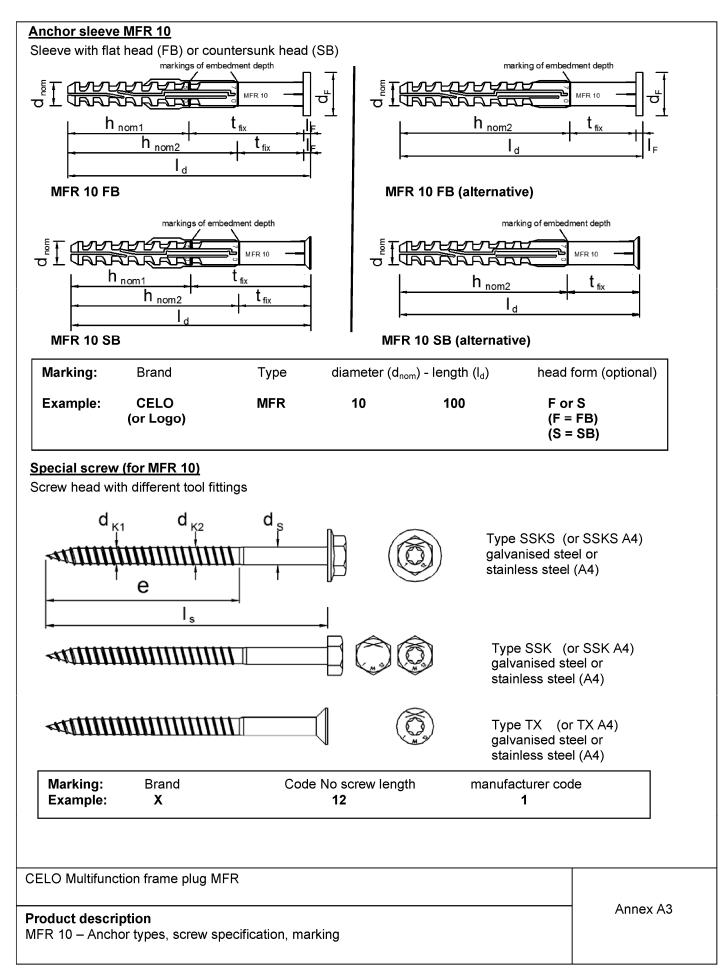
Installed condition

Annex A1

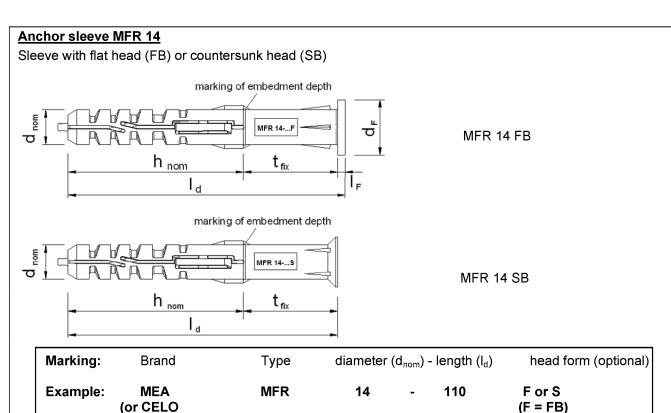
Z49405.19 8.06.04-193/19

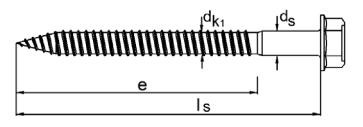

 h_1

 d_b


 \mathbf{a}_{p}

Electronic copy of the ETA by DIBt: ETA-07/0337





Special screw (for MFR 14)

Screw head with different tool fittings

or Logo)

Type SSKS (or SSKS A4) galvanised steel or stainless steel (A4), optional with glide coating

(S = SB)

Type TX (or TX A4) galvanised steel or stainless steel (A4), optional with glide coating

Marking:BrandCode No screw lengthmanufacturer codeExample:X111

CELO Multifunction frame plug MFR

Product description

MFR 14 - Anchor types, screw specification, marking

Annex A4

Table A5.1: Dimension [mm]

	Anchor sleeve								
	I _d	Ø d _{nom}	t _{fix} min	t _{fix} max	h _{nom1}	h _{nom2}	I _F ²⁾	Ø d _F	
MFR 8	≥60	8	≥ 1	110	50		2,3	14	
MFR 10	≥80	10	≥ 1	500	50	70	3	18	
MFR 14	≥80	14	≥ 1	500	70		3	22	

	Special screw							
	l _s 1)	Ø d _s	Ø d _{k1}	Ø d _{k2}	е			
for MFR 8	≥65	6	5,2	-	48			
for MFR 10	≥85	7	5,8	6,3	75			
for MFR 14	≥85	10	8,4	-	75			

 $^{^{1)}}$ To insure, that the screw penetrates the anchor sleeve, $l_{\rm s}~$ must be $l_{\rm d}$ + 5 mm

