

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0006 of 27 September 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Hilti anchor channels (HAC) with channel bolts (HBC) Product family Anchor channels to which the construction product belongs Manufacturer Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 29 pages including 3 annexes which form an integral part contains of this assessment EAD 330008-03-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-11/0006 issued on 18 July 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0006 English translation prepared by DIBt

Page 2 of 29 | 27 September 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 29 | 27 September 2019

Specific Part

1 Technical description of the product

The Hilti anchor channel (HAC) with channel bolts (HBC) is a system consisting of V-shaped channel profile of carbon steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Hilti channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static load)	See Annex C1 to C2 and C6
Characteristic resistance under shear load (static and quasi-static load)	See Annex C3 to C4 and C6 to C7
Characteristic resistance under combined tension and shear load (static and quasi-static load)	See Annex C5
Characteristic resistances under cyclic fatigue tension load	See Annex C10 to C11
Displacements (static and quasi-static load)	See Annex C3 and C5
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C8 to C9

Page 4 of 29 | 27 September 2019

European Technical Assessment

ETA-11/0006

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

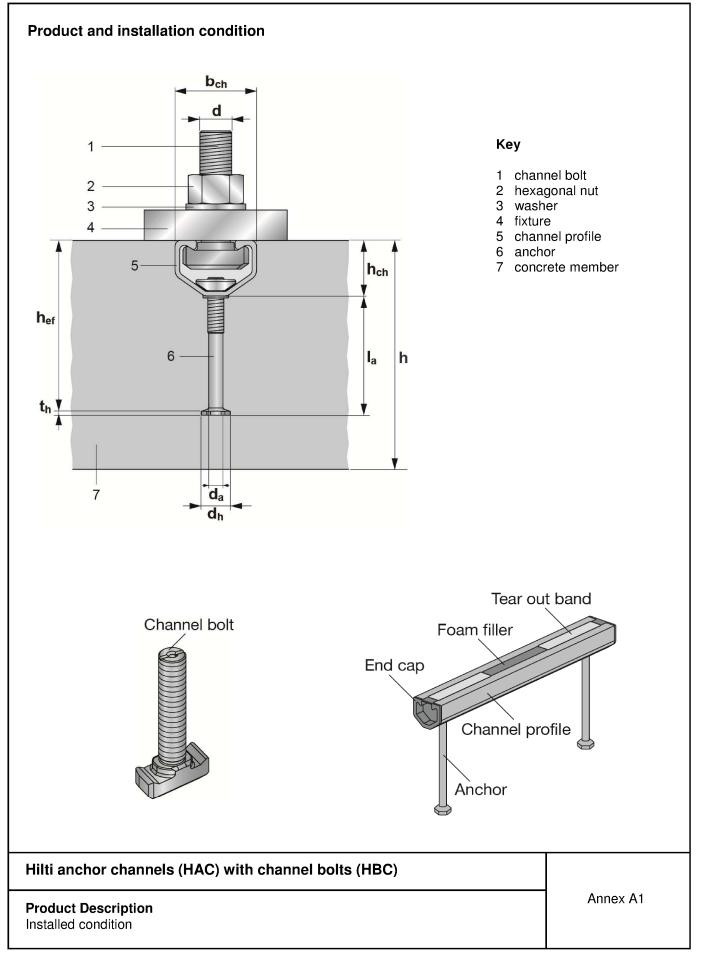
In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

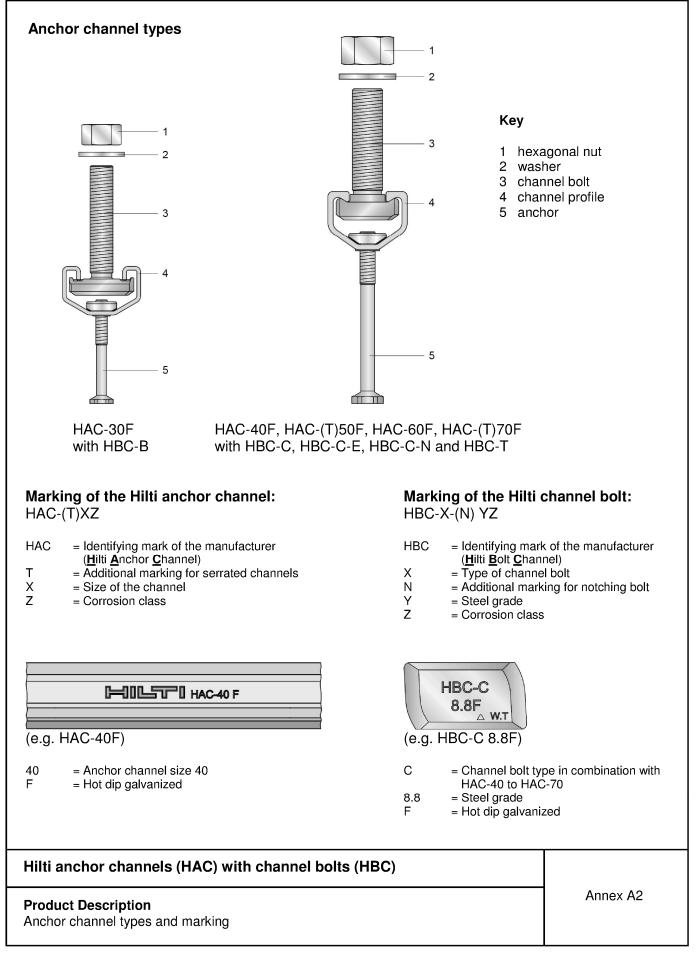
Issued in Berlin on 27 September 2019 by Deutschen Institut für Bautechnik

