

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0383 of 11 December 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Friulsider Injection system KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete

Bonded fastener for use in concrete

Friulsider S.p.A. Via Trieste 1 33048 SAN. GIOVANNI AL NATISONE ITALIEN

Friulsider S.p.A., Plant1 Germany

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-08/0383 issued on 16 May 2018

European Technical Assessment ETA-08/0383

Page 2 of 31 | 11 December 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z84849.19 8.06.01-293/19

European Technical Assessment ETA-08/0383

Page 3 of 31 | 11 December 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete" is a bonded anchor consisting of a cartridge with injection KEM-UP + Vinylester or KEM-UP + Vinylester Winter and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 to C 3, C 5, C 7
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C1, C 4, C 6, C 8
Displacements	See Anne
(static and quasi-static loading)	C 9 to C 11
Characteristic resistance and displacements for seismic	See Anne
performance categories C1	C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed
Durability	See Annex B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z84849.19 8.06.01-293/19

European Technical Assessment ETA-08/0383

Page 4 of 31 | 11 December 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

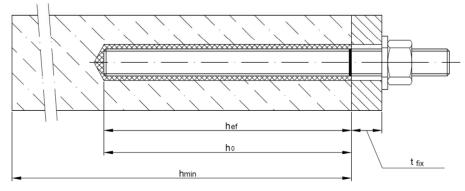
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

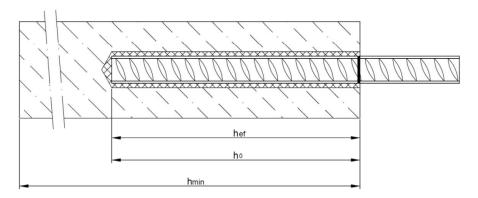
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

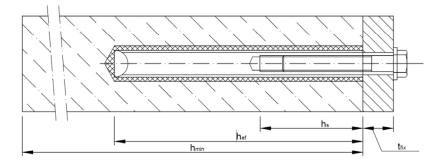
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 December 2019 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider


Z84849.19 8.06.01-293/19


Installation threaded rod M8 up to M30

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

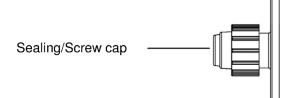
 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

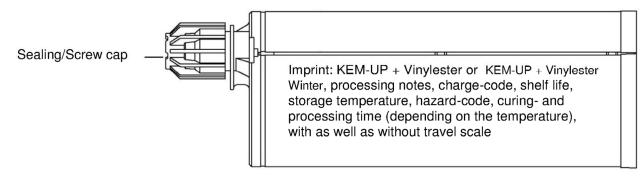
 h_0 = depth of drill hole

 h_{min} = minimum thickness of member

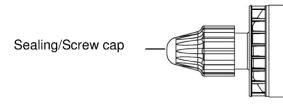
Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete


Product description
Installed condition

Annex A 1

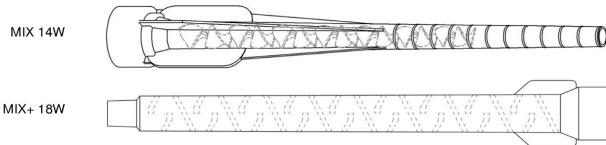

Cartridge: KEM-UP + Vinylester or KEM-UP + Vinylester Winter

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: KEM-UP + Vinylester or KEM-UP + Vinylester Winter, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing-and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