Table A5.2: Materials

Designation	Material
anchor sleeve	Polyamid PA 6
special screw (steel, zinc plated)	Steel, zinc plated galvanised ≥ 5 µm acc. EN ISO 4042:1999 f _{yk} ≥ 480 N/mm², f _{uk} ≥ 600 N/mm² (≥ 6.8 screw)
special screw (stainless steel)	Stainless steel A4 according to EN 10088-3:2014, material 1.4401 or 1.4571 $f_{yk} \geq 450 \text{ N/mm}^2, f_{uk} \geq 700 \text{ N/mm}^2 \\ \text{strength class } 70$

CELO Multifunction frame plug MFR

Product description
Dimensions and materials

Annex A5

²⁾ only valid for plan head version

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Multiple fixing of non-structural applications

Base materials:

- Reinforced or unreinforced normal weight concrete with strength classes ≥ C12/15 (base material group a) according to EN 206:2013, Annex C2.
- Precast prestressed hollow core slabs with strength classes ≥ C45/55 (base material group a) according to Annex C2
- Solid brick masonry (base material group b) according to Annex C4-C6
 Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- Hollow brick masonry (base material group c) according to Annex C4-C6
- Aerated concrete (base material group d) according to Annex C10
- Mortar strength class of the masonry ≥ M2,5 according to EN 998-2:2010.
- For other base materials of the base material groups a, b, c or d the characteristic resistance of the anchor may be determined by job site tests according to TR 051:2018-04.

Temperature Range for use:

- a: 40° C to + 40° C (max. short term temperature + 40° C and max long term temperature + 24° C)
- b: 40° C to + 80° C (max. short term temperature + 80° C and max long term temperature + 50° C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (screw with zinc coated steel, stainless steel)
- The specific screw made of galvanised steel may also be used in structures to external atmospheric
 exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of
 the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be
 an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the
 screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g.
 undercoating or body cavity protection for cars)
- Structures subject to external atmospheric exposure (includ. industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with TR 064:2018-05 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple use for non-structural application according to TR 064:2018-05.

Installation:

- Hole drilling by the drill methodes according to Annex C4, C5 or C6 for base material group b and c, hammer drilling is to use for base material group a.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Temperature of the plug at installation from 0°C to + 50°C.
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks.

CELO Multifunction frame plug MFR	
Intended use Specification of intended use	Annex B1

Z49405.19 8.06.04-193/19

Electronic copy of the ETA by DIBt: ETA-07/0337

Table B2.1: Installation parameter in concrete, masonry and AAC

Anchor type			MFR 8	MFR 10		MFR 14
Overall plastic anchor embedment depth in the base material ^{1), 2)}	h _{nom} ≥	[mm]	50	50	70	70
Drill hole diameter	d ₀ <	[mm]	8	10		14
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	8,45	10,45		14,50
Depth of drill hole to the deepest point 1)	h ₁ ≥	[mm]	60	60	80	80
Diameter of clearence hole in the fixture	$d_f \leq$	[mm]	9,0	10,5		15

¹⁾ See Annex A1

 $h_{nom} > 50 \text{ mm (MFR 8)}$

 $h_{nom1} > 50$ mm respectively $h_{nom2} > 70$ mm (MFR 10)

 $h_{nom} > 70 \text{ mm (MFR 14)}$

has to be detected by job site tests.

Table B2.2: Installation parameter in precast prestressed hollow core slabs

Anchor type			MFR 8	MFR 10
Drill hole diameter	d ₀ <	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Depth of drill hole to the deepest point 1)	h ₁ ≥	[mm]	60	80
Overall plastic anchor embedment depth in the concrete core slab	h _{nom} ≥	[mm]	50	70
Diameter of clearence hole in the fixture	$d_f \leq$	[mm]	9,0	10,5
Bottom flange thickness	d _b ≥	[mm]	35	35
Distance between plug position and prestressing steel	a _p ≥	[mm]	50	50

¹⁾ See Annex A1

CELO Multifunction frame plug MFR

Product description
Installation parameters in concrete, masonry, AAC and hollow core slabs

Annex B2

²⁾ For hollow and perforated masonry the influence of

English translation prepared by DIBt

Table B3.1: Minimum thickness of member, edge distance and anchor spacing in concrete

MFR 8: Fixing points with a spacing $a \le 55$ mm are considered as a group with a max. characteristic resistance $N_{Rk,p}$ acc. to Table C2.1. For a > 55 mm the anchors are considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ acc. to Table C2.1. and C2.2.

MFR 10: Fixing points with a spacing a \leq 75 mm are considered as a group with a max. characteristic resistance $N_{Rk,p}$ acc. to Table C2.1. For a > 75 mm the anchors are considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ acc. to Table C2.1. and C2.2.

MFR 14: Fixing points with a spacing a \leq 80 mm are considered as a group with a max. characteristic resistance N_{Rk,p} acc. to Table C2.1. For a > 80 mm the anchors are considered as single anchors, each with a characteristic resistance N_{Rk,p} acc. to Table C2.1.

