

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0084 of 28 August 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 200-R

Bonded anchor for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

40 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-12/0084 issued on 28 July 2017

European Technical Assessment ETA-12/0084

Page 2 of 40 | 28 August 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0084

Page 3 of 40 | 28 August 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 200-R is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-HY 200-R and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C1 to C8
Characteristic resistance for static and quasi-static shear load	See Annex C2, C4, C6, C8
Displacements for static and quasi-static loads	See Annex C9 to C12
Characteristic resistance for seismic performance categories C1 and C2	See Annex C13 to C17
Durability	See Annex B2

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-12/0084

Page 4 of 40 | 28 August 2019

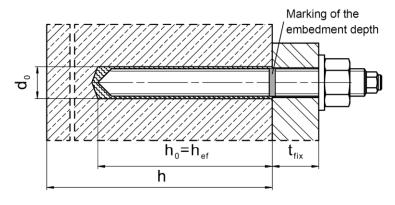
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

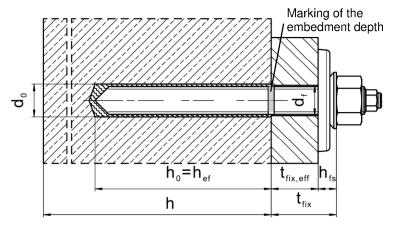
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 28 August 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Lange

Installed condition


Figure A1:

Threaded rod, HAS-U-..., HIT-V-... and AM 8.8

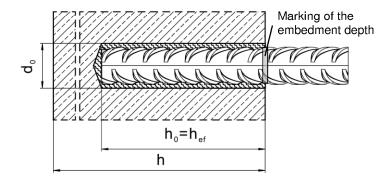
Figure A2:

Threaded rod, HAS-U-..., HIT-V-... and AM 8.8 with Hilti Filling Set

Figure A3:

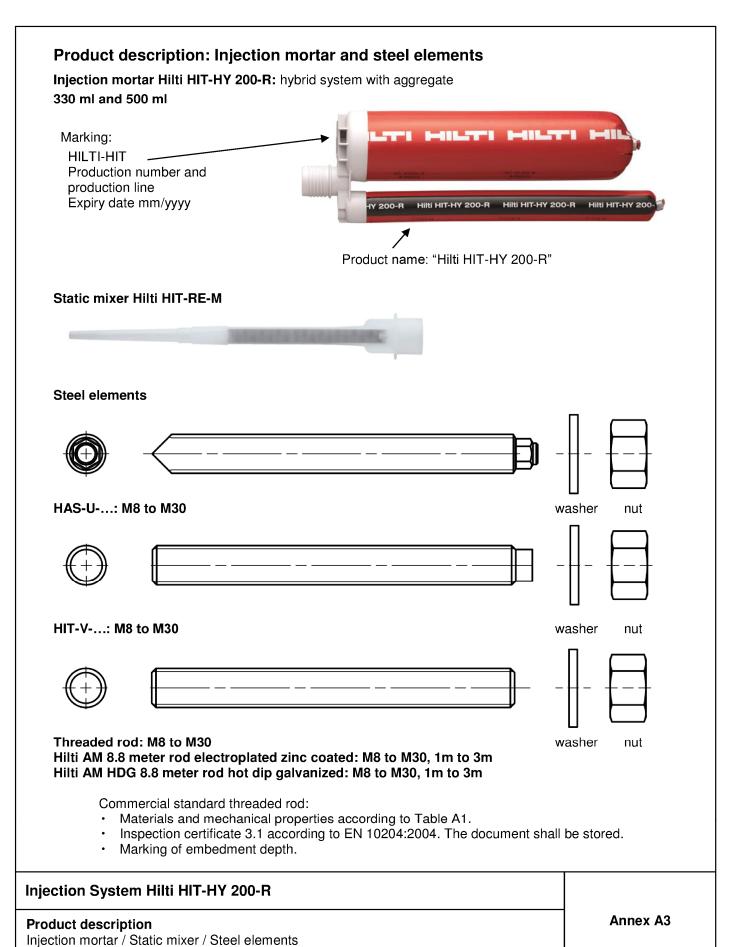
Internally threaded sleeve HIS-(R)N

Product description
Installed condition


Annex A1

Installed condition

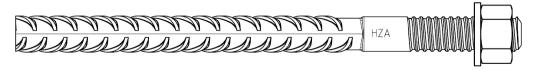
Figure A4:
Reinforcing bar



Injection System Hilti HIT-HY 200-R

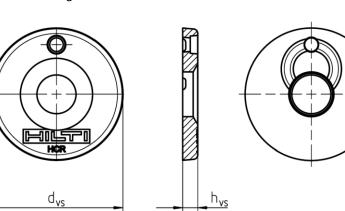
Product description
Installed condition

Annex A2

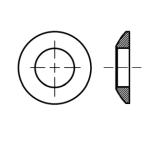

Steel elements

Internally threaded sleeve: HIS-(R)N M8 to M20

Hilti Tension Anchor: HZA M12 to M27 and HZA-R M12 to M24



Reinforcing bar (rebar): φ 8 to φ 32


- Materials and mechanical properties according to Table A1
- · Dimensions according to Annex B6

Hilti Filling Set to fill the annular gap between anchor and fixture

Sealing washer

Spherical washer

Hilti Filling Set			M16	M20	M24
Diameter of sealing washer	dvs	[mm]	56	60	70
Thickness of sealing washer	hvs	[mm]		6	
Thickness of Hilti Filling Set	h _{fS}	[mm]	11	13	15

Injection System Hilti HIT-HY 200-R

Product description

Injection mortar / Static mixer / Steel elements

Annex A4

Table A1: Materials

Designation	Material					
Reinforcing bars (rebars)						
Rebar: EN 1992-1-1: 2004 and AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$					
Metal parts made of	zinc coated steel					
HAS-U-5.8 (HDG), HIT-V-5.8(F), Threaded rod	Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture (l_0 =5d) > 8% ductile Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 45 μ m					
HAS-U-8.8 (HDG), HIT-V-8.8(F), Threaded rod	Strength class 8.8, $f_{uk}=800 \text{ N/mm}^2$, $f_{yk}=640 \text{ N/mm}^2$, Elongation at fracture ($l_0=5d$) > 12% ductile Electroplated zinc coated $\geq 5 \mu m$, (F) or (HDG) hot dip galvanized $\geq 45 \mu m$					
Hilti Meter rod AM 8.8 (HDG)	Strength class 8.8, $f_{uk}=800$ N/mm², $f_{yk}=640$ N/mm² Elongation at fracture ($I_0=5d$) > 12% ductile, Electroplated zinc coated ≥ 5 μ m, (F) hot dip galvanized ≥ 45 μ m					
Hilti tension anchor HZA	Round steel with threaded part: electroplated zinc coated ≥ 5 μm Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA					
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm					
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m					
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m					
Hilti Filling Set (F)	Filling washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$, (F) hot dip galvanized $\geq 45~\mu m$					