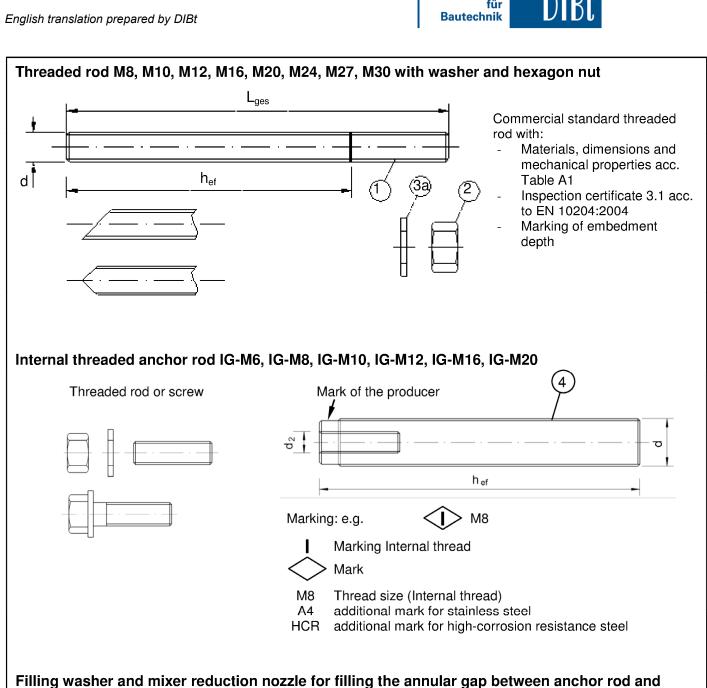


165 ml and 300 ml cartridge (Type: "foil tube")

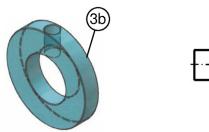
Imprint: KEM-UP + Vinylester or KEM-UP + Vinylester Winter, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete


Product description

Injection system

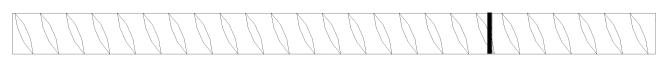

Annex A 2

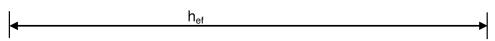
Electronic copy of the ETA by DIBt: ETA-08/0383

fixture

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Product description Threaded rod, internal threaded rod and filling washer	Annex A 3

English translation prepared by DIBt


1	T=	T==				
	Designation	Material		4.)		
zii ho	ot-dip galvanised ≥ 40 µm a	acc. to EN ISO 4042:1999	or and EN	,	AC:2009 or	
	,	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{vk} = 320 N/mm ²	A ₅ > 8%
'	Threaded rod	acc. to		f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
		<u> </u>	4	for threaded rod c	1 7	
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod c	lass 5.6 or 5.8	
			8	for threaded rod c		
3а	Washer	Steel, zinc plated, hot-di (e.g.: EN ISO 887:2006,				N ISO 7094:200
3b_	Filling washer	Steel, zinc plated, hot-di	p galva			
	Internal threaded	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
4	anchor rod	acc. to	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{vk} = 400 \text{ N/mm}^2$	$A_5 > 8\%$
		400. 10) y r	J
		EN ISO 898-1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%
Stair	nless steel A2 (Material 1.43 nless steel A4 (Material 1.44 corrosion resistance steel	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43	8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578 to EN 10088-1: 20	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14)	A ₅ > 8%
Stair	nless steel A4 (Material 1.44	EN ISO 898-1:2013 01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43	8.8 67 or 1 62 or 1	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .4578 Characteristic tensile strength	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	A ₅ > 8% Elongation at fracture
Stair	nless steel A4 (Material 1.44	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc.	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ²	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
itaii ligh	nless steel A4 (Material 1.44 corrosion resistance steel	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc.	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ $to EN 10088-1: 20$ Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength	A ₅ > 8% Elongation at fracture
itaii ligh	nless steel A4 (Material 1.44 corrosion resistance steel	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565 Property class	8.8 67 or 1 62 or 1 5, acc.	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ²	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
itaii ligh	nless steel A4 (Material 1.44 corrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009	8.8 67 or 1 62 or 1 5, acc.	$f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ $to EN 10088-1: 20$ Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
itaii ligh	nless steel A4 (Material 1.44 corrosion resistance steel	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 acc. to	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² for threaded rod cofor threaded r	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stair High	nless steel A4 (Material 1.44 corrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² for threaded rod control for threaded rod con	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80	$A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
1 2	nless steel A4 (Material 1.44 corrosion resistance steel Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 acc. to	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 307 / 1 404 / 1 1.4565	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod contracted for threaded rod contrac	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014
taii ligh	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 404 / 1 1.4568 EN ISO	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 E	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014
1 2 3a	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	8.8 67 or 1 62 or 1 5, acc. 50 70 80 50 70 80 404 / 1 1.4568 EN ISO	f _{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .4578, acc. to EN .50 E	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014
Stair ligh	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 301 / 1.4307 / 1.4311 / 1.45 301 / 1.4404 / 1.4571 / 1.43 I (Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High	8.8 67 or 1 62 or 1 5, acc. 50 70 80 70 80 307 / 1 1404 / 1 1 1.4565 EN ISO corrosi	f_{uk} = 800 N/mm ² .4541, acc. to EN .4578, acc. to EN .50 EN 10088-1: 20 Characteristic tensile strength f_{uk} = 500 N/mm ² f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² for threaded rod conthreaded rod contract (a) 1.4362 or .4571 / 1.4362 or .50 acc. to EN 10086 on resistance stee Characteristic	f _{yk} = 640 N/mm ² 10088-1:2014) 10088-1:2014) 14) Characteristic yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E	Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_{5 \ge 8\%}$ 10088-1:2014 10088-1:2014 N ISO 7094:2006