	Minimum thickness	Characteristic edge distance	Minimum edge distances	Minimum spacing
	h _{min} [mm]	C _{cr,N} [mm]	c _{min} [mm]	s _{min} [mm]
MFR 8				
Concrete ≥ C16/20	100	50	60	50
Concrete C12/15	100	70	85	70
MFR 10 h _{nom1} = 50 mm				
Concrete ≥ C16/20	100	50	50	50
Concrete ≥ C12/15	100	70	70	70
MFR 10 h _{nom2} = 70 mm				
Concrete ≥ C16/20	110	70	60	50
Concrete C12/15	110	100	85	70
MFR 14				
Concrete ≥ C16/20	120	80	100	100
Concrete C12/15	120	112	140	140

<u>Table B3.2: Minimum thickness of member, edge distance and anchor spacing in precast prestressed</u> hollow core slabs

	Minimum thickness	Characteristic edge distance	Minimum edge distances	Minimum spacing
	h_{min} [mm]	c _{cr,N} [mm]	c_{min} [mm]	s _{min} [mm]
MFR 8				
Concrete ≥ C45/55	200	50	60	50
MFR 10				
Concrete ≥ C45/55	200	70	60	50

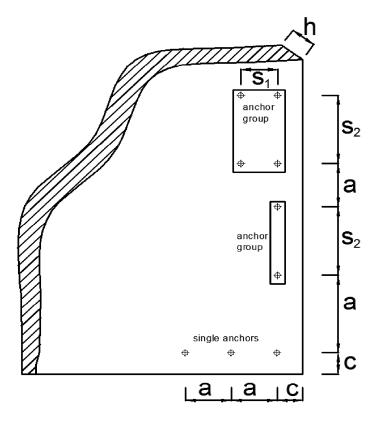
CELO Multifunction frame plug MFR	A
Intended use Minimum thickness, spacing, edge distance in concrete and hollow core slabs	Annex B3

Table B4: Minimum thickness of member, edge distance and anchor spacing in masonry

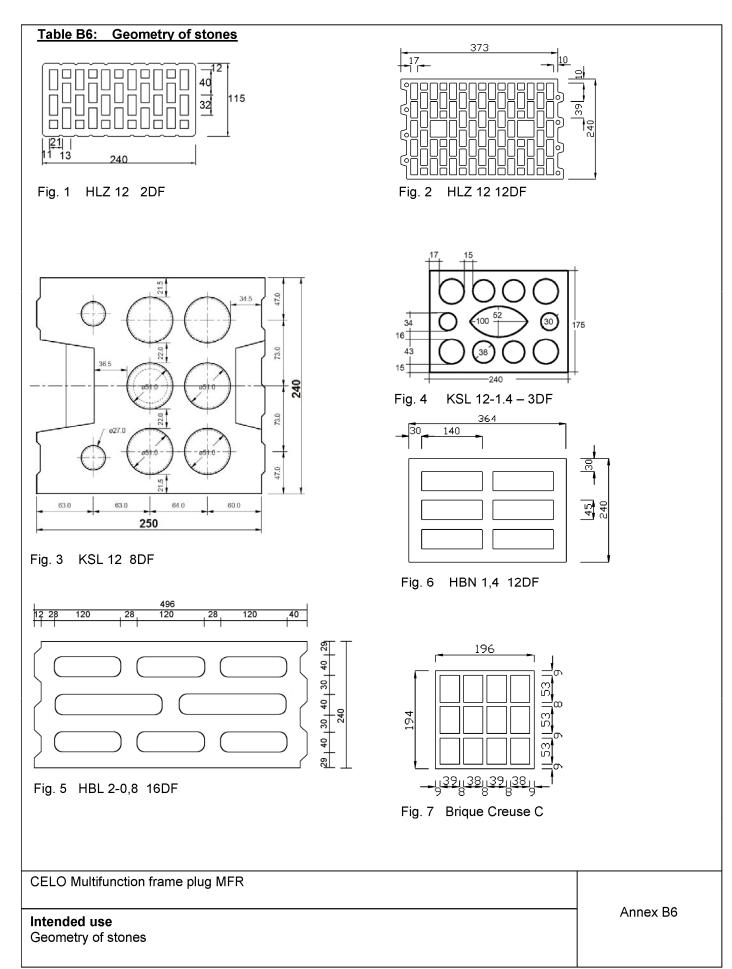
Base material 1)	Minimum	Minimum		Minimum spacing		
	thickness of member	edge distance	Single anchor	Anchor	Group ²⁾	
				perpendicular to free edge	parallel to free edge	
	h _{min}	C _{min}	a _{min}	S _{1,min}	S _{2,min}	
	[mm]	[mm]	[mm]	[mm]	[mm]	
MFR 8						
Clay brick Mz-1.8 - NF	115	100	250	200	400	
Sand-lime solid brick KS - NF	115	100	250	200	400	
Hollow clay brick HLz 12-1.0 - 12DF	240	100	250	200	400	
Hollow sandlime brick KSL 12-1.4 - 3DF	175	100	250	200	400	
Hollow light concrete bl. Hbl 2-0.8 - 16DF	240	100	250	200	400	
Hollow concrete block Hbn 1.4 - 12DF	240	100	250	200	400	
MFR 10 h _{nom1} = 50 mm						
Clay brick Mz-1.8 2DF	115	65	250	200	400	
Sand-lime solid brick KS – 3DF	175	65	250	200	400	
Hollow clay brick HLz 12-1.0 - 12DF	240	100	250	200	400	
Hollow sandlime brick KSL 12-1.4 - 8DF	240	100	250	200	400	
Hollow concrete block Hbn 1.4 - 12DF	240	100	250	200	400	
MFR 10 h _{nom2} = 70 mm						
Clay brick Mz-1.8 NF	115	100	250	200	400	
Sand-lime solid brick KS - NF	115	100	250	200	400	
Hollow clay brick HLz 12-1.0 - 2DF	115	100	250	200	400	
Hollow sandlime brick KSL 12-1.4 - 8DF	240	100	250	200	400	
Hollow clay brick Brique Creuse C 3-0.7	200	100	250	200	400	
Hollow concrete block Hbn 1.4 - 12DF	240	100	250	200	400	
MFR 14						
Clay brick Mz-1.8 NF	115	100	250	200	400	
Sand-lime solid brick KS - 8DF	240	100	250	200	400	
Sand-lime solid brick KS - 2DF	115	100	250	200	400	
Hollow clay brick HLz 12-1.0 - 2DF	115	120	250	240	480	
Hollow sandlime brick KSL 12-1.4 - 8DF	240	100	250	200	400	