Injection System Hilti HIT-HY 200-R	
Product description Materials	Annex A5

Table A1: continued

Table AT. Continu	
Metal parts made of corrosion resistance	stainless steel e classes III according EN 1993-1-4:2006+A1:2015-06
HAS-U A4, HIT-V-R	For \leq M24: strength class 70, $f_{uk} = 700$ N/mm², $f_{yk} = 450$ N/mm²; For $>$ M24: strength class 50, $f_{uk} = 500$ N/mm², $f_{yk} = 210$ N/mm²; Elongation at fracture ($l_0=5d$) $>$ 8% ductile
Threaded rod	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Elongation at fracture ($I_0=5d$) $>$ 8% ductile Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Hilti tension anchor HZA-R	Round steel with threaded part: Stainless steel 1.4404, 1.4362, 1.4571 EN 10088-1:2014 Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA
Internally threaded sleeve HIS-RN	Stainless steel 1.4401, 1.4571 EN 10088-1:2014
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$; For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$; Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Metal parts made of	high corrosion resistant steel
corrosion resistance	e classes V according EN 1993-1-4:2006+A1:2015-06
HAS-U HCR, HIT-V-HCR	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture ($I_0=5d$) $>$ 8% ductile
Threaded rod	For \leq M20: $f_{uk} = 800$ N/mm², $f_{yk} = 640$ N/mm², For $>$ M20: $f_{uk} = 700$ N/mm², $f_{yk} = 400$ N/mm², Elongation at fracture ($I_0=5d$) $>$ 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014

Injection System Hilti HIT-HY 200-R	
Product description Materials	Annex A6

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading.
- Seismic performance category C1 and C2 (see Table B1).

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016.
- Cracked and uncracked concrete.

Temperature in the base material:

- at installation
 - -10 °C to +40 °C for the standard variation of temperature after installation
- in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

Table B1: Specifications of intended use

	HIT-HY 200-R with						
Elements	HAS-U, HIT-V, AM 8.8	Rebar	HZA(-R)	HIS-(R)N			
Hammer drilling with hollow drill bit TE-CD or TE-YD	✓	✓	√	√			
Hammer drilling	✓	✓	✓	✓			
Diamond drilling with roughening tool TE-YRT	✓	✓	√	✓			
Static and quasi static loading in cracked and uncracked concrete	M8 to M30	φ 8 to φ 32	M12 to M27	M8 to M20			
Seismic performance category C1	M10 to M30	φ 10 to φ 32	M12 to M27	-			
Seismic performance category C2	M16 to M24, HAS-U 8.8, HIT-V 8.8, AM 8.8, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8 Commercial standard rod (electroplated zinc coated only)	-	-	-			

Injection System Hilti HIT-HY 200-R	
Intended Use Specifications	Annex B1

English translation prepared by DIBt

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4:2006+A1:2015-06 correspoding to corrosion resistance classes Table A1 Annex A6. (stainless steels)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:

Electronic copy of the ETA by DIBt: ETA-12/0084

- Use category: dry or wet concrete (not in flooded holes) for all drilling techniques
- Drilling technique:
 - Hammer drilling,
 - · Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD,
 - · Diamond coring with roughening with Hilti roughening tool TE-YRT.
- Installation direction D3: downward, horizontal and upward (e.g. overhead) installation admissible for all elements.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System Hilti HIT-HY 200-R	
Intended Use Specifications	Annex B2

Table B2: Installation parameters of threaded rod, HAS-U-..., HIT-V-... and AM 8.8

Threaded rod, HAS-U, HIT	Γ-V, Α Ι	8.8 N	М8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	60 to 160	60 to 200	70 to 240	80 to 320	90 to 400	96 to 480	108 to 540	120 to 600
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	30	33
Thickness of Hilti Filling Set	h _{fs}	[mm]	-	-	-	11	13	15	-	-
Effective fixture thickness with Hilti Filling Set	t _{fix,eff}	[mm]	$t_{\text{fix,eff}} = t_{\text{fix}} - h_{\text{fs}}$							
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm h _{ef} + 2⋅d ₀						
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	Smin	[mm]	40	50	60	75	90	115	120	140
Minimum edge distance	Cmin	[mm]	40	45	45	50	55	60	75	80



Marking:

Steel grade number and length identification letter: e.g. 8L

HIT-V-...

Marking:

5.8 - | = HIT-V-5.8 M...x | 5.8F - | = HIT-V-5.8F M...x | 8.8 - | = HIT-V-8.8 M...x | 8.8F - | = HIT-V-8.8F M...x | R - | = HIT-V-R M...x | HCR - | = HIT-V-HCR M...x |

Hilti meter rod AM (HDG) 8.8

Injection System Hilti HIT-HY 200-R	
Intended Use Installation parameters of threaded rod, HAS-U, HIT-V and AM 8.8	Annex B3

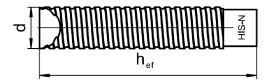


Table B3: Installation parameters of internally threaded sleeve HIS-(R)N

Internally threaded sleeve HIS-(R)	M8	M10	M12	M16	M20		
Outer diameter of sleeve	d	[mm]	12,5	16,5	20,5	25,4	27,6
Nominal diameter of drill bit	d ₀	[mm]	14	18	22	28	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	90	110	125	170	205
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230	270
Maximum torque moment	T_{max}	[Nm]	10	20	40	80	150
Thread engagement length min-max h _s [mm]			8-20	10-25	12-30	16-40	20-50
Minimum spacing	Smin	[mm]	60	75	90	115	130
Minimum edge distance	Cmin	[mm]	40	45	55	65	90

Internally threaded sleeve HIS-(R)N...