²⁾ for IG-M20 only property class 50 ³⁾ Property class 80 only for stainless steel A4

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	orcing bars	
1		Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete

Product description
Materials reinforcing bar

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete

Intended Use
Specifications

Annex B 1

Page 11 of European Technical Assessment ETA-08/0383 of 11 December 2019

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod									
Anchor size		М8	M10	M12	M16	M20	M24	M27	M30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Enective embedment depth	$h_{ef,max}$ [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools																										
2	all the cecestrons			=100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A A A A A A A A A A A A A A A A A A A																				
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA			n directio piston plu																				
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	1	1																
M8			10	SCO10	12	10,5																				
M10	8	IG-M6	12	SCO12	14	12,5		No piston p	dua require	ad .																
M12	10	IG-M8	14	SCO14		14,5	'	NO PISION P	nug require	,u																
	12		16	SCO16		16,5																				
M16	14	IG-M10	18	SCO18		18,5	VS18		'																	
	16		20	SCO20		20,5	VS20																			
M20	20	IG-M12	24	SCO24		24,5	VS24	h _{ef} >	h _{ef} >																	
M24		IG-M16	28	SCO28		28,5	VS28	250 mm	250 mm	all																
M27	25		32	SCO32	34	32,5	VS32	250 11111	230 11111																	
M30	28	IG-M20	35	SCO35		35,5	VS35																	1		
	32		40	SCO40	41,5	40,5	VS40																			

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h_0) : < 10 d_{nom} Only in non-cracked concrete

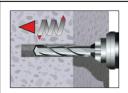
CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

Drill bit diameter (d_0): 18 mm to 40 mm

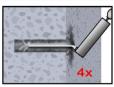
Steel brush SCO


Drill bit diameter (do): all diameters

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

Drilling of the bore hole

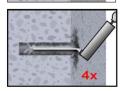


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

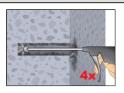
In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

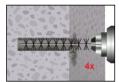
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump 1) (Annex B 3) a minimum of four times.


2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

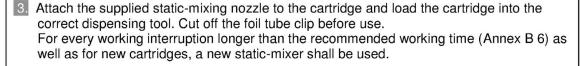
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

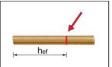
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

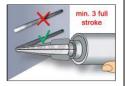
Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete

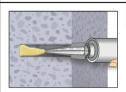
Intended Use

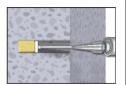
Installation instructions

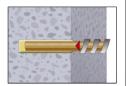

Annex B 4


¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

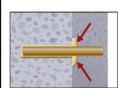

Installation instructions (continuation)



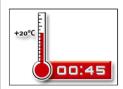

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Maximum working time and minimum curing time
	KEM-UP + Vinvlester

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete ¹⁾
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾
-5 °C	to	-1°C	90 min	14 h
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
	+ 40 °C	;	1,5 min	15 min
Cartride	ge temp	erature	+5°C to	+40°C

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Maximum working time and minimum curing time KEM-UP + Vinylester Winter Table B6:

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete ¹⁾				
-20 °C	to	-16°C	75 min	24 h				
-15 °C	to	-11°C	55 min	16 h				
-10 °C	to	-6°C	35 min	10 h				
-5 °C	to	-1°C	20 min	5 h				
0 °C	to	+4°C	10 min	2,5 h				
+5 °C	to	+9°C	6 min	80 Min				
+	10 °C		6 min	60 Min				
Cartrido	ge tem	perature	-20°C to	+10°C				

¹⁾ In wet concrete the curing time must be doubled.