¹⁾ Information for base material masonry: see Annex C4, Table C4

²⁾ The design method is valid for single anchors and anchor groups with two or four anchors.

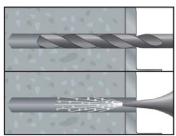

CELO Multifunction frame plug MFR	
Intended use Minimum thickness, spacing, edge distance in masonry	Annex B4

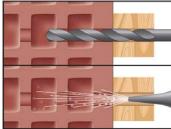
<u>Table B5: Minimum thickness of member, edge distance and anchor spacing in AAC</u> (Autoclaved aerated concrete)


MFR 10 and MFR 14	Minimum Minimum Min		nimum spacing			
	thickness of member	edge distance	Single anchor	or Anchor Group 1)		
	of member	distance		perpendicular to free edge	parallel to free edge	
Base material	h _{min}	C _{min}	a _{min}	S _{1,min}	S _{2,min}	
	[mm]	[mm]	[mm]	[mm]	[mm]	
EN 771-4 AAC 2	100	50	250	100	200	
EN 771-4 AAC 4	100	75	250	150	300	
EN 771-4 AAC 6	100	150	250	200	400	

¹⁾ The design method is valid for single anchors and anchor groups with two or four anchors.

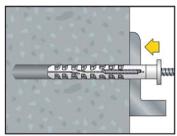
CELO Multifunction frame plug MFR	
Intended use Minimum thickness, spacing, edge distance in AAC	Annex B5

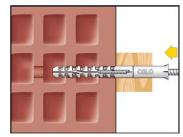



Installation instruction MFR

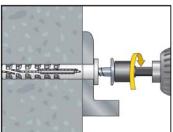
in concrete or

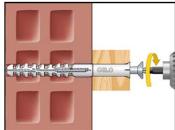
hollow core slabs

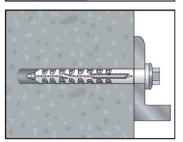


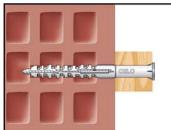

1. Drill the borehole and clean the hole.

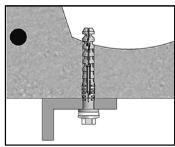
Drilling methode:


Concrete: hammer drill


Masonry: According Tab. C4, C5, C6




2. Hammer in the plug slightly through the fixture part till the plug is flush to this. Minimum setting depth (50 mm or 70 mm) must be observed.



3. Tighten the screw with screw driver till the screw touches the collar of the sleeve. The screw must fit tight on the surface of the fixture part.

4. Correctly installed plug with screw in concrete or in masonry.

4. Correctly installed plug with screw in hollow concrete core slab.

CELO Multifunction frame plug MFR

Intended use

Installation instruction

Annex B7

Table C1.1: Characteristic bending resistance of the screw

Screw Ø 6 mm for MFR 8		galvanised steel	stainless steel
Characteristic bending resistance	M _{Rk,s} [Nm]	8,8	10,3
Partial safety factor	γ _{Ms} 1)	1,25	1,56
Screw Ø 7 mm for MFR 10		galvanised steel	stainless steel
Characteristic bending resistance	M _{Rk,s} [Nm]	15,3	17,8
Partial safety factor	γ _{Ms} 1)	1,25	1,56
Screw Ø 10 mm for MFR 14		galvanised steel	stainless steel
Characteristic bending resistance	M _{Rk,s} [Nm]	36,7	42,9
Partial safety factor	γ _{Ms} 1)	1,25	1,56