- Marking:

Identifying mark - HILTI and embossing "HIS-N" (for C-steel) embossing "HIS-RN" (for stainless steel)

Injection System Hilti HIT-HY 200-R

Intended Use
Installation parameters of internally threaded sleeve HIS-(R)N

Annex B4

Table B4: Installation parameters of Hilti tension anchor HZA-R

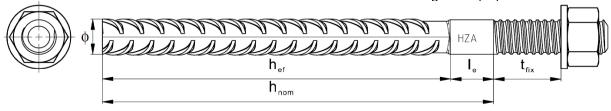

Hilti tension anchor HZA-R			M12	M16	M20	M24
Rebar diameter	ф	[mm]	12	16	20	25
Nominal embedment depth and drill hole depth	h _{nom} = h ₀	[mm]	170 to 240	180 to 320	190 to 400	200 to 500
Effective embedment depth ($h_{ef} = h_{nom} - l_e$)	h _{ef}	[mm]	h _{nom} — 100			
Length of smooth shaft	le	[mm]	100			
Nominal diameter of drill bit	d ₀	[mm]	16	20	25	32
Maximum diameter of clearance hole in the fixture 1)	df	[mm]	14	18	22	26
Maximum torque moment	T _{max}	[Nm]	40	80	150	200
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀			
Minimum spacing	Smin	[mm]	65	80	100	130
Minimum edge distance	Cmin	[mm]	45	50	55	60

Table B5: Installation parameters of Hilti tension anchor HZA

Hilti tension anchor HZA…			M12	M16	M20	M24	M27
Rebar diameter	ф	[mm]	12	16	20	25	28
Nominal embedment depth and drill hole depth	h _{nom} = h ₀	[mm]	90 to 240	100 to 320	110 to 400	120 to 500	140 to 560
Effective embedment depth (hef = hnom - le)	h _{ef}	[mm]	h _{nom} – 20				
Length of smooth shaft	l _e	[mm]	20				
Nominal diameter of drill bit	d_0	[mm]	16	20	25	32	35
Maximum diameter of clearance hole in the fixture 1)	df	[mm]	14	18	22	26	30
Maximum torque moment	T_{max}	[Nm]	40	80	150	200	270
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d₀				
Minimum spacing	Smin	[mm]	65	80	100	130	140
Minimum edge distance	Cmin	[mm]	45	50	55	60	75

Marking:

embossing "HZA(-R)" M .. / t_{fix}

Injection System Hilti HIT-HY 200-R

Intended Use

Installation parameters of Hilti tension anchor HZA-(R)

Annex B5



Table B6: Installation parameters of reinforcing bar

Reinforcing bar (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diameter	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	60 to 160	60 to 200	7 to 24	-	75 to 280	80 to 320	90 to 400	100 to 500	104 to 520	112 to 560	120 to 600	128 to 640
Nominal diameter of drill bit	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm			_{ef} + 2·	d ₀						
Minimum spacing	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimum edge distance	Cmin	[mm]	40	45	4	5	50	50	65	70	75	75	80	80

¹⁾ Each of the two given values can be used.

Reinforcing bar

For rebar bolt

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar h_{rib} shall be in the range 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Injection System Hilti HIT-HY 200-R	
Intended Use	Annex B6
Installation parameters of reinforcing bar (rebar)	

Table B7: Maximum working time and minimum curing time Hilti-HY 200-R

Temperature in the base material T ¹⁾	Maximum working time twork	Minimum curing time t _{cure}
-10 °C to -5 °C	3 hours	20 hours
> -5 °C to 0 °C	2 hours	8 hours
> 0 °C to 5 °C	1 hour	4 hours
> 5 °C to 10 °C	40 min	2,5 hours
> 10 °C to 20 °C	15 min	1,5 hours
> 20 °C to 30 °C	9 min	1 hour
> 30 °C to 40 °C	6 min	1 hour

¹⁾ The minimum temperature of the injection mortar Hilti HIT-HY 200-R during installation is 0°C

Injection System Hilti HIT-HY 200-R	
Intended Use	Annex B7
Maximum working time and minimum curing time	

Table B8: Parameters of cleaning and setting tools

		Installa- tion							
Threaded rod,				Hammer drilling Diamond coring			Piston		
HAS-U, HIT-V, AM 8.8	HIS-(R)N	Rebar	HZA(-R)		Hollow drill bit		Roughening tool	Brush	plug
						₹ ♦>			
size	size	size	size	d ₀ [mm]	d ₀ [mm]	d ₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	φ8	-	10	-	-	-	10	ı
M10	-	φ8 / φ10	-	12	12 ¹⁾	_	-	12	12
M12	М8	φ10 / φ12	-	14	14 ¹⁾	-	-	14	14
-	-	φ12	M12	16	16	-	-	16	16
M16	M10	φ14	-	18	18	18	18	18	18
-	-	φ16	M16	20	20	20	20	20	20
M20	M12	-	-	22	22	22	22	22	22
-	-	φ20	M20	25	25	25	25	25	25
M24	M16	-	-	28	28	28	28	28	28
M27	-	-	-	30	-	-	-	30	30
-	M20	φ25 / φ26	M24	32	32	32	32	32	32
M30	-	φ28	M27	35	35	35	35	35	35
-	-	φ30	-	37	-	-	-	37	37
-	-	φ32	-	40	-	-	-	40	40

¹⁾ To be used in combination with Hilti vacuum cleaner with suction volume ≥ 61 l/s (VC 20/40 –Y in corded mode only).

Cleaning alternatives

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Injection System Hilti HIT-HY 200-R

Intended Use

Parameters of cleaning and setting tools Cleaning alternatives **Annex B8**

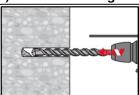
Table B9: Parameters for use of the Hilti Roughening tool TE-YRT

Associated components							
Diamor	nd coring	Roughening tool TE-YRT	Wear gauge RTG				
£ (
d ₀ [mm]	d₀ [mm]	size				
nominal	measured		SIZE				
18	17,9 to 18,2	18	18				
20	19,9 to 20,2	20	20				
22	21,9 to 22,2	22	22				
25	24,9 to 25,2	25	25				
28	27,9 to 28,2	28	28				
30	29,9 to 30,2	30	30				
32	31,9 to 32,2	32	32				
35	34,9 to 35,2	35	35				

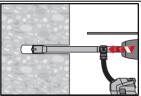
Table B10: Installation parameters for use of the Hilti Roughening tool TE-YRT

	Roughening time t _{roughen}	Minimum blowing time t _{blowing}
h _{ef} [mm]	t _{roughen} [sec] = h _{ef} [mm] / 10	tblowing [sec] = troughen [sec] + 20
0 to 100	10	30
101 to 200	20	40
201 to 300	30	50
301 to 400	40	60
401 to 500	50	70
501 to 600	60	80

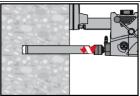
Hilti roughening tool TE-YRT and wear gauge RTG


Injection System Hilti HIT-HY 200-R	
Intended Use Parameters for use of the Hilti Roughening tool TE-YRT	Annex B9

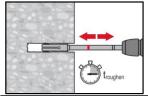
Installation instruction


Hole drilling

a) Hammer drilling


Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with Hilti hollow drill bit

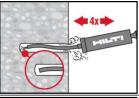

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner VC 20/40 (-Y) (suction volume ≥ 57 l/s) with automatic cleaning of the filter activated. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. When using TE-CD size 12 and 14 refer to Table B8. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring with roughening with Hilti roughening tool TE-YRT:

Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

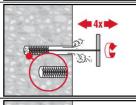
For the use in combination with Hilti roughening tool TE-YRT see parameters in Table B10.

Before roughening water needs to be removed from the drill hole. Check usability of the roughening tool with the wear gauge RTG. Roughen the drill hole over the whole length to the required hef.