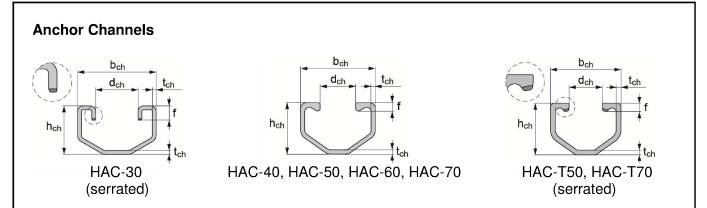

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Müller

Page 5 of European Technical Assessment ETA-11/0006 of 27 September 2019

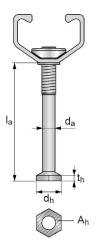
English translation prepared by DIBt

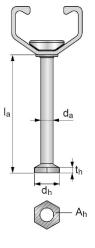



Page 6 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

Table 1: Dimensions of channel profile


Anchor	b _{ch}	h _{ch}	t _{ch}	d _{ch}	f	l _y		
channel			[mm]	[mm]				
HAC-30	41,3	25,6	2,00	22,3	7,5	15349		
HAC-40	40,9	28,0	2,25	19,5	4,5	21463		
HAC-50	41,9	31,0	2,75	19,5	5,3	33125		
HAC-T50	41,9	31,0	2,75	19,5	5,2	32049		
HAC-60	43,4	35,5	3,50	19,5	6,3	57930		
HAC-70	45,4	40,0	4,50	19,5	7,4	95457		
HAC-T70	45,4	40,0	4,50	19,5	7,1	92192		


Table 2: Dimensions of anchor (welded or bolted to the channel profile)

Anchor	d _a	d _h	t _h	min l _a	Head area A _h
channel		[1	[mm ²]		
HAC-30	5,4	11,5	2,0	44,4	89
HAC-40	7,2	17,5	3,0	66,0	209
HAC-50	9,0	19,5	3,5	78,5	258
HAC-T50	9,0	19,5	3,5	78,5	258
HAC-60	9,0	19,5	4,5	117,0	258
HAC-70	10,9	23,0	5,0	140,0	356
HAC-T70	10,9	23,0	5,0	140,0	356

bolted anchor

welded anchor

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Anchor channels (HAC)

Annex A3

Z64379.19

HBC-B

Single groove

for marking the position

HBC-C-E

Single groove .

for marking the position

Channel bolts

	Channel		Dimer	sions		
Anchor channel	bolt	b ₁	b ₂	k	d	
onanner	type	[mm]				
HAC-30	HBC-B	10.0	04.0	0.0	10	
HAC-30	прс-р	19,0	34,0	9,2	12	
HAC-40		14,0		10,4	12	
HAC-50	HBC-C-E	17,0	33,0	13,4	16	
		110			10	
	HBC-C	14,0	00.0	10,4	12	
HAC-40		18,5	33,0	11,4	16	
HAC-50 HAC-60				13,9	20	
HAC-70			33,0	11,4	12	
	HBC-C-N	18,5			16	
				13,9	20	
					12	
HAC-T50 HAC-T70	HBC-T	18,5	35,4	12,0	16	
					20	

Table 3: Dimensions of channel bolt

Table 4: Steel grade and c	orrosion protection
----------------------------	---------------------

Channel Bolt	Carbon	Stainless steel ¹⁾		
Steel grade	4.6	8.8	A4-50	
f _{uk} [N/mm ²]	400	400 800 / 830 ²⁾		
f _{yk} [N/mm ²]	240 640 / 660 ²⁾		210	
Corrosion protection	G	R		

¹⁾ Material properties according to Annex A5
 ²⁾ Material properties according to EN ISO 898-1
 ³⁾ Electroplated
 ⁴⁾ Hot dip galvanized

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Channel bolts (HBC)

		Î

Annex A4

	b ₂	b ₁
HBC-C	d	HBC-C-N
Single groove	b	Double groove
for marking the	b	for marking the
position	b	position

Z64379.19

Table 5: Materials				
Component		Carbon steel		Stainless steel
Component	Material properties	Coat	ting	Material properties
1	2a	2b		
Channel Profile	Carbon steel according to EN 10025: 2004	Hot dip galvani:	Hot dip galvanized $\ge 55 \ \mu m^{-1}$ Hot dip galvanized $\ge 70 \ \mu m^{-2}$ according to EN ISO 1461: 2009	
Rivet	Carbon steel	Hot dip galvani according to EN		-
Anchor	Carbon steel	Hot dip galvani according to EN	•	-
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated ≥ 8 µm according to DIN EN ISO 4042: 1999	Hot dip galvanized ≥ 45 μm ⁵⁾ according to EN ISO 1461: 1999	Steel grade 50 according to EN ISO 3506-1: 2009 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Plain washer ³⁾ according to EN ISO 7089: 2000 and EN ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated ≥ 8 µm	Hot dip galvanized ≥ 45 μm ⁵⁾	Hardness class A ≥ 200 HV 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439
Hexagonal nut according to EN ISO 4032: 2012 or DIN 934: 1987-10 ⁴⁾	Property class 8 according to EN ISO 898-2: 2012	Electroplated ≥ 8 µm	Hot dip galvanized ≥ 45 µm ⁵⁾	Property class 70 according to EN ISO 3506-2: 2009 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 / 1.4439

 $^{1)}$ For HAC-30F, HAC-40F and HAC-(T)50F. $^{2)}$ For HAC-60F and HAC-(T)70F.