¹⁾ in absence of other national regulations

Table C1.2: Characteristic resistance of the screw

Failure of expansion element (special			
Special screw Ø 6 mm for MFR 8		galvanised steel	stainless steel
Characteristic tension resistance	N _{Rk,s} [kN]	11,7	13,7
Partial safety factor	γ _{Ms} 1)	1,5	1,87
Characteristic shear resistance	$V_{Rk,s}$ [kN]	5,8	6,8
Partial safety factor	γ _{Ms} 1)	1,25	1,56
Special screw Ø 7 mm for MFR 10		galvanised steel	stainless steel
Characteristic tension resistance	N _{Rk,s} [kN]	17,0	19,8
Partial safety factor	γ _{Ms} 1)	1,5	1,87
Characteristic shear resistance	$V_{Rk,s}$ [kN]	8,5	9,9
Partial safety factor	γ _{Ms} 1)	1,25	1,56
Special screw Ø 10 mm for MFR 14		galvanised steel	stainless steel
Characteristic tension resistance	$N_{Rk,s}$ [kN]	30,5	35,5
Partial safety factor	γ _{Ms} 1)	1,5	1,87
Characteristic shear resistance	$V_{Rk,s}$ [kN]	15,2	17,8
Partial safety factor	γ _{Ms} 1)	1,25	1,56

¹⁾ in absence of other national regulations

CELO Multifunction frame plug MFR

Performances
Characteristic resistance and characteristic bending resistance of the screw

Annex C1

<u>Table C2.1: Characteristic resistance for use in cracked and uncracked concrete</u>

(base material group "a")

Pull-out failure (plastic sleeve)			Concrete	≥ C16/20	Concrete C12/15		
			ϑ =	ϑ =	ϑ =	ϑ =	
			24/40 °C	50/80 °C	24/40 °C	50/80 °C	
MFR 8							
Characteristic resistance	N _{Rk,p}	[kN]	2,5	2,5	1,5	1,5	
Partial safety factor	γ _{Mc} 1)		1,8	1,8	1,8	1,8	
MFR 10 h _{nom1} = 50 mm							
Characteristic resistance	N _{Rk,p}	[kN]	2,5	2,0	1,5	1,5	
Partial safety factor	γ _{Mc} 1)		1,8	1,8	1,8	1,8	
MFR 10 h _{nom2} = 70 mm							
Characteristic resistance	N _{Rk,p}	[kN]	4,0	3,0	2,5	2,0	
Partial safety factor	γ _{Mc} 1)		1,8	1,8	1,8	1,8	
MFR 14							
Characteristic resistance	N _{Rk,p}	[kN]	4,5	3,0	3,0	2,0	
Partial safety factor	γ _{Mc} 1)		1,8	1,8	1,8	1,8	

¹⁾ In absence of other national regulations

<u>Table C2.2: Characteristic resistance for use in precast prestressed hollow core slabs</u>
(base material group "a")

Pull-out failure (plastic sleeve)		Precast prestressed hollow core slabs, Concrete ≥ C45/55			
79.5 117 40 117 40			Producer: DW Systembau, D-29640 Schneverdingen		
MFR 8	₹ 8		Bottom flange thickness		
Characteristic resistance	$N_{Rk,p}$	[kN]	d _b ≥ 35 mm	3,50	
Partial safety factor	γ _{Mc} 1)			1,8	
MFR 10					
Characteristic resistance	$N_{Rk,p}$	[kN]	d _b ≥ 35 mm	1,20	
Partial safety factor	γ _{Mc} 1)			1,8	

¹⁾ In absence of other national regulations

CELO Multifunction frame plug MFR	
Performances Characteristic resistance for use in concrete and in precast hollow core slabs	Annex C2

Table C3.1: Displacements under tension and shear loading in concrete

	Tension load			Shear load			
Concrete ≥ C16/20	N $^{1)}$ δ_{NO} $\delta_{N\infty}$		V 1)	$\delta_{ extsf{VO}}$	δ _{∨∞}		
MFR 8	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	
temperature ϑ = 24/40 °C	0,99	0,25	0,05	2,47	0,80	1,20	
temperature ϑ = 50/80 °C	0,99	0,25	0,06	2,47	0,80	1,20	
MFR 10 h _{nom1} = 50 mm							
temperature ϑ = 24/40 °C	0,99	0,01	0,03	1,04	0,17	0,26	
temperature ϑ = 50/80 °C	0,79	0,30	0,60	1,04	0,17	0,26	
MFR 10 h _{nom2} = 70 mm							
temperature ϑ = 24/40 °C	1,59	0,12	0,15	3,37	2,20	3,30	
temperature ϑ = 50/80 °C	1,19	0,11	0,15	3,37	2,20	3,30	
MFR 14							
temperature ϑ = 24/40 °C	1,79	0,30	0,60	6,04	2,50	3,75	
temperature ϑ = 50/80 °C	1,19	0,25	0,50	6,04	2,50	3,75	

¹⁾ Intermediate values by linear interpolation

Table C 3.2: Value under fire exposure in concrete C20/25 to C50/60 in any load direction, no permanent centric tension load and without lever arm, fastening of facade systems

Anchor type	Fire resistance class	F _{Rk,fi,90}
MFR 10	R 90	0,8 kN
MFR 14	R 90	0,8 kN