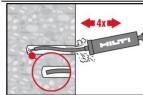

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Manual Cleaning (MC)


Uncracked concrete only.

For drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$.

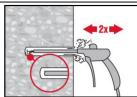


The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

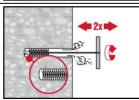
Brush 4 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

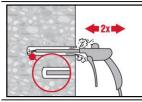

Injection System Hilti HIT-HY 200-R	
Intended Use	

Installation instructions

Annex B10

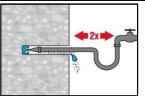


Compressed air cleaning (CAC) for all drill hole diameters do and all drill hole depths ho

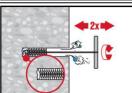


Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

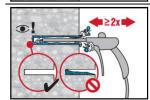
For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m³/h.



Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.



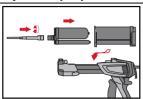
Blow again with compressed air 2 times until return air stream is free of noticeable dust.


Cleaning of diamond cored holes with roughening with Hilti roughening tool TE-YRT.

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Brush 2 times with the specified brush (see Table B8) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole }\emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter.

Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m 3 /h) until return air stream is free of noticeable dust and water. Remove all water from the drillhole until drillhole is completely dried before mortar injection. For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m 3 /h.


Injection System Hilti HIT-HY 200-R

Intended Use
Installation instructions

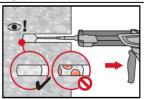
Annex B11

Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

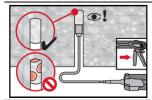


The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack, an initial amount of adhesive has to be discarded. Discarded quantities are

2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack,

4 strokes for 500 ml foil pack \leq 5 °C.

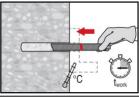
Inject adhesive from the back of the drill hole without forming air voids.



Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

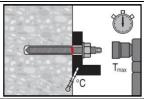
Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length. In water saturated concrete it is required to set the fastener immediately after cleaning the drillhole.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

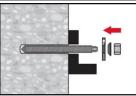

Overhead installation and/or installation with embedment depth $h_{\text{ef}} > 250 \text{mm}$. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B8). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

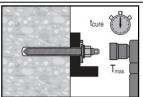
Injection System Hilti HIT-HY 200-R
Intended Use
Installation instructions

Annex B12

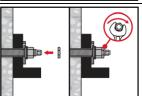

Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth before working time t_{work} (see Table B7) has elapsed.

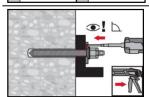

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).


Loading the anchor: After required curing time t_{cure} (see Table B7) the anchor can be loaded

The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B5.


Installation of Hilti Filling Set

Use Hilti Filling Set with standard nut. Observe the correct orientation of filling washer and spherical washer.



The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B5.

Optional:

Installation of lock nut. Tighten with a 1/4 to 1/2 turn. (Not for size M24.)

Fill the annular gap between the anchor rod and fixture with 1-3 strokes of Hilti injection mortar HIT-HY 200 R.

Follow the installation instructions supplied with the HIT-HY 200 R foil pack. After required curing time t_{cure} the anchor can be loaded.

Injection System Hilti HIT-HY 200-R

Intended Use

Installation instructions

Annex B13

Table C1: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under tension load in concrete

Threaded rod, HAS-U, HIT-V and AM 8.8					M12	M16	M20	M24	M27	M30
Installation safety factor										
Hammer drilling	γinst	[-]	1,0							
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]	-				1,0			
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]		-				1,0		
Steel failure										
Characteristic resistance	N _{Rk}	,s [kN]				As	· f uk			
Partial factor grade 5.8	γMs,	N ¹⁾ [-]				1	,5			
Partial factor grade 8.8	γMs,	N ¹⁾ [-]				1	,5			
Partial factor HAS-U A4, HIT-V-R	γMs,	N ¹⁾ [-]			1,	86			2,	86
Partial factor HAS-U HCR, HIT-V-HCR	γMs,	N ¹⁾ [-]	1,5					2,1		
Combined pullout and concrete cone	failu	ıre								
Characteristic bond resistance in uncrac	cked	concrete C20	/25							
Temperature range I: 40 °C / 24 °C	$ au_{Rk,}$	_{ucr} [N/mm²]	18							
Temperature range II: 80 °C / 50 °C	τ _{Rk,}	_{ucr} [N/mm²]	15							
Temperature range III: 120 °C / 72 °C	τ _{Rk,}	ucr [N/mm²]				1	3			
Characteristic bond resistance in cracke	ed co	ncrete C20/25	5							
Temperature range I: 40 °C / 24 °C	$\tau_{\text{Rk,}}$	_{cr} [N/mm²]	7	,5		8,5			9,0	
Temperature range II: 80 °C / 50 °C	τ _{Rk,}	cr [N/mm²]	6	,0		7,0			7,5	
Temperature range III: 120 °C / 72 °C	τ _{Rk,}	cr [N/mm²]	5	,5		6,0			6,5	
Influence factors ψ on bond resistand	ce τ _R	k								
		C30/37	1,04							
Cracked and uncracked concrete: Factor for concrete strength ψ_c	crete: ψ_{c} C40/45		1,07							
		C50/60	1,1							
Crooked and unoracked concrete:	_	40 °C/24 °C				0,	74			
Cracked and uncracked concrete: Sustained load factor ψ^0_s	-	80 °C/50 °C					89			
		120 °C/72 °C	0,72							

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension load in concrete	Annex C1

Table C1: continued

Concrete cone failure							
Factor for uncracked concrete	k _{ucr,N}	[-]		11,0			
Factor for cracked concrete	k cr,N	[-]	7,7				
Edge distance	C cr,N	[mm]		1,5 ⋅ h _{ef}			
Spacing	S _{cr,N}	[mm]		3,0 ⋅ h _{ef}			
Splitting failure							
	h / h	_{ef} ≥ 2,0	1,0 · h _{ef}	h/h _{of} + 2,0 -			
Edge distance c _{cr,sp} [mm] for	2,0 > h	/ h _{ef} > 1,3	4,6 · h _{ef} - 1,8 · h	1,3		\	
	h / h	ef ≤ 1,3	2,26 · h _{ef}	1	,0·h _{ef} :	2,26·h _{ef}	C _{cr,sp}
Spacing	S _{cr,sp}	[mm]		2·c _{cr,sp}			

¹⁾ In absence of national regulations.