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Intended Use Curing time	Annex B 6

English translation prepared by DIBt

Si	ze			М8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	naracteristic tension resistance, Steel failure	e ¹⁾		•	•						
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Cl	naracteristic tension resistance, Partial facto	or ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,5	5			
	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]	1,87							
	ainless steel A4 and HCR, class 80	Y _{Ms,N}	[-]	1,6							
CI	naracteristic shear resistance, Steel failure	1)	1		1						
Ε	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property class 5.6 and 5.8	$V_{\rm Bk.s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ħ	Stainless steel A2, A4 and HCR, class 50	$V_{\text{Rk.s}}$	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	_
>	Stainless steel A4 and HCR, class 80	$V^{0}_{Rk,s}$	[kN]	15	23	34	63	98	141	-	_
	Steel, Property class 4.6 and 4.8	M [∪] Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ Rk.s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
₹	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-
Cl	naracteristic shear resistance, Partial factor	2)									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]	1,67							
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
	_	1	1								
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]				1,5	6			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	Armay C.1
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	Characteristic values	for Concrete	cone failure	and Splitting with all kind of action		
Anchor size				All Anchor types and sizes		
Concrete cone fa	ailure					
Non-cracked cond	crete	k _{ucr,N}	[-]	11,0		
Cracked concrete	Cracked concrete				[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}		
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}		
Splitting						
	h/h _{ef} ≥ 2,0			1,0 h _{ef}		
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}		$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$		
	h/h _{ef} ≤ 1,3			2,4 h _{ef}		
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}		

Electronic copy of the ETA by DIBt: ETA-08/0383

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

8.06.01-293/19

Z85002.19

Page 18 of European Technical Assessment ETA-08/0383 of 11 December 2019

English translation prepared by DIBt

	or size threaded ro	od			M8	M10	M12	M16	M20	M24	M27	M3
Steel fa Charac	allure cteristic tension res	istance	N _{Rk,s}	[kN]			A _o • fı	_{ık} (or s	ee Tab	le C1)		
Partial		istarioc	γ _{Ms,N}	[-]			- 5 (see Ta				
Comb	ined pull-out and			•								
Charac	cteristic bond resis	tance in non-crac	ked concrete	C20/25		1	I	I				
ø.	I: 40°C/24°C	Day wet			10	12	12	12	12	11	10	9
ange	II: 80°C/50°C	Dry, wet concrete			7,5	9	9	9	9	8,5	7,5	6,
Temperature range	III: 120°C/72°C			[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,
	I: 40°C/24°C		TRk,ucr	[[14/111111-]	7,5	8,5	8,5	8,5				
Tem	II: 80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5		lo Perfo .ssesse		
·	III: 120°C/72°C				4,0	5,0	5,0	5,0			`	,
Charac	cteristic bond resis	tance in cracked	concrete C20	/25		,	· I	· I				
Temperature range	I: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,
	II: 80°C/50°C	Dry, wet concrete flooded bore hole	—τ _{Rk,cr}		2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,
	III: 120°C/72°C			[N1/mm2]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,
	I: 40°C/24°C			[N/mm²]	4,0	4,0	5,5	5,5	No Performance Assessed (NPA)			
Гетр	II: 80°C/50°C				2,5	3,0	4,0	4,0				
•	III: 120°C/72°C				2,0	2,5	3,0	3,0	, 1000000 (r ti r t)			
Reduk	tion factor ψ ⁰ sus ir	n cracked and no	n-cracked co	ncrete C20/25		1						
	I: 40°C/24°C	Dry, wet concrete and	ψ ⁰ sus [-]	<u> </u>	0,73							
Temperature range	II: 80°C/50°C			0,65								
emp		flooded bore hole		1,1								
<u> </u>	III: 120°C/72°C		C25/30		0,57							
			C30/37						04			
	sing factors for con	icrete	C35/45		1,07							
Ψ_{C}			C40/50 C45/55		1,08 1,09							
			C50/60		1,10							
	ete cone failure											
Releva Splittii	ant parameter							see Ta	ible C2			
Releva	ant parameter							see Ta	ble C2			
	ation factor				10	1			1.0			
for dry and wet concrete for flooded bore hole		γ_{inst}	[-]	1,0				1,2 NPA				
101 1100	ded bote flote					<u>'</u>	<u>, T</u>			111		
Friuls	ider Injection Syst	em KEM-UP + Vi	nylester / KEI	M-UP + Vinyle	ster Wi	inter fo	r conc	rete				
	-			-						Anne	x C 3	