 ³⁾ Not in scope of delivery.
 ⁴⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel.

⁵⁾ Hot dip galvanized according to EN ISO 1461: 2009.

Hilti anchor channels (HAC) with channel bolts (HBC)

Product Description Materials

Annex A5

Electronic copy of the ETA by DIBt: ETA-11/0006

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel for HAC in combination with HBC-C and HBC-C-E as well as static and quasi-static loads in tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel for HAC in combination with HBC-B, HBC-C-N and HAC-T in combination with HBC-T.
- Fatigue cyclic tension loads.
- Fire exposure: only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000.
- Strength classes C12/15 to C90/105 according to EN 206-1: 2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity)
- (anchor channels and channel bolts according to Annex A5, Table 5, column 2 and 3).
 Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A5, Table 5, column 2c and 3).
- The stainless steel Hilti channel bolts (HBC), washers and nuts may be used in structures subject to
 external atmospheric conditions (including industrial and marine environment) or exposure in
 permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent,
 alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor
 swimming pools or atmosphere with chemical pollution e.g. desulphurization plants or road tunnels
 where de-icing materials are used) exist

(channel bolts according to Annex A5, Table 5, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4: 2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 6 are generated including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the installation instructions given in Annexes B5, B6, B7, B8 and B9.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A5 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6, B7, B8 and B9) rectangular to the channel axis.
- The required installation torques given in Annex B3 and B4 must be applied and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

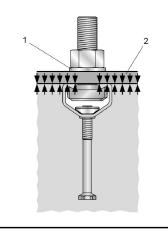
Intended Use Specifications

Anchoi	channe	1	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T7
Min. effective embedment depth	h _{ef,min}		68	91	106	106	148	175	175
Min. spacing	S _{min}		50			1(00		
Maximum spacing	S _{max}			250					
End spacing	x	[mm]				25			
Min. channel length	I _{min}	<u> </u>	100			1	50		
Min edge distance	C _{min}				50			75	
Minimum thickness of concrete	h _{min}		80	105	125	125	168	196	196
member c _{nom} accordir					ł	$n_{ef} + t_h + c_{norr}$	1) 1		
1 V	S _{cbo}	0	•					7	
Table 7: Min	s imum sp		• • •	s el bolts	• • • • •	M12 M	Scbo	V V 120	
Table 7: Min Minimum spa	s imum sp	pacing 1	or channe	el bolts	M10		M16 I		
Table 7: Min	s imum sp cing nel bolts center s	pacing I	for channe S _{cbo,min}	el bolts [mm] nannel bolts	M10 50 5 (s _{cbo,min} = -	60 5d)	M16 I	N20 100	
Table 7: Min Channel bolt Minimum spa between char cobo = center to Table 8: Rec	s imum sp cing nnel bolts center s juired ins	pacing I	for channe Scbo,min Detween cl	el bolts [mm] nannel bolts T _{inst} for HE	M10 50 5 (s _{cbo,min} = -	60 5d) [Nm] ¹⁾	M16 80	100	
Table 7: Min Channel bolt Minimum spa between char icbo = center to	s imum sp cing nnel bolts center s juired ins	pacing I	For channe Sebo,min Detween cl Don torque Ger	el bolts [mm] nannel bolts	M10 50 5 (s _{cbo,min} = -	60 5d) [Nm] ¹⁾	M16 I	100 contact	
Table 7: Min Channel bolt Minimum spa between char cobo = center to Table 8: Rec	s imum sp cing nnel bolts center s juired ins	pacing I	Scbo,min Detween cl on torque Ger HA	el bolts [mm] nannel bolts T _{inst} for HE	M10 50 5 (s _{cbo,min} = -	60 5d) [Nm] ¹⁾	M16 I 80 Steel-steel	100 contact ·30	
Table 7: Min Channel bolt Minimum spa between char icbo = center to Table 8: Rec Channel bolt	s imum sp inel bolts center s juired ins 1-50	pacing I	Scbo,min Detween cl Don torque Ger HA	el bolts [mm] nannel bolts T _{inst} for HE neral C-30	M10 50 5 (s _{cbo,min} = -	60 5d) [Nm] ¹⁾	M16 I 80 Steel-steel HAC	100 <u>contact</u> ·30	

Table 9: Required installation torque Tinst for HBC-C and HBC-C-E									
		T _{inst} [Nm] ¹⁾							
Chan	nel bolt	General			Steel-steel contact				
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40	HAC-50	HAC-60	HAC-70
M10	4.6, A4-50			15				15	
	8.8		-	15				48	
M12	4.6, A4-50			25		25			
	8.8		, ,	25		75			
M16	4.6, A4-50		f	60		60			
	8.8		60			185			
M20	4.6, A4-50	70 105 120					1	20	
10120	8.8	70	105	1	20		3	20	

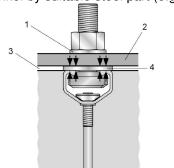
Table 10: Required installation torque T_{inst} for HBC-C-N

			T _{inst} [Nm] ¹⁾									
Chan	nel bolt		Ger	neral		Steel-steel contact						
		HAC-40	HAC-50	HAC-60	HAC-70	HAC-40	HAC-50	HAC-60	HAC-70			
M12	8.8		7	75		75						
M16	8.8		1	85		185						
M20	8.8	- 320				-		320				


Table 11: Required installation torque T_{inst} for HBC-T

			T _{ins}	_t [Nm] ¹⁾				
Chan	nel bolt	Ger	neral	Steel-steel contact				
		HAC-T50	HAC-T70	HAC-T50	HAC-T70			
M12	8.8	7	75	75				
M16	8.8	1	00	185				
M20	8.8	1	20	3	20			

¹⁾ T_{inst} must not be exceeded.