Table C2: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load in concrete

Threaded rod, HAS-U, HIT-V, AM 8.8					M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic resistance	$V_{Rk,s}$	[kN]] 0,5 · A _s · f _{uk}							
Partial factor grade 5.8	$\gamma_{\text{Ms,V}}{}^{1)}$	[-]				1,	25			
Partial factor grade 8.8	$\gamma_{\text{Ms,V}}{}^{1)}$	[-]				1,	25			
Partial factor HAS-U A4, HIT-V-R	$\gamma_{\text{Ms,V}}{}^{1)}$	[-]			1,	56			2,	38
Partial factor HAS-U HCR, HIT-V-HCR	$\gamma_{Ms,V}^{1)}$	[-]	1,25					1,75		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Bending moment	M^0 Rk,s	[Nm]				1,2 · V	$V_{el} \cdot f_{uk}$	1		
Ductility factor	k ₇	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]	2,0							
Concrete edge failure										
Effective length of fastener	lf	[mm]	nii min (hat 12 t dham) i ii					in 300)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension and shear loads in concrete	Annex C2

Table C3: Essential characteristics for internally threaded sleeve HIS-(R)N under tension load in concrete

HIS-(R)N			M8	M10	M12	M16	M20		
Installation safety factor									
Hammer drilling	γinst	[-]							
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]			1,0				
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	-		1	٥, ا			
Steel failure									
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	116		
Partial factor	$\gamma_{\text{Ms,N}^1)}$	[-]			1,50				
Characteristic resistance HIS-RN with screw or threaded rod grade 70	N _{Rk,s}	[kN]	26	41	59	110	166		
Partial factor	γMs,N ¹⁾	[-]	1,87				2,4		
Combined pull-out and Concrete co	ne failu	re							
Effective embedment depth	h _{ef}	[mm]	90	110	125	170	205		
Effective fastener diameter	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6		
Characteristic bond resistance in uncr	acked co	ncrete C20/2	25						
Temperature range I: 40 °C/24 °C	τ _{Rk,ucr}	[N/mm²]			13				
Temperature range II: 80 °C/50 °C	τ _{Rk,ucr}	[N/mm²]			11				
Temperature range III: 120 °C/72 °C	τ _{Rk,ucr}	[N/mm²]			9,5				
Characteristic bond resistance in cracl	ked cond	rete C20/25	ı						
Temperature range I: 40 °C/24 °C	TRk,cr	[N/mm²]			7				
Temperature range II: 80 °C/50 °C	τ _{Rk,cr}	[N/mm²]			5,5				
Temperature range III: 120 °C/72 °C	TRk,cr	[N/mm²]			5				
Influence factors ψ on bond resista	nce τ _{Rk}								
		C30/37	1,04						
Cracked and uncracked concrete: Factor for concrete strength	С	C40/45	1,07						
. actor for controlle changer		C50/60	1,1						
	4	-0 °C/24 °C			0,74				
Cracked and uncracked concrete: Sustained load factor	⁰ sus 8	80 °C/50 °C			0,89				
120 °C			0,72						

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension loads in concrete	Annex C3

Table C3: continued

Concrete cone failure							
Factor for uncracked concrete	k _{ucr,N}	[-]		11,0			
Factor for cracked concrete	$k_{\text{cr,N}}$	[-]	7,7				
Edge distance	Ccr,N	[mm]	1,5 · h _{ef}				
Spacing	S _{cr,N}	[mm]		3,0 ⋅ h _{ef}			
Splitting failure							
	h	n / h _{ef} ≥ 2,0	1,0 · h _{ef}	h/h _{ef} 2,0			
Edge distance c _{cr,sp} [mm] for	2,0 > h	n / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h	1,3			
	ł	n / h _{ef} ≤ 1,3	2,26 h _{ef}	1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}			
Spacing	S _{cr,sp}	[mm]		2·c _{cr,sp}			

¹⁾ In absence of national regulations.

Table C4: Essential characteristics for internally threaded sleeve HIS-(R)N under shear load in concrete

HIS-(R)N			М8	M10	M12	M16	M20
Steel failure without lever arm							
Characteristic resistance HIS-N with screw or threaded rod grade 8.8	$V_{Rk,s}$	[kN]	13	23	34	63	58
Partial factor	γ Ms,V $^{1)}$	[-]			1,25		
Characteristic resistance HIS-RN with screw or threaded rod grade 70	$V_{Rk,s}$	[kN]	13	20	30	55	83
Partial factor	$\gamma_{\text{Ms,V}}^{1)}$	[-]		1,	56		2,0
Ductility factor	k ₇	[-]	1,0				
Steel failure with lever arm							
HIS-N with screw or threaded rod grade 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519
HIS-RN with screw or threaded rod grade 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454
Ductility factor	k 7	[-]			1,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure							
Effective length of fastener	l _f	[mm]	90	110	125	170	205
Outside diameter of fastener	d_{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension and shear loads in concrete	Annex C4

Table C5: Essential characteristics for Hilti tension anchor HZA / HZA-R under tension load in concrete

Hilti tension anchor HZA, HZA-R	M12	M16	M20	M24	M27			
Installation safety factor								
Hammer drilling γ_{inst} [-]					1,0			
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]			1,0			
Diamond coring with roughening with Hilti roughening tool TE-YRT	γinst	[-]	-		1,	,0		
Steel failure								
Characteristic resistance HZA	$N_{Rk,s}$	[kN]	46	86	135	194	253	
Characteristic resistance HZA-R	$N_{Rk,s}$	[kN]	62	111	173	248	-	
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]			1,4			
Combined pull-out and concrete cone	failure							
Diameter of rebar	d	[mm]	12	16	20	25	28	
Characteristic bond resistance in uncrack	ed con	crete C20	/25					
Effective anchorage depth HZA	h _{ef}	[mm]	h _{nom} – 20					
HZA-R	h _{ef}	[mm]	h _{nom} — 100				-	
Temperature range I: 40 °C/24 °C	τ _{Rk,ucr}	[N/mm²]	12					
Temperature range II: 80 °C/50 °C	τRk,ucr	[N/mm²]	10					
Temperature range III: 120 °C/72 °C	τ _{Rk,ucr}	[N/mm²]	8,5					
Characteristic bond resistance in cracked	concre	te C20/25						
Temperature range I: 40 °C/24 °C	τ _{Rk,cr}	[N/mm²]			7			
Temperature range II: 80 °C/50 °C	τ _{Rk,cr}	[N/mm²]			5,5			
Temperature range III: 120 °C/72 °C	τ _{Rk,cr}	[N/mm ²]			5			
Influence factors ψ on bond resistance	τ _{Rk}							
		C30/37			1,04			
Cracked and uncracked concrete: Factor for concrete strength Ψc		C40/45	1,07					
actor for comprete different		C50/60	1,1					
	40	°C/24 °C			0,74			
Cracked and uncracked concrete: ψ^{0}_{sus} Sustained load factor	80	°C/50 °C	0,89					
	120	°C/72 °C			0,72			

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension loads in concrete	Annex C5

Table C5: continued

Concrete cone failure								
Effective explored and death	HZA	h _{ef}	[mm]		h _{no}	om		
Effective anchorage depth	HZA-R	h _{ef}	[mm]		h _{nom}		-	
Factor for uncracked concrete		k ucr	[-]		11,	,0		
Factor for cracked concrete		kcr	[-]		7,	7		
Edge distance		C _{cr,N}	[mm]	1,5 ⋅ h _{ef}				
Spacing	S _{cr,N} [mm]			3,0 ⋅ h _{ef}				
Splitting failure relevant for u	ncracked	concr	ete					
		h / h _{ef} :	≥ 2,0	1,0·h _{ef}	h/h _{ef}			**************************************
Edge distance c _{cr.sp} [mm] for	2,0) > h / h	n _{ef} > 1,3	4,6·h _{ef} - 1,8·h	1,3			
		h / h _{ef} ≤ 1,3		2,26·h _{ef}		1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Spacing		S _{cr,sp}	[mm]	n] 2·c _{cr,sp}				

In absence of national regulations.