Page 19 of European Technical Assessment ETA-08/0383 of 11 December 2019

English translation prepared by DIBt

Table C4: Characteristic values	s of shea	ar loads	under	static	and qu	asi-stat	ic actio	on		
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm					•				•	
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor k ₇			1,0							
Steel failure with lever arm		'								
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} • f _{uk}	(or see	Table C	C1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]	1,0							
Concrete edge failure	•									
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mn					300mm)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-08/0383 of 11 December 2019

English translation prepared by DIBt

	tic values of t	ension	loads u								
Anchor size internal threade	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure ¹⁾		T.	1		I	<u> </u>	ı				
Characteristic tension resistand	ce, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength class 5.	8 and 8.8	γ _{Ms,N}	[-]			1	,5				
Characteristic tension resistand Steel A4 and HCR, Strength cl		N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor		γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out and conc											
Characteristic bond resistance	in non-cracked	concret	te C20/25				1	T			
υ <u>I: 40°C/24°C</u>	Dry, wet			12	12	12	12	11	9		
II: 80°C/50°C	concrete			9	9	9	9	8,5	6,5		
## 98 III: 120°C/72°C 1: 40°C/24°C		τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0		
<u>ੁੱ</u> ਦੁ <u>I: 40°C/24°C</u>	flooded bore	nk,uci	[]	8,5	8,5	8,5	No Perf	ormance A	ssessed		
<u>ြစ်</u> <u>II: 80°C/50°C</u>	hole			6,5	6,5	6,5	110 1 011	(NPA)	.0000000		
				5,0	5,0	5,0					
Characteristic bond resistance	in cracked con	crete C2	20/25					•			
υ <u>I: 40°C/24°C</u>	Dry, wet	τ _{Rk,cr}		5,0	5,5	5,5	5,5	5,5	6,5		
II: 80°C/50°C	concrete		[N/mm²]	3,5	4,0	4,0	4,0	4,0	4,5		
ge at	001101010			2,5	3,0	3,0	3,0	3,0	3,5		
<u>ੁੱਲ I: 40°C/24°C</u>	flooded bore hole	TRK,Cr	[[, 1/, , , , ,]	4,0	5,5	5,5	No Porf	ormanco A	ccaccad		
men				3,0	4,0	4,0	I NOT CIT	formance Assess (NPA)			
III: 120°C/72°C				2,5	3,0	3,0					
Reduktion factor ψ^0_{sus} in crac	ked and non-cr	acked c	oncrete C	20/25							
l: 40°C/24°C	Dry, wet			0,73							
Hi: 40°C/24°C Hi: 120°C/72°C Hi: 120°C/72°C	concrete and flooded bore	ψ ⁰ sus	[-]			0,	65				
년 III: 120°C/72°C	hole			0,57							
			5/30	1,02							
			0/37	1,04							
Increasing factors for concrete			5/45				07				
Ψc			0/50				08				
			5/55				09				
Concrete cone failure		C5	0/60			1,	10				
Relevant parameter						see Ta	able C2				
Splitting failure											
Relevant parameter						see Ta	able C2				
Installation factor											
for dry and wet concrete						1	,2				
for flooded bore hole		γinst	[-]		1,4			NPA			
1)			-								

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Electronic copy of the ETA by DIBt: ETA-08/0383

Page 21 of European Technical Assessment ETA-08/0383 of 11 December 2019

English translation prepared by DIBt

Table C6: Characteristic values of shear loads under static and quasi-static action											
Anchor size for internal threade	ed ancho	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure without lever arm ¹⁾	ı					•					
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61		
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98		
Partial factor, strength class 5.8 a	ınd 8.8	γ _{Ms,V}	[-]				1,25				
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40		
Partial factor		γ _{Ms,V}	[-]			1,56			2,38		
Ductility factor											
Steel failure with lever arm ¹⁾											
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
Steel, strength class	8.8	М ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519		
Partial factor, strength class 5.8 a	ınd 8.8	γ _{Ms,V}	[-]	1,25							
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456		
Partial factor		γ _{Ms,V}	[-]			1,56			2,38		
Concrete pry-out failure											
Factor		k ₈	[-]				2,0				
Installation factor		γ _{inst}	[-]	1,0							
Concrete edge failure											
Effective length of fastener I _f [mm]			[mm]	min(h _{ef} ; 12 • d _{nom})					min (h _{ef} ; 300mm)		
Outside diameter of fastener d _{nom}			[mm]	10	12	16	20	24	30		
Installation factor		γ _{inst}	[-]	1,0							