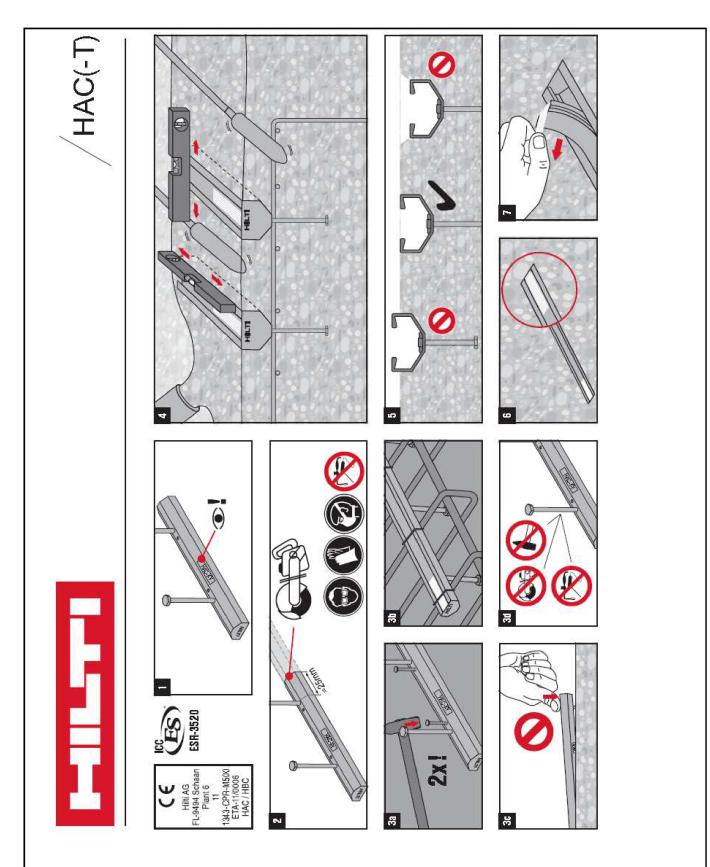

<u>General</u>: The fixture is in contact with the channel profile and the concrete surface

<u>Steel-steel contact:</u> The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel part (e.g. washer).

Key

- 1 washer
- 2 fixture
- 3 gap
- 4 suitable steel part

Hilti anchor channels (HAC) with channel bolts (HBC)


Intended Use

Installation parameters for channel bolts (HBC)

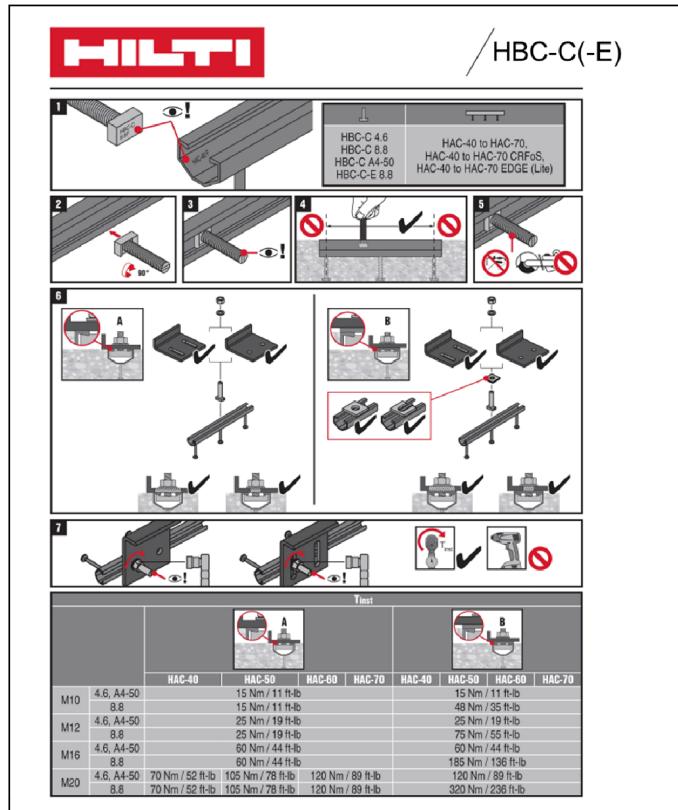
Page 14 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

Intended Use

Installation instructions for anchor channels (HAC and HAC-T)

	/нвс-в
HBC-B 46 HBC-B A4-50	HAC-30
	~ 6~
Tinst	HAC-30
	m/11ft-lb
M1.2 4.6, A4-50 25 Nm / 19 ft-lb 25 N	m / 19 ft-lb