CELO Multifunction frame plug MFR

Performances
Displacement under tension and shear loading in concrete,
Value under fire exposure

Annex C3

<u>Table C4: Characteristic resistance F_{Rk} [kN] in solid and hollow or perforated masonry</u>
(base material group "b" + "c") for MFR 8

MFR 8	Bulk density class p	Minimum compressive Strength	Minimum DF or minimum size (L x W x H)	figure/ geometry	drill method H= hammer	Characteristic resistance F _{Rk} 1)
					R= rotary	[kN]
Base material	[kg/dm³]	[N/mm²]	[mm]			ϑ = 24/40 °C ϑ = 50/80 °C
Clay brick Mz EN 771-1:2011+A1:2015	≥ 1,8	≥ 20	NF (240*115*71)		н	1,50
Clay brick Mz EN 771-1:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	NF (240*116*71)		Н	0,90
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	≥ 20	2DF (240*115*113)		Н	3,00
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	2DF (240*115*113)		Н	2,00
Hollow clay brick HLz EN 771-1:2011+A1:2015	1,0	12	12 DF (373*240*249)	Annex B6 figure 2	R only	0,50
Hollow Sand-lime brick KSL	≥ 1,4	17	3 DF	Annex B6	R	1,20
EN 771-2:2011+A1:2015	2 1,4	12	(240*175*113)	figure 4		0,75
Hollow light concrete block Hbl EN 771-3:2011+A1:2015	≥ 0,8	2	16 DF 500*240*248	Annex B6 figure 5	R	0,30
Hollow concrete block Hbn EN 771-3:2011+A1:2015	≥ 1,4	25	12 DF 365*240*238	Annex B6 figure 6	н	1,20
Partial safety factor 2)					γ _{Mm}	2,5

Characteristic resistance for tension, shear or combined tension and shear loading
 In absence of other national regulations

CELO Multifunction frame plug MFR

Performances
MFR 8 – Characteristic resistance for use in masonry

Annex C4

(base material group "b" + "c") for MFR 10

MFR 10	Bulk density class p	Minimum compressive strength	Minimum DF or minimum size (L x W x H)	figure/ geo- metry	drill method H= hammer	resisi F _{Rk} 1) h _{nom1}	Characteristic resistance F _{Rk} 1) [kN] h _{nom1} = 50 mm		cteristic tance [kN]
Base material	[kg/dm³]	[N/mm²]	[mm]		R= rotary	ϑ = 24/40 °C	ϑ = 50/80 °C	ϑ = 24/40 °C	ϑ = 50/80 °C
Clay brick Mz EN 771-1:2011+A1:2015	≥ 1,8	≥ 20	NF (240*116*71)		Н	3,5	3,0	3,0	2,5
Clay brick Mz EN 771-1:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	NF (240*116*71)		Н	2,5	2,0	2,0	1,5
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	≥ 20	NF (240*115*70)		Н	4,0	3,5	3,0	2,5
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	NF (240*115*70)		Н	2,5	2,5	2,0	2,0
Hollow clay brick HLz EN 771-1:2011+A1:2015	≥ 1,0	12	2 DF (235*112*115)	Annex B6 figure 1	R only	-	-	0,75	0,60
Hollow clay brick HLz EN 771-1:2011+A1:2015	≥ 1,0	12	12 DF (373*240*249)	Annex B6 figure 2	R only	1,2	1,2	-	-
Hollow Sand-lime brick KSL EN 771-2:2011+A1:2015	≥ 1,4	12	8 DF (250*240*237)	Annex B6 figure 3	R	1,5	1,2	0,9	0,6
Hollow concrete block Hbn EN 771-3:2011+A1:2015	≥ 1,4	25	12 DF (365*240*238)	Annex B6 figure 6	Н	2,5	2,0	0,75	0,75
Hollow clay brick Brique Creuse C LD 3-0,7-500x200x200 EN 771-1:2011+A1:2015	≥ 0,7	3	(496*196*194)	Annex B6 figure 7	R only	-	-	0,30	0,30
Partial safety factor 2)					γ _{Mm}		2	,5	

Characteristic resistance for tension, shear or combined tension and shear loading
 In absence of other national regulations

CELO Multifunction frame plug MFR Annex C5 **Performances** MFR 10 - Characteristic resistance for use in masonry

Table C6: Characteristic resistance F_{Rk} [kN] in solid and hollow or perforated masonry (base material group "b" + "c") for MFR 14

MFR 14	Bulk density class p	Minimum Compres- sive strength f _b	Minimum DF or minimum size (L x W x H)	figure/ geometry	drill method H= hammer R= rotary	resis F _i	cteristic stance
Base material	[kg/dm³]	[N/mm²]	[mm]			ϑ = 24/40 °C	ϑ = 50/80 °C
Clay brick Mz EN 771-1:2011+A1:2015	≥ 1,8	≥ 20	NF (240*116*71)		Н	4,5	3,0
Clay brick Mz EN 771-1:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	NF (240*116*71)		Н	3,0	2,0
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	≥ 20	8 DF (250*240*237)		Н	5,0	4,5
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	8 DF (250*240*237)		Н	3,5	3,0
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	≥ 20	2 DF (240*115*113)		Н	4,5	4,0
Sand-lime solid brick KS EN 771-2:2011+A1:2015	≥ 1,8	10 ≤ f _b < 20	2 DF (240*115*113)		Н	3,0	2,5
Hollow clay brick HLz EN 771-1:2011+A1:2015	≥ 1,0	12	2 DF (235*115*113)	Annex B6 figure 1	R only	0,75	0,5
Hollow Sand-lime brick KSL EN 771-2:2011+A1:2015	≥ 1,4	12	8 DF (250*240*237)	Annex B6 figure 3	R	1,2	0,75
Partial safety factor 2)					γ _{Mm}	2	2,5