Table C6: Essential characteristics for Hilti tension anchor HZA, HZA-R under shear load in concrete

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Steel failure without lever arm							
Characteristic resistance HZA	V _{Rk,s}	[kN]	23	43	67	97	126
Characteristic resistance HZA-R	$V_{Rk,s}$	[kN]	31	55	86	124	-
Partial factor	γ _{Ms} 1)	[-]			1,5		
Ductility factor	k ₇	[-]			1,0		
Steel failure with lever arm							
HZA	M ⁰ Rk,s	[Nm]	72	183	357	617	915
HZA-R	M ⁰ Rk,s	[Nm]	97	234	457	790	-
Ductility factor	k ₇	[-]			1,0		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure							
Effective length of fastener	lf	[mm]	min (h _{nom} ; 12 · d _{nom}) min (h _{nom} 3·				
Outside diameter of fastener	d _{nom}	[mm]	12	16	20	24	27

¹⁾ In absence of national regulations.

Injection System Hilti HIT-HY 200-R	
Performances	Annex C6
Essential characteristics under tension and shear loads in concrete	

Table C7: Essential characteristics for rebar under tension load in concrete

Rebar			ф8	ሐ 10	ሐ 12	ሐ 1/1	ሐ 16	ሐ 20	ሐ 25	ሐ 26	ф 28	Ψ 3 0	ሐ 3 2
Installation safety factor			ψο	ψισ	Ψ 12	Ψ 14	ψισ	Ψ20	ψ 23	Ψ20	ψ 20	ψου	ψυΖ
Hammer drilling	γinst	[-]						1,0					
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	•	[-]	1,0										
Diamond coring with roughening with Hilti roughening tool TE-YR		[-]	- 1,0										
Steel failure						•							
Characteristic resistance Rebar B500B acc. to DIN 488:2009-08	N _{Rk,s}	[kN]	28	43	62	85	111	173	270	292	339	388	442
Partial factor	γMs,N ¹) [-]						1,4					
Combined pull-out and concrete cone failure													
Diameter of rebar	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistance in uncracked concrete C20/25													
Temperature range I: 40°C/24°C	τRk,ucr	[N/mm²]						12					
Temperature range II: 80°C/50°C	τ _{Rk,ucr}	[N/mm²]	10										
Temperature range III: 120°C/72°C	τ _{Rk,ucr}	[N/mm²]						8,5					
Characteristic bond resistance in	n crack	ed concre	ete C2	20/25									
Temperature range I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	-	5					7				
Temperature range II: 80°C/50°C	τ _{Rk,cr}	[N/mm²]	-	4					5,5				
Temperature range III: 120°C/72°C	τ _{Rk,cr}	[N/mm²]	-	3,5					5				
Influence factors ψ on bond re	esistar	ice τ _{Rk}											
Cracked and uncracked		C30/37						1,04					
concrete:	ψc	C40/45						1,07					
Factor for concrete strength		C50/60	550/60 1,1										
Cracked and uncracked	°C/24 °C												
concrete: $\psi^0_{ m sus}$	80	°C/50 °C											
Sustained load factor		°C/72 °C						0,72					

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics under tension load in concrete	Annex C7

Table C7: continued

Concrete cone failure								
Factor for uncracked concrete k _{ucr,N} [-]			11,0					
Factor for cracked concrete $k_{cr,N}$ [-]				7,7				
Edge distance	Ccr,N	[mm]		1,5 · h _{ef}				
Spacing	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}					
Splitting failure relevant	for uncracked	concr	ete					
	h/h _{ef} ≥:	2,0	1,0·h _{ef}	h/h _{of}				
Edge distance c _{cr,sp} [mm] for	2,0 > h / h _{ef}	> 1,3	4,6·h _{ef} - 1,8·h	1,3				
	h / h _{ef} ≤	1,3	2,26·h _{ef}	1,0 h _{ef} 2,26 h _{ef} c _{cr,sp}				
Spacing	Scr,sp	[mm]		2 C _{cr,sp}				

¹⁾ In absence of national regulations.

Table C8: Essential characteristics for rebar under shear load in concrete

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm													
Characteristic resistance Rebar B500B acc. to DIN 488:2009-08	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	146	169	194	221
Partial factor	γMs,V ¹⁾	[-]						1,5					
Ductility factor	k ₇	[-]	1,0										
Steel failure with lever arm													
Rebar B500B acc. to DIN 488:2009-08	M ^o Rk,s	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Ductility factor	k ₇	[-]						1,0					
Concrete pry-out failure													
Pry-out factor	k 8	[-]						2,0					
Concrete edge failure													
Effective length of fastener	lf	[mm]		mir	ı (h _{ef} ;	12 · d	nom)			min	(h _{nom} ;	300)	
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ In absence of national regulations.

Annex C8

Table C9: Displacements under tension load

Threaded rod, H	IAS-U, H	IT-V, AM 8.8	М8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concre	ete temperati	ure range I : 40°C / 24°0	<u>C</u>			•			•			
Dianlacement	δνο	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08		
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16		
Uncracked concre	ete temperati	ure range II : 80°C / 50°	С									
Displacement	δνο	$[mm/(N/mm^2)]$	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12		
Displacement	$\delta_{\text{N}\infty}$	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16		
Uncracked concrete temperature range III: 120°C / 72°C												
Displacement	δνο	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16		
Displacement	$\delta_{\text{N}\infty}$	$[mm/(N/mm^2)]$	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17		
Cracked concrete	temperature	e range I : 40°C / 24°C										
Displacement	δνο	$[mm/(N/mm^2)]$		0,07								
Displacement	δ _{N∞}	[mm/(N/mm²)]				0,	16					
Cracked concrete	temperature	e range II : 80°C / 50°C										
Displacement	δνο	$[mm/(N/mm^2)]$				0,	10					
Displacement	δ _{N∞}	[mm/(N/mm²)]				0,	22					
Cracked concrete	temperature	e range III : 120°C / 72°C	0									
Displacement	δνο	$[mm/(N/mm^2)]$	0,13									
Displacement	δ _{N∞}	[mm/(N/mm²)]			·	0,	29	·		·		