 T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

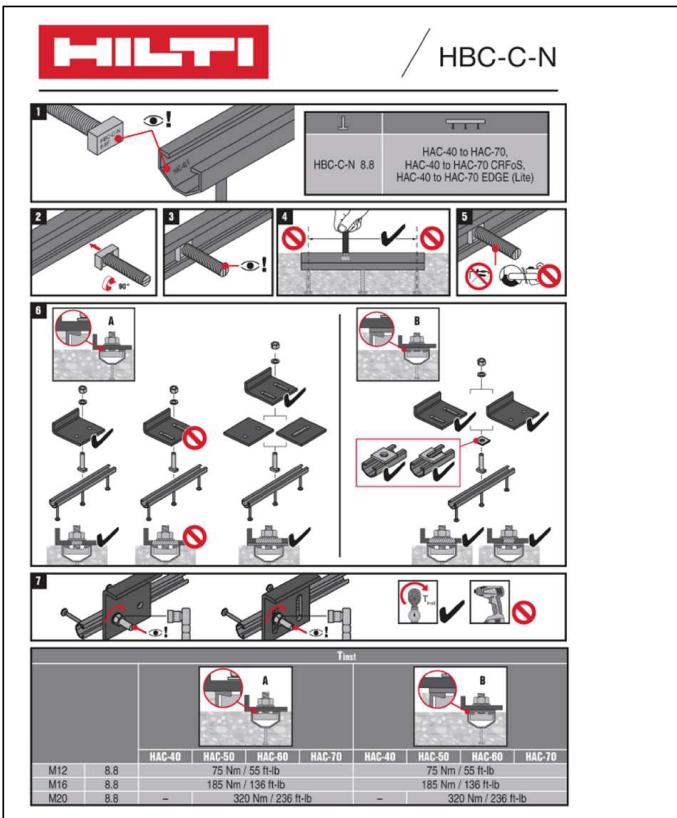
Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation parameters for channel bolts (HBC-B)

T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)


Intended Use

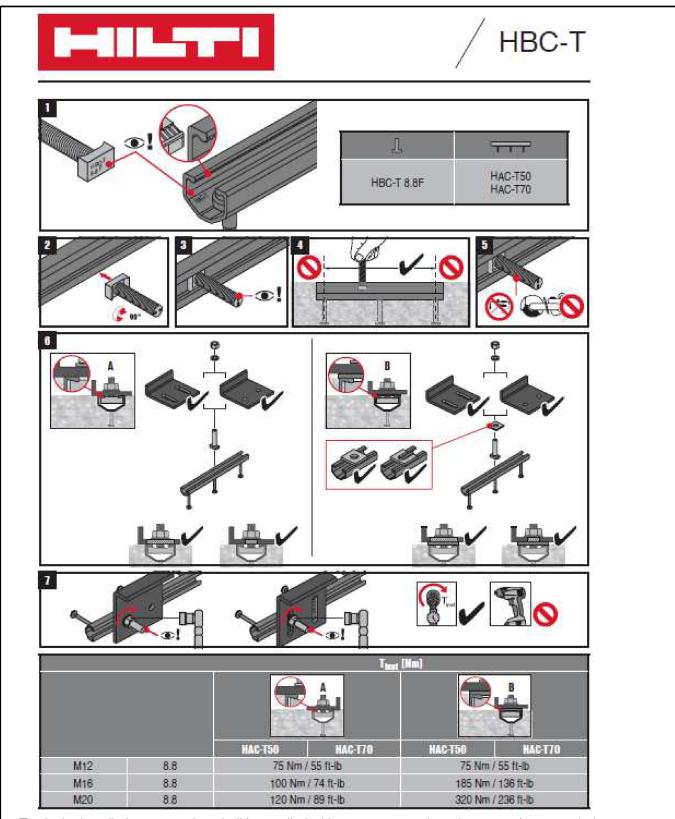
Installation parameters for channel bolts (HBC-C and HBC-C-E)

Annex B7

Electronic copy of the ETA by DIBt: ETA-11/0006

 T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)


Intended Use

Installation instructions for channel bolts (HBC-C-N)

Page 18 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

 T_{inst} is the installation torque that shall be applied with a torque wrench and must not be exceeded.

Hilti anchor channels (HAC) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC-T)

Table 12: Characteris	stic resis	tances und	der tensior	n load – st	eel failure o	f anchor c	hannel	
Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Anchor								
Characteristic resistance	N _{Rk,s,a} [kN]	18,2	33,1	52,5	52,5	52,5	76,3	76,3
Partial factor	γ _{Ms} ¹⁾				1,8			
Steel failure: Connec	ction betw	veen anch	or and cha	nnel				
Characteristic resistance	N _{Rk,s,c} [kN]	18,2	25,0	35,0	35,0	50,1	71,0	71,0
Partial factor	γ _{Ms,ca} ¹⁾				1,8			
Steel failure: Local f	exure of	channel lij	os					
Characteristic spacing of channel bolts for N _{Rk,s,I}	s _{i,N} [mm]	83	82	84	84	87	91	91
Characteristic resistance	N ⁰ _{Rk,s,l} [kN]	19,9	25,0	35,0	35,0	50,1	71,0	71,0
Partial factor	γ _{Ms,I} ¹⁾				1,8			

¹⁾ In absence of other national regulations.

Table 13: Characteristic flexural resistance of channel under tension load

Anchor	channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Steel fai	Steel failure: Flexure of channel										
ee		HBC-B	755	-	-	-	-	-	-		
ristic stan nel	M _{Rk,s,flex} [Nm]	HBC-C	-	1136	1596	-	2187	3160	-		
racterist Il resista channel		HBC-C-E	-	1136	1596	-	-	-	-		
Characteristic flexural resistance of channel		HBC-C-N	-	980	1345	-	2156	3005	-		
fle		HBC-T	-	-	-	1596	-	-	2975		
Partial fa	actor	$\gamma_{ m Ms, flex}$ 1)			•	1,15					

¹⁾ In absence of other national regulations.