Characteristic resistance for tension, shear or combined tension and shear loading

2) In absence of other national regulations

CELO Multifunction frame plug MFR	
Performances MFR 14 – Characteristic resistance for use in masonry	Annex C6

Table C7: Displacements under tension and shear loading in masonry for temperature $\vartheta = 24/40 \, ^{\circ}\text{C}$

	Displacements				Disp	
Base material	Τe	ension load	d			S
	N	δ_{NO}	δ _{N∞}		V	
MFR 8	[kN]	[mm]	[mm]		[kN]	
Clay brick Mz - NF	0,26	0,02	0,04		0,26	
Sand-lime solid brick KS – 2 DF	0,57	0,33	0,66		0,57	
Hollow clay brick HLz 12	0,14	0,01	0,02		0,42	
Hollow Sand-lime brick KSL 12	0,25	0,11	0,22		0,20	
Hollow light concrete block Hbl 2	0,09	0,02	0,04		0,13	
Hollow concrete block Hbn	0,08	0,02	0,04		0,09	
MFR 10 h _{nom1} = 50 mm						
Clay brick Mz - NF	1,00	0,01	0,03		1,00	
Sand-lime solid brick KS - NF	1,14	0,02	0,03		1,14	
Hollow clay brick HLz 12-1.0	0,34	0,01	0,01		0,34	
Hollow Sand-lime brick KS L 12-1,4	0,43	0,01	0,01		0,43	
Hollow concrete block Hbn	0,71	0,01	0,02		0,71	
MFR 10 h _{nom2} = 70 mm						
Clay brick Mz - NF	0,86	0,2	0,4		0,86	
Sand-lime solid brick KS - NF	0,86	0,2	0,4		0,86	
Hollow clay brick HLz 12-1.0	0,21	0,1	0,2		0,21	
Hollow Sand-lime brick KS L 12-1,4	0,26	0,1	0,2		0,26	
Brique Creuse C LD 3-0,7	0,09	0,2	0,4		0,09	
Hollow concrete block Hbn	0,08	0,01	0,02		0,23	
MFR 14						
Clay brick Mz - NF	1,29	0,2	0,4		1,29	
Sand-lime solid brick KS - 8 DF	1,43	0,2	0,4		1,43	
Sand-lime solid brick KS - 2 DF	1,29	0,2	0,4		1,29	
Hollow clay brick HLz 12 - 1.0	0,21	0,1	0,2		0,21	
Hollow Sand-lime brick KS L 12 - 1,4	0,34	0,1	0,2		0,34	

Dis	Displacements					
Shear load						
V	$\delta_{ extsf{VO}}$	δ _{V∞}				
[kN]	[mm]	[mm]				
0,26	0,22	0,33				
0,57	0,48	0,72				
0,42	0,08	0,12				
0,20	0,37	0,55				
0,13	0,02	0,03				
0,09	0,08	0,11				
1,00	0,83	1,25				
1,14	0,95	1,43				
0,34	0,28	0,42				
0,43	0,36	0,54				
0,71	0,59	0,89				
0,86	0,71	1,07				
0,86	0,71	1,07				
0,21	0,43	0,64				
0,26	0,51	0,77				
0,09	0,17	0,26				
0,23	0,16	0,23				
1,29	1,07	1,61				
1,43	1,19	1,79				
1,29	1,07	1,61				
0,21	0,43	0,64				
0,34	0,69	1,03				

CELO Multifunction frame plug MFR	
Performances Displacement for use in masonry, temperature ϑ = 24/40 °C	Annex C7

Table C8: Displacements under tension and shear loading in masonry for temperature ϑ = 50/80 °C