Table C10: Displacements under shear load

Threaded rod, HAS-U, HIT-V, AM 8.8			М8	M10	M12	M16	M20	M24	M27	M30
Diamlacamant	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Injection System Hilti HIT-HY 200-R	
Performances Displacements with threaded rod, HAS-U, HIT-V and AM 8.8	Annex C9

Table C11: Displacements under tension load

HIS-(R)N			М8	M10	M12	M16	M20				
Uncracked concret	te tempe	erature range I : 40	°C / 24°C								
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08				
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14				
Uncracked concret	te tempe	erature range II : 80	0°C / 50°C								
Displacement	δ_{N0}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11				
•	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15				
Uncracked concrete temperature range III: 120°C / 72°C											
Displacement	δνο	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14				
	δN∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15				
Cracked concrete	tempera	ture range I : 40°C	C / 24°C								
Diaplacement	δνο	[mm/(N/mm²)]			0,11						
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,16						
Cracked concrete	tempera	ture range II : 80°0	C / 50°C								
Diaplacement	δ_{N0}	$[mm/(N/mm^2)]$			0,15						
Displacement	δn∞	[mm/(N/mm²)]			0,22						
Cracked concrete	tempera	ture range III : 120)°C / 72°C								
Displacement	δνο	[mm/(N/mm²)]			0,20						
Displacement -	δ _{N∞}	[mm/(N/mm²)]			0,29						

Table C12: Displacements under shear load

HIS-(R)N			М8	M10	M12	M16	M20
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Displacement	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Injection System Hilti HIT-HY 200-R	
Performances Displacements with HIS-(R)N	Annex C10

Table C13: Displacements under tension load

Hilti tension anchor HZA,	HZA-R		M12	M16	M20	M24	M27
Uncracked concrete tempera	ıture range	I: 40°C / 24°C					
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15
Uncracked concrete tempera	ıture range	II:80°C/50°C					
Displacement	δηο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15
Uncracked concrete tempera	ture range	: III : 120°C / 72°C					
Displacement	δηο	[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16
Cracked concrete temperatu	re range I :	: 40°C / 24°C					
Diaplacement	δηο	[mm/(N/mm²)]			0,11		
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]			0,16		
Cracked concrete temperatu	re range II	: 80°C / 50°C					
Diaplacement	δ_{N0}	[mm/(N/mm²)]			0,15		
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,22		
Cracked concrete temperatu	: 120°C / 72°C						
Displacement	δηο	[mm/(N/mm²)]			0,20		
Displacement	δ _{N∞}	[mm/(N/mm²)]			0,29		

Table C14: Displacements under shear load

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Displacement	δνο	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Displacement	δν∞	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Injection System Hilti HIT-HY 200-R	
Performances	Annex C11
Displacements with HZA and HZA-R	

Table C15: Displacements under tension load

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Uncracked concrete t	emper	rature range I : 40)°C / 2	4°C									
Diaplacement	δ_{N0}	$[mm/(N/mm^2)]$	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09
Displacement -	δ _{N∞}	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17
Uncracked concrete t	emper	rature range II : 8	0°C / 5	50°C									
	δνο	[mm/(N/mm²)]	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12
	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17
Uncracked concrete t	emper	rature range III : 1	120°C / 72°C										
Diaplacement	δ_{N0}	$[mm/(N/mm^2)]$	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16
Displacement -	δ _{N∞}	$[mm/(N/mm^2)]$	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18
Cracked concrete ten	nperati	ure range I : 40°C	C / 24°0	С									
Displacement -	δ_{N0}	$[mm/(N/mm^2)]$						0,11					
Displacement	$\delta_{\text{N}\infty}$	$[mm/(N/mm^2)]$						0,16					
Cracked concrete ten	nperati	ure range II : 80°0	C / 50°	C									
Displacement	δ_{N0}	$[mm/(N/mm^2)]$						0,15					
Displacement	$\delta_{N\infty}$	$[mm/(N/mm^2)]$						0,22					
Cracked concrete ten	nperati	ure range III : 120	20°C / 72°C										
Displacement	δνο	$[mm/(N/mm^2)]$						0,20					
Displacement	δn∞	$[mm/(N/mm^2)]$						0,29					

Table C16: Displacements under shear load

Rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement	δνο	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Displacement -	δν∞	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Injection System Hilti HIT-HY 200-R	
Performances	Annex C12
Displacements with rebar	

Table C17: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under tension load for seismic performance category C1

Threaded rod, HAS-U, HIT-V and A	М 8.8		М8	M10	M12	M16	M20	M24	M27	M30
Steel failure										
HAS-U-5.8 (HDG), HIT-V-5.8(F), threaded rod 5.8	$N_{Rk,s,seis}$	[kN]	ı	29	42	79	123	177	230	281
HAS-U-8.8 (HDG), HIT-V-8.8(F), threaded rod 8.8, AM 8.8	$N_{Rk,s,seis}$	[kN]	-	46	67	126	196	282	367	449
HAS-U A4, HIT-V-R, threaded rod A4-70	$N_{Rk,s,seis}$	[kN]	1	41	59	110	172	247	230	281
HAS-U HCR, HIT-V-HCR, threaded rod HCR-80	$N_{Rk,s,seis}$	[kN]	1	46	67	126	196	247	321	393
Combined pullout and concrete cone fai	lure									
Characteristic bond resistance in cracked of	oncrete C2	0/25								
Temperature range I: 40 °C/24 °C	mm²]	-	5,2			7	,0			
Temperature range II: 80 °C/50 °C τ _{Rk,seis} [N/mm²]				3,9			5	,7		
Temperature range III: 120 °C/72 °C	τ _{Rk,seis} [N/	mm²]	-	3,5		·	4	,8	·	·

Table C18: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM 8	.8		M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
HAS-U-5.8 (HDG), HIT-V-5.8(F), threaded rod 5.8	$V_{Rk,s,seis}$	[kN]	-	11	15	27	43	62	81	98
HAS-U-8.8 (HDG), HIT-V-8.8(F), threaded rod 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]	-	16	24	44	69	99	129	157
HAS-U A4, HIT-V-R, threaded rod A4-70	$V_{Rk,s,seis}$	[kN]	-	14	21	39	60	87	81	98
HAS-U HCR, HIT-V-HCR, threaded rod HCR-80	$V_{Rk,s,seis}$	[kN]	1	16	24	44	69	87	113	137

Table C19: Displacements under tension load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Displacement 1)	$\delta_{\text{N,seis}}$	[mm]	-	0,8	0,8	0,8	0,8	0,8	0,8	0,8

¹⁾ Maximum displacement during cycling (seismic event).