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels under tension load

Page 20 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

Anchor cha	nnel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70		
Concrete fa	ilure: Pull-o	ut failu	re								
Characteristi resistance in concrete C1	cracked		8,0	18,8	23,2	23,2	23,2	32,0	32,0		
Characteristi resistance in uncracked c C12/15		N _{Rk,p} [kN]	11,2	26,3	32,5	32,5	32,5	44,9	44,9		
	C16/20					1,33					
	C20/25					1,67					
	C25/30					2,08					
	C30/37			2,50							
Factor for	C35/45			2,92							
N _{Rk,p}	C40/50	Ψ _c		3,33							
	C45/55					3,75					
	C50/60					4,17					
	C55/67	ļ				4,58					
	≥ C60/75					5,00					
Partial factor		Υ _{Mp} = 1) γ _{Mc}				1,5					
Concrete fa	ilure: Conci	rete cor	ne failure								
Product	cracked	k _{cr,N}	7,7	8,0	8,2	8,2	8,6	8,9	8,9		
factor k ₁	un- cracked	k _{ucr,N}	11,0	11,5	11,7	11,7	12,3	12,7	12,7		
Partial factor		γ _{Mc} ¹⁾				1,5					
Concrete fa	ilure: Splitti	ng	1			1			1		
Characteristi distance	ic edge	C _{cr,sp} [mm]	204	273	318	318	444	525	525		
Characterist	ic spacing	s _{cr,sp} [mm]				2,0 \cdot c _{cr,sp}					
Partial factor	γ _{Msp}					1,5					
¹⁾ In absence	e of other na		gulations.								
Hilti ancho	r channels	(HAC)	with cha	nnel bolts	s (HBC)						

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Tension load	N [kN]	6,6	11,3	14,3	14,7	18,8	26,6	25,2
Short-term displacement 1)	δ _{N0} [mm]	1,6	1,7	1,1	1,7	1,1	1,0	1,5
Long-term displacement ¹⁾	δ _{N∞} [mm]	3,2	3,4	2,2	3,4	2,2	2,0	3,0
¹⁾ Displacements in r lips, bending of the Table 16: Charact	e channel	and slip of	the anchor	channel in	concrete.			hannel
Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel failure: Anche	or							
Characteristic	V _{Rk,s,a,y} [kN]	23,7	39,6	53,6	53,6	77,3	114,8	114,8
resistance	V _{Rk,s,a,x} [kN]	10,2	18,4	29,0	29,0	29,0	41,9	41,9
Partial factor			I	1,5		L	1	
Steel failure: Conn	ection be	tween anc	hor and ch	annel				
Characteristic	V _{Rk,s,c,y} [kN]	23,7	39,6	53,6	53,6	77,3	114,8	114,8
resistance	V _{Rk,s,c,x} [kN]	9,1	12,5	17,5	17,5	25,1	35,5	35,5
Partial factor	γ _{Ms,ca} 1)				1,8			
Steel failure: Local the ch	flexure o nannel	f channel	lips under	shear load	l perpendic	ular to the	longitudin	al axis of
Characteristic spacing of channel bolts for V _{Rk,s,I}	s _{i,v} [mm]	83	82	84	84	87	91	91
Characteristic resistance	V ⁰ _{Rk,s,l,y} [kN]	23,7	34,9	47,5	47,5	72,2	95,8	95,8
Partial factor	$\gamma_{Ms,l}$ 1)				1,8			
¹⁾ In absence of othe		regulations	5.		Ι,ŏ			

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Displacements under tension load. Characteristic resistances of anchor channels under shear load

Page 22 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

Anchor	channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Steel fai	lure: Conr	ection betv	veen chan	nel lips an	d channel	bolt			
		НВС-В M12 4.6	3,5	-	-		-		
υ		HBC-C-N M12 8.8		8,5	8,5		8,5	8,5	
Characteristic resistance	V _{Rk,s,l,x} [kN]	HBC-C-N M16 8.8		19,7	19,7	-	19,7	19,7	-
		HBC-C-N M20 8.8		-	24,1		24,1	24,1	
		HBC-T M12 8.8	-			15,1			15,1
		HBC-T M16 8.8		-	-	20,1	-	-	20,1
		HBC-T M20 8.8				20,1			20,1
Installatio	on factor	γ _{inst}		1,4		1,2	1,	4	1,2

Table 18: Characteristic resistances under shear load – concrete failure

Anchor cha	annel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70	
Concrete fa	ailure: Pry c	out failu	ire	·						
Product fac	tor	k ₈		2,0						
Partial facto	or	γ _{Mc} ¹⁾	1,5							
Concrete fa	ailure: Conc	crete ed	lge failure							
Product	cracked concrete	k _{cr,V}	7,5	7,5	7,5	7,5	7,5	7,5	7,5	
factor k_{12}	un- cracked concrete	k _{ucr,V}	10,5	10,5	10,5	10,5	10,5	10,5	10,5	
Partial facto	pr	γ _{Mc} ¹⁾		1	1	1,5		1	1	