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Page 22 of European Technical Assessment ETA-08/0383 of 11 December 2019

English translation prepared by DIBt

Ancho	r size reinforcing	har			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 29	(X 22
Steel fa		Dai			00	טו שן	W 12	W 14	סו שן	W 20	W 23	W 20	W 32
	teristic tension resi	stance	N _{Rk,s}	[kN]					A _s • f _{uk}	1)			
Cross section area			A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor Y _{Ms,N} [-]							l		1,4 ²⁾				
Combi	ned pull-out and o	concrete failu											
Charac	teristic bond resista	ance in non-c	racked cond	rete C20/2	25								
	I: 40°C/24°C	Dmat			10	12	12	12	12	12	11	10	8,5
J.	II: 80°C/50°C	Dry, wet			7,5	9	9	9	9	9	8,0	7,0	6,0
Temperature range	III: 120°C/72°C	concrete	Ι	[N]/mm21	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
npe ran	I: 40°C/24°C	flooded	^τ Rk,ucr	[N/mm ²]	7,5	8,5	8,5	8,5	8,5		lo Borfe	ormanc	^
eī.	II: 80°C/50°C	bore hole			5,5	6,5	6,5	6,5	6,5	1			
<u> </u>	III: 120°C/72°C	bore noie			4,0	5,0	5,0	5,0	5,0		Assessed (NPA)		
Charac	teristic bond resista	ance in crack	ed concrete	C20/25									
Φ	I: 40°C/24°C	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Ţ	II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
perat range	III: 120°C/72°C	CONCICIO	TDI	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
by a part of the p	flooded	^τ Rk,cr	[[[]	4,0	4,0	5,5	5,5	5,5	No Performance Assessed (NPA)			Δ	
Ē	II: 80°C/50°C bore hole				2,5	3,0	4,0	4,0				4,0	
	III: 120°C/72°C				2,0	2,5	3,0	3,0	3,0				''
Redukt	ion factor $\psi^0_{ extsf{Sus}}$ in	cracked and	non-cracked	d concrete	C20/2	5							
	I: 40°C/24°C	Dry, wet			0,73								
ratt Je		concrete			· ·								
Temperature range	II: 80°C/50°C	and flooded	Ψ ⁰ sus	[-]	0,65								
Ten	III: 120°C/72°C	bore hole							0,57				
		l	C25.	/30					1,02				
			C30.						1,04				
Increas	sing factors for cond	crete	C35.						1,07				
$\Psi_{\mathbf{C}}$	J		C40						1,08				
. •			C45						1,09				
			C50.						1,10				
Concre	ete cone failure		•		•								
Releva	nt parameter							see	Table	C2			
Splittin													
Relevant parameter					see Table C2								
	ation factor				ı								
	and wet concrete		1		1,2				1	,2			
	ded bore hole		^γ inst	[-]			1,4		<u> </u>	ĺ	NI	PA	
	The dad bele here						, -						

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Electronic copy of the ETA by DIBt: ETA-08/0383

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Table C8: Characteristic values of shear loads under static and quasi-static action											
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•		•	•	•	•			
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,52)				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	·W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•			1,5 ²⁾				
Concrete pry-out failure		•									
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure		•									
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)				mm)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	stallation factor γ_{inst} [-] 1,0										

 $[\]stackrel{1)}{\rm f}_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Displacements under tension load ¹⁾ (threaded rod)											
Anchor size thread	Anchor size threaded rod					M16	M20	M24	M27	M30	
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-stati	c action								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05			0,1	05			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 τ : action bond stress for tension $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C10:

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concrete C20/25 under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete 0	C20/25 under	static and quasi-static	caction								
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Displacements under tension load ¹⁾ (Internal threaded anchor rod)											
Anchor size Interna	al threaded an	chor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049			
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071			
Temperature range II: 80°C/50°C	δ_{No} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119			
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172			
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119			
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172			
Cracked concrete C	20/25 under sta	atic and quasi-st	atic action								
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,090			0,070					
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105			0,105					
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170					
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255	0,245							
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,219		·	0,170					
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255			0,245					