	Dis	Displacements			
Base material Tension load		d			
	N	δ_{NO}	δ _{N∞}		
MFR 8	[kN]	[mm]	[mm]		
Clay brick Mz - NF	0,26	0,02	0,04		
Sand-lime solid brick KS – 2 DF	0,57	0,33	0,66		
Hollow clay brick HLz 12	0,14	0,01	0,02		
Hollow Sand-lime brick KSL 12	0,25	0,11	0,22		
Hollow light concrete block Hbl 2	0,09	0,02	0,04		
Hollow concrete block Hbn	0,08	0,02	0,04		
MFR 10 h _{nom1} = 50 mm					
Clay brick Mz - NF	0,86	0,38	0,76		
Sand-lime solid brick KS - NF	1,00	0,41	0,82		
Hollow clay brick HLz 12-1.0	0,34	0,27	0,56		
Hollow Sand-lime brick KS L 12-1,4	0,34	0,27	0,56		
Hollow concrete block Hbn	0,59	0,30	0,60		
MFR 10 h _{nom2} = 70 mm					
Clay brick Mz - NF	0,71	0,2	0,4		
Sand-lime solid brick KS - NF	0,71	0,2	0,4		
Hollow clay brick HLz 12-1.0	0,17	0,1	0,2		
Hollow Sand-lime brick KS L 12-1,4	0,17	0,1	0,2		
Brique Creuse C LD 3-0,7	0,09	0,2	0,4		
Hollow concrete block Hbn	0,08	0,01	0,02		
MFR 14					
Clay brick Mz - NF	0,86	0,2	0,4		
Sand-lime solid brick KS - 8 DF	1,29	0,2	0,4		
Sand-lime solid brick KS - 2 DF	1,14	0,2	0,4		
Hollow clay brick HLz 12 - 1.0	0,14	0,1	0,2		
Hollow Sand-lime brick KS L 12 - 1,4	0,21	0,1	0,2		

Displacements						
Shear load						
V	δ_{VO}	δ _{V∞}				
[kN]	[mm]	[mm]				
0,26	0,22	0,33				
0,57	0,48	0,72				
0,42	0,08	0,12				
0,20	0,37	0,55				
0,13	0,02	0,03				
0,09	0,08	0,11				
0,86	0,72	1,08				
1,00	0,83	1,25				
0,34	0,28	0,42				
0,34	0,28	0,42				
0,59	0,49	0,74				
0,71	0,60	0,89				
0,71	0,60	0,89				
0,17	0,34	0,51				
0,17	0,34	0,51				
0,09	0,17	0,26				
0,23	0,16	0,23				
0,86	0,71	1,07				
1,29	1,07	1,61				
1,14	0,95	1,43				
0,14	0,29	0,43				
0,21	0,43	0,64				

CELO Multifunction frame plug MFR	
Performances Displacement for use in masonry, temperature ϑ = 50/80 °C	Annex C8

Base material solid masonry: Autoclaved Aerated Concrete (AAC)

Table C9.1: Brick Data

Description of brick			AAC
Type of brick			Autoclaved Aerated Concrete AAC
Bulk density	ρ≥	[kg/dm³]	0,35
European Standard			EN 771-4:2011+A1:2015
Minimum thickness of member	h _{min} =	[mm]	100

Installation parameters see Annex B2

Table C9.2: Characteristic resistance F_{Rk} [kN] in AAC

Base material	Drill method		Characteristic resistance F _{Rk} ¹⁾		
			ϑ = 24/40 °C	ϑ = 50/80 °C	
MFR 10 h _{nom2} = 70 mm					
AAC 2	Hammer drilling	[kN]	0,4	0,3	
AAC 4	Hammer drilling	[kN]	1,2	0,9	
AAC 6	Hammer drilling	[kN]	2,0	1,5	
MFR 14					
AAC 2	Hammer drilling	[kN]	0,3	0,3	
AAC 4	Hammer drilling	[kN]	1,2	1,2	
AAC 6	Hammer drilling	[kN]	2,0	2,0	
Partial safety factor 2)	ү м,аас	[-]	2,0	2,0	

Characteristic resistance F_{Rk} for tension, shear or combined tension and shear loading

2) In absence of other national regulations

CELO Multifunction frame plug MFR

Performances

MFR 10/14 – Characteristic resistance for use in autoclaved aerated concrete

Annex C9

Table C10: Displacements under tension and shear loading in AAC

Base	Temperature range	Te	ension loa	ad		Shear loa	ad
material		N	δ_{NO}	δ _{N∞}	V	$\delta_{ m VO}$	δ _{∨∞}
		[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
MFR 10 h _{nom2} = 70 i	mm						
AAC 2	temperature ϑ = 24/40 °C	0,14	0,1	0,2	0,14	0,3	0,4
	temperature ϑ = 50/80 °C	0,11	0,1	0,2	0,11	0,2	0,3
AAC 4	temperature ϑ = 24/40 °C	0,43	0,1	0,2	0,43	0,9	1,3
	temperature ϑ = 50/80 °C	0,32	0,1	0,2	0,32	0,6	1,0
AAC 6	temperature ϑ = 24/40 °C	0,71	0,1	0,2	0,71	1,4	2,1
	temperature ϑ = 50/80 °C	0,54	0,1	0,2	0,54	1,1	1,6
MFR 14							
AAC 2	ϑ = 24/40 °C and ϑ = 50/80 °C	0,11	0,1	0,2	0,11	0,2	0,3
AAC 4	ϑ = 24/40 °C and ϑ = 50/80 °C	0,43	0,1	0,2	0,43	0,9	1,3
AAC 6	ϑ = 24/40 °C and ϑ = 50/80 °C	0,71	0,1	0,2	0,71	1,4	2,1

CELO Multifunction frame plug MFR	
Performances MFR 10/14 – Displacement for use in AAC under tension and shear load	Annex C10