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels under shear load

Table 19: Displace	Table 19: Displacements under shear load perpendicular to longitudinal axis of the channel											
Anchor channel	HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70					
Shear load	V _y [kN]	8,0	13,9	18,9	21,0	29,0	38,0	45,6				
Short-term displacement 1)	δ _{v,y,0} [mm]	1,0	1,0	1,5	2,7	1,5	1,5	2,4				
Long-term displacement 1)	δ _{v,y,∞} [mm]	1,5	1,5	2,3	4,1	2,3	2,3	3,6				

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

Table 20: Displacements under shear load in direction of the longitudinal axis of the channel

Anchor chanr	nel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70
Channel bolt			НВС-В	НВС	HBC-C-N		HBC-C-N		НВС-Т
		M12	1,4	3	,4	6,7	3	4	6,7
Shear load	V _x [kN]	M16		7,8		8,9	7,8		8,9
		M20	-	- 9,6		8,9	9,6		8,9
Short-term	δ _{v,x,0} [mm]	M12	0,1	0,05		1,4	0,0	05	1,4
dis-		M16		0,4		1,7	0	4	1,7
placement 1)	[]	M20	-	-	0,1	1,7	0	,1	1,7
Short-term	M12 0,2 0,1		2,1	0	,1	2,1			
dis-	δ _{V,x,∞} [mm]	M16		0	,6	2,5	0	6	2,5
placement 1)	[]	M20	-	-	0,2	2,5	0	2	2,5

¹⁾ Displacements of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete.

Table 21: Characteristic resistances under combined tension and shear load

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-T50	HAC-60	HAC-70	HAC-T70				
Steel failure: Lo	Steel failure: Local flexure of channel lips and flexure of channel											
Product factor	k ₁₃		Values according to EN 1992-4: 2018, Section 7.4.3.1 or EOTA TR 047, Section B.6.3.1.3									
Steel failure: Anchor and connection between anchor and channel												
Product factor k ₁₄ Values according to EN 1992-4: 2018, Section 7.4.3.1 or EOTA TR 047, Section B.6.3.1.4												

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Displacements under shear load.

Characteristic resistances under combined tension and shear load

Page 24 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

Channel bolt d	iameter				M10	M12	M16	M20	
Steel failure									
				4.6	23,2	33,7	-	-	
			HBC-B	A4-50 ¹⁾	29,0	42,2	-	-	
Characteristic resistance				4.6	23,2	33,7	62,8	98,0	
	N _{Rk,s} ²⁾	[KN]	HBC-C HBC-C-E	8.8	46,4	67,4	125,6	174,3	
				A4-50 ¹⁾	29,0	42,2	78,5	122,5	
			HBC-C-N	8.8	-	67,4	125,6	174,3	
			HBC-T	8.8	-	67,4	125,6	177,4	
	•			4.6	2,0				
Partial factor		γ_{Ms} $^{3)}$		8.8	1,5				
				A4-50 ¹⁾	2,86				
	V _{Rk,s} ²⁾	[kN]	HBC-B	4.6	13,9	20,2	-	-	
				A4-50 ¹⁾	17,4	25,3	-	-	
			HBC-C HBC-C-E	4.6	13,9	20,2	37,7	58,8	
Characteristic resistance				8.8	23,2	33,7	62,8	101,7	
				A4-50 ¹⁾	17,4	25,3	47,1	73,5	
			HBC-C-N	8.8	-	33,7	62,8	101,7	
			HBC-T	8.8	-	33,7	62,8	101,7	
				4.6	1,67				
Partial factor			γ _{Ms} ³⁾	8.8		1,25			
				A4-50 ¹⁾	2,38				

¹⁾ Materials according to Table 5, Annex A5
 ²⁾ In conformity with EN ISO 898-1
 ³⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under tension and shear load

Page 25 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

Channel bolt d	liameter				M10	M12	M16	M20
Steel failure								
			HBC-B	4.6	29,9	52,4	-	-
Characteristic flexure M ⁰ _{Rk,s} resistance			пвс-в	A4-50 ¹⁾	37,4	65,5	-	-
			HBC-C HBC-C-E	4.6	29,9	52,4	133,2	259,6
	M ⁰ _{Rk,s} ³⁾	[Nm]		8.8	59,8	104,8	266,4	538,7
				A4-50 ¹⁾	37,4	65,5	166,5	324,5
			HBC-C-N	8.8	-	104,8	266,4	538,7
			HBC-T	8.8	-	104,8	266,4	538,7
				4.6	1,67			
Partial factor			γ _{Ms} ²⁾	8.8	1,25			
				A4-50 ¹⁾		2,	38	
			НВС-В	4.6, A4-50	25	27	-	-
Internal lever	a	[mm]	HBC-C HBC-C-E	4.6, 8.8, A4-50	24	26	28	30
arm			HBC-C-N	8.8	-	26	28	30
			HBC-T	8.8	-	26	28	30

¹⁾ Materials according to Table 5, Annex A5.

²⁾ In absence of other national regulations.