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (Internal threaded anchor rod) Table C12:

Anchor size Inte	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20					
Non-cracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \text{V}; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \text{V}; \end{split}$$

V: action shear load

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Displacements (Internal threaded anchor rod)	Annex C 10

8.06.01-293/19 Z85003.19

Table C13: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked conc	rete C20/25	under static an	nd quasi	-static a	ction						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070			
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05				0,105			
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255	0,245						
Temperature	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,2	219	0,170						
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Displacement under shear load (rebar) Table C14:

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	ler static and qu	asi-stat	ic action	1						
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{split}$$

V: action shear load

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Displacements (rebar)	Annex C 11

Table	Fable C15: Characteristic values of tension loads under seismic action (performance category C1)												
		e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure)		I									
Characteristic tension resistance N _{Rk,s,eq} [kN]									1,0 •	$N_{Rk,s}$			
Partial	facto	or		γMs,N	[-]				see Ta	ble C1			
			concrete failure										
Charac	teris	tic bond resista	ance in non-crack	ked and cracke	d concrete	C20/25	<u> </u>	I	I				
	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
ange	II:	80°C/50°C	Dry, wet concrete	[⊤] Rk,eq		1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
nre	III:	120°C/72°C			[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
berati	1:	40°C/24°C			[18/111112]	2,5	2,5	3,7	3,7				
Temperature range	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed (NPA)			
	III:	120°C/72°C				1,3	1,6	2,0	2,0			`	,
Redukt	ion f	actor ψ ⁰ sus in	cracked and nor	n-cracked concr	ete C20/25								
ture	l:	40°C/24°C	Dry, wet						0,	73			
Temperature range	II:	80°C/50°C	concrete and flooded bore	$\Psi^0_{ m sus}$	[-]	0,65							
Tem	III:	120°C/72°C	hole						0,	57			
Increas	ing f	actors for cond	crete ψ _C	C25/30 to C5	0/60				1	,0			
Concre	ete c	one failure				<u> </u>							
		arameter							see Ta	ble C2			
Splittir						T							
	Relevant parameter Installation factor								see Ta	ble C2			
						1.0				1.0			
		wet concrete		$-\gamma_{inst}$	[-]	1,0 1,2							
for floo	aea I	bore hole					1	,4			N	PA	

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 12

Table C16: Characteristic value (performance ca		loads ι	ınder s	seismic	action	1				
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		,		•		•		•		
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq}	[kN]	0,70 • V ⁰ _{Rk,s}							
Partial factor	$\gamma_{Ms,V}$	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s,eq	[Nm			No Pe	rforman	ce Asse	essed (N	IPA)	
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure		•								
Effective length of fastener	I _f	[mm]		m	nin(h _{ef} ;	12 • d _{no}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm	8 10 12 16 20 24 27 3						30	
Installation factor	γ_{inst}	[-]	1,0							
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 13

Table		eristic value ance catego		ı loads uı	nder s	eismic	actio	n						
Anchor	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel fa	ailure													
Charact	teristic tension resi	[kN]				1,0	• A _s •	f _{uk} 1)						
Cross s	ection area		N _{Rk,s,eq}	[mm²]	50	79	113	154	201	314	491	616	804	
Partial f	factor		γMs,N	[-]					1,4 ²⁾					
Combin	ned pull-out and o	concrete fail		,										
Charact	teristic bond resista	ance in non-c	racked and	cracked co	ncrete	C20/2	5							
gu	I: 40°C/24°C	Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
ļ ţi "	II: 80°C/50°C	concrete			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
perat ange	III: 120°C/72°C	CONCICTO	τ _{Rk, eq}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
<u>ਰ</u> ਬ	I: 40°C/24°C	flooded	Thk, eq	[]	2,5	2,5	3,7	3,7	3,7	No Performance Assessed (NPA)				
Temperature range	II: 80°C/50°C	bore hole			1,6	1,9	2,7	2,7	2,7					
	III: 120°C/72°C		<u> </u>		1,3 1,6 2,0 2,0 2,0									
Redukti	ion factor ψ ⁰ sus in	cracked and	non-cracked	d concrete	C20/2	5								
ture	I: 40°C/24°C	Dry, wet			0,73									
Temperature range	II: 80°C/50°C	and	Ψ ⁰ sus	[-]					0,65					
Terr	III: 120°C/72°C	flooded bore hole			0,57									
Increas	ing factors for cond	crete ψ _C	C25/30 to	C50/60	1,0									
Concre	te cone failure		•											
Relevar	nt parameter							see	e Table	C2				
Splittin	ıg													
Relevar	nt parameter				see Table C2									
Installa	ition factor													
for dry a	and wet concrete		24	r 1	1,2				1	,2				
for flood	ded bore hole		γinst	[-]			1,4				N	PA		
1)														