Table C20: Displacements under shear load for seismic performance category C1

Threaded rod, HAS-U, HIT-V, AM 8.8				M10	M12	M16	M20	M24	M27	M30
Displacement 1)	δ v,seis	[mm]	-	3,5	3,8	4,4	5,0	5,6	6,1	6,5

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C1 and displacements.	Annex C13

Table C21: Essential characteristics for Hilti tension anchor HZA, HZA-R under tension load for seismic performance category C1

Hilti tension anchor H	IZA, HZA-R			M12	M16	M20	M24	M27
Steel failure								
Characteristic resistance	e HZA	N _{Rk,s,sei}	s [kN]	46	86	135	194	253
Characteristic resistance	e HZA-R	N _{Rk,s,sei}	s [kN]	62	111	173	248	-
Partial factor		γMs,N,sei	s ¹⁾ [-]			1,4		
Combined pull-out and	d concrete cone	failure						
Diameter of rebar		d	[mm]	12	16	20	25	28
Characteristic bond resis	stance in cracke	d concrete	C20/25					
Temperature range I:	40°C/24°C	τ _{Rk,cr}	[N/mm²]			6,1		
Temperature range II:	80°C/50°C	τ _{Rk,cr}	[N/mm²]			4,8		
Temperature range III:	120°C/72°C	τ _{Rk,cr}	[N/mm²]			4,4		

In absence of national regulations.

Table C22: Essential characteristics for Hilti tension anchor HZA, HZA-R under shear load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Steel failure without lever arm							
Characteristic resistance HZA	V _{Rk,s,seis}	[kN]	16	30	47	68	88
Characteristic resistance HZA-R	$V_{Rk,s,seis}$	[kN]	22	39	60	124	-
Partial factor	γMs,V,seis ¹⁾	[-]			1,5		

¹⁾ In absence of national regulations.

Table C23: Displacements under tension load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Displacement 1)	δ N,seis	[mm]	1,3	1,3	1,3	1,3	1,3

¹⁾ Maximum displacement during cycling (seismic event).

Table C24: Displacements under shear load for seismic performance category C1

Hilti tension anchor HZA, HZA-R			M12	M16	M20	M24	M27
Displacement 1)	δ V,seis	[mm]	3,8	4,4	5,0	5,6	6,1

Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C1 and displacements.	Annex C14

Table C25: Essential characteristics for rebar under tension load for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure		•	•	•					•			
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08	N _{Rk,seis} [kN]	-	43	62	85	111	173	270	292	339	388	442
Combined pull-out and Conc	rete cone failu	re										
Diameter of rebar	d [mm]	-	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistand	ce in cracked o	oncre	ete C2	20/25								
Temperature range I: 40°C/24°C	τ _{Rk,cr} [N/mm²]	-	4,4				6,1					
Temperature range II: 80°C/50°C	τ _{Rk,cr} [N/mm²]	-	3,5				4,8					
Temperature range III: 120°C/72°C	τ _{Rk,cr} [N/mm²]	-	3				4,4					

Table C26: Essential characteristics for rebar under shear loads for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm												
Characteristic resistance for rebar B500B acc. to DIN 488:2009-08	V _{Rk,s,seis} [kN]	-	15	22	29	39	60	95	102	118	135	165

Table C27: Displacements under tension load for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement 1)	$\delta_{\text{N,seis}}$ [mm]	-	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3

Maximum displacement during cycling (seismic event).

Table C28: Displacements under shear load for seismic performance category C1

Rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement 1)	$\delta_{V,seis}$ [mm]	-	3,5	3,8	4,1	4,4	5,0	5,8	6,2	6,2	6,8	6,8

¹⁾ Maximum displacement during cycling (seismic event).

Injection System Hilti HIT-HY 200-R	
Performances Essential characteristics for seismic performance category C1 and displacements.	Annex C15

Electronic copy of the ETA by DIBt: ETA-12/0084

Table C29: Essential characteristics for threaded rod, HAS-U-..., HIT-V... and AM 8.8 under tension load for seismic performance category C2

Threaded rod, HAS-U, HIT-V,	M 8.8		М8	M10	M12	M16	M20	M24	M27	M30
Steel failure										
HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8 Commercial standard threaded rod electroplated zinc coated 8.8	N _{Rk,s,seis}	[kN]		-		126	196	282		•
Combined pullout and concrete con	e failure									
Characteristic bond resistance in crack in hammer drilled holes and hammer c			nollow	drill b	oit TE-(CD or	TE-YC)		
Temperature range I: 40 °C/24 °C	τ _{Rk,seis}	[N/mm²]		-		3,9	4,3	3,5		•
Temperature range II: 80 °C/50 °C	τ _{Rk,seis}	[N/mm ²]		-		3,3	3,7	2,9		
Temperature range III: 120 °C/72 °C	τ _{Rk,seis}	[N/mm ²]		-		2,8	3,2	2,5		-

Table C30: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and AM 8.8 under shear load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm with Hilti Filling Set										
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		46	77	103		-
Steel failure without lever arm without Hilti Filling Set										
HAS-U 8.8, HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		40	71	90	-	-
HAS-U 8.8 HDG, HIT-V-F 8.8, AM-HDG 8.8	$V_{Rk,s,seis}$	[kN]		-		30	46	66		
Commercial standard threaded rod, electroplated zinc coated 8.8	$V_{Rk,s,seis}$	[kN]		-		28	50	63	-	-

Injection System Hilti HIT-HY 200-R	
Performances	Annex C16
Essential characteristics for seismic performance category C2.	

Table C31: Displacements under tension load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Displacement DLS, HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]		-		0,2	0,5	0,4		-
Displacement ULS, HAS-U 8.8 (HDG), HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{ULS})}$	[mm]		-		0,6	0,8	1.0	-	

Table C32: Displacements under shear load for seismic performance category C2

Threaded rod, HAS-U, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Installation with Hilti Filling Set										
Displacement DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		1,2	1,4	1,1	•	-
Displacement ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]		-		3,2	3,8	2,6	•	-
Installation without Hilti Filling Set										
Displacement DLS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		3,2	2,5	3,5	-	-
Displacement DLS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		2,3	3,8	3,7	-	-
Displacement ULS, HAS-U 8.8, HIT-V 8.8, AM 8.8	$\delta \text{V,seis(ULS)}$	[mm]		-		9,2	7,1	10,2		-
Displacement ULS, HAS-U 8.8 HDG, HIT-V-F 8.8, AM HDG 8.8	$\delta \text{V,seis(ULS)}$	[mm]		-		4,3	9,1	8,4	-	-

Injection System Hilti HIT-HY 200-R	
Performances Displacements for seismic performance category C2.	Annex C17