T_s Channel lips Channel bolt

³⁾ The characteristic flexure resistance according to Table 23 is limited as follows:

 $M_{Rk,s}^{0} \leq 0.5 \cdot N_{Rk,s,l} \cdot a$ (N_{Rk,s,l} according to Table 12) and

 $M_{Rk,s}^{0} \le 0.5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 22)

a = internal lever arm according Table 23

 $T_{\rm s}$ = tension force acting on the channel lips

 C_s = compression force acting on the channel lips

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of channel bolts under shear load with lever arm

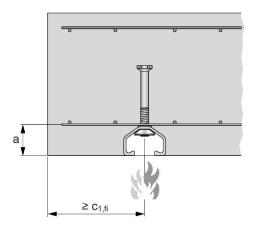
Channel bolt					M10	M12	M16	M20
Steel failure of and	chor, connect	ion betwe	en anch	or and	channel, l	ocal flexur	e of chann	el lip
Characteristic		R60	-		1,3	1,8	-	
	HAC-30	R90			0,9	1,1		-
		R120			0,7	0,8		
	HAC-40	R60			1,7	2,4	2,4	2,4
		R90			1,3	1,8	1,8	1,8
		R120			1,0	1,5	1,5	1,5
	HAC-50	R60	N _{Rk,s,fi}	[kN]	1,7	2,4	4,0	4,0
resistance under		R90			1,3	1,8	2,4	2,4
fire exposure		R120	V _{Rk,s,fi}		1,0	1,5	1,6	1,6
		R60			1,7	2,4	4,0	4,7
	HAC-60	R90			1,3	1,8	2,4	3,0
		R120			1,0	1,5	1,6	2,1
		R60			1,7	2,4	4,0	4,7
	HAC-70	R90			1,3	1,8	2,4	3,0
		R120			1,0	1,5	1,6	2,1
Partial safety factor			γ _{Ms,fi} 1)	[-]		1	,0	

¹⁾ In absence of other national regulations

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure


Page 27 of European Technical Assessment ETA-11/0006 of 27 September 2019

English translation prepared by DIBt

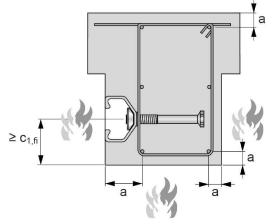


Table 25: Minimum axis distance									
Anchor channel				HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
	R60			35	35	50	50	50	
Min. axis distance	R90	а	[mm]	45	45	50	50	50	
	R120			60	60	60	65	70	

Fire exposure from one side only

Fire exposure from more than one side

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances of anchor channels and channel bolts under fire exposure

Anchor channel	Channel bolt type	Diameter	Steel grade	Corrosion protection			
		M10	4.6				
HAC-30	HBC-B	M12	4.6				
HAC-40		M12	4.6				
		M16					
		M20	8.8	G ¹⁾			
		M16	4.6				
HAC-50	HBC-C	M20	8.8	F ²⁾			
HAC-60		M16	4.6				
		M20	8.8				
		1400	4.6				
HAC-70		M20	8.8				

¹⁾ Electroplated ²⁾ Hot-dip galvanized

Table 27: Characteristic resistances under fatigue tension load - steel failure with n load cycles without static preload ($N_{Ed} = 0$) (Design method I according to EOTA TR 050)

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Steel failure	n	ΔN _{Rk,s,0,n} [kN]					
	≤ 10 ⁶	1,76	1,57	2,66	3,54	6,44	
	≤ 3·10 ⁶						
Characteristic resistances under	≤ 10 ⁷	1,60					
fatigue tension load without static preload	$\leq 3 \cdot 10^7$		1,50	2,60	3,50	6,40	
	$\leq 6 \cdot 10^7$						
	> 6·10 ⁷						

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances under fatigue cyclic tension load

Table 28: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Pull-out failure Concrete cone failure	n			η _{c,fat} [-]			
Reduction factor for	≤ 10 ⁶			0,600			
$\begin{split} \Delta N_{\text{Rk},p;0;n} &= \eta_{c,\text{fat}} \cdot N_{\text{Rk},p} \\ \Delta N_{\text{Rk},c;0;n} &= \eta_{c,\text{fat}} \cdot N_{\text{Rk},c} \end{split}$ with $N_{\text{Rk},p}$ according to Annex C2 and	≤ 3·10 ⁶	0,571					
	≤ 10 ⁷	0,542					
	≤ 3·10 ⁷			0,516			
N _{Rk,c} calculated according to EOTA TR 047, March 2018 or	≤ 6·10 ⁷	- 0,500					
EN 1992-4: 2018	> 6·10 ⁷						

Table 29: Characteristic resistances under fatigue tension load with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Steel failure							
$\Delta N_{Rk,s;0;\infty}$	[kN]	1,6	1,5	2,6	3,5	6,4	
Concrete cone and pull-out failure							
$\eta_{c,fat}$	[-]			0,5			

For the reduction of the characteristic resistances given in Tables 27 and 28 in the transition zone from the static resistance to the fatigue limit resistance the partial safety factors are calculated as follows:

 $\gamma_{M,fat,n} = \gamma_{M,fat} + (\gamma_{M} - \gamma_{M,fat}) \cdot (\Delta N_{Rk,n} - \Delta N_{Rk,\infty}) / (N_{Rk} - \Delta N_{Rk,\infty})$

In absence of other national regulations the following safety factors γ_M and $\gamma_{M,fat}$ are recommended for design method I according to EOTA TR 050:

 γ_M according Annex C1

 $\gamma_{M,fat} = 1,35$

In absence of other national regulations the following safety factor $\gamma_{M,fat}$ is recommended for design method II (Table 29) according to EOTA TR 050:

 $\gamma_{M,fat} = 1,35$

Hilti anchor channels (HAC) with channel bolts (HBC)

Performance

Characteristic resistances under fatigue cyclic tension load