 $[\]stackrel{1)}{\text{f}}_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic valu (performance cate		loads u	nder s	eismic	actio	1					
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•								
Characteristic shear resistance	V _{Rk,s,eq}	[kN]				0,3	5 • A _s •	f _{uk} 2)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm		•									
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No Po	erforma	ınce As	sessec	(NPA)		
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	I _f	[mm]		miı	n(h _{ef} ; 1	2 • d _{noi}	m)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γ _{inst}	[-]	1,0								
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾								

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 15

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

English translation prepared by DIBt

Anchor size thread		М8	M10	M12	M16	M20	M24	M27	M30				
Cracked and non-c	racked cond	crete C20/25 und	der seis	mic C1	action	•	•	•		•			
Temperature range	δ_{N0} -factor [mm/(N/mm ²)]			0,090			0,070						
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,	105	0,105							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,	0,219		0,170						
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,	255	0,245							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,3	219	0,170							
III: 120°C/72°C	l	[mm/(N/mm²)]		_	0,255		0,245						
111. 120 0/72 0	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,	255			0,2	245				
	11400	[mm/(N/mm²)]	n load¹					0,2	245				
Table C20: Dis	splacement	7-	n load¹ Ø 8			Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Table C20: Dis	splacement	s under tensio	Ø8	⁾ (rebar) Ø 12	Ø 14	Ø 16			Ø 28	Ø 32		
Table C20: Dis Anchor size reinfo Cracked and non-ci	splacement	s under tensio	Ø 8 der seis	⁾ (rebar) Ø 12	Ø 14	Ø 16			Ø 28	Ø 32		
Table C20: Dis	splacement rcing bar racked cond	es under tension	Ø 8 der seis	⁾ (rebar) Ø 10 mic C1) Ø 12	Ø 14	Ø 16	Ø 20		Ø 28	Ø 32		
Table C20: Dis Anchor size reinfo Cracked and non-ci Temperature range I: 40°C/24°C	splacement reing bar racked conc δ_{No} -factor	erete C20/25 unc	Ø 8 der seis 0,0 0,1	Ø 10 mic C1) Ø 12	Ø 14	Ø 16	Ø 20		Ø 28	Ø 32		
Table C20: Dis Anchor size reinfo Cracked and non-ci Temperature range I: 40°C/24°C	splacement rcing bar racked conc δ_{No} -factor δ_{No} -factor	erete C20/25 und [mm/(N/mm²)] [mm/(N/mm²)]	Ø 8 der seis 0,0 0,1 0,2	Ø 10 mic C1 090) Ø 12	Ø 14	Ø 16	Ø 20 0,070 0,105		Ø 28	Ø 32		
Table C20: Dis Anchor size reinfo Cracked and non-ci Temperature range 1: 40°C/24°C Temperature range	splacement reing bar racked conc δ_{No} -factor δ_{No} -factor δ_{No} -factor	erete C20/25 und [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	Ø 8 der seis 0,0 0,1 0,2 0,2	Ø 10 mic C1 090 105) Ø 12	Ø 14	Ø 16	0,070 0,105 0,170		Ø 28	Ø 32		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Displacements under shear load²⁾ (threaded rod) Table C21:

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Cracked and non-cracked concrete C20/25 under seismic C1 action										
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

Displacement under shear load¹⁾ (rebar) Table C22:

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Cracked and non-cracked concrete C20/25 under seismic C1 action											
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$

V: action shear load

Friulsider Injection System KEM-UP + Vinylester / KEM-UP + Vinylester Winter for concrete	
Performances Displacements under seismic C1 action (threaded rods and rebar)	Annex C 16