

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0224 of 26 March 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Modersohn Anchor Channel MBA

Anchor channels

Wilhelm Modersohn GmbH & Co. KG Industriestraße 23 32139 Spenge DEUTSCHLAND

Werk Spenge Industriestraße 23 32139 Spenge

21 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601

European Technical Assessment ETA-13/0224

Page 2 of 21 | 26 March 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z41087.18 8.06.01-61/15

European Technical Assessment ETA-13/0224

Page 3 of 21 | 26 March 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Modersohn Anchor channel MBA is system consisting of C-shaped channel profile of stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

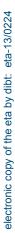
The anchor channel is embedded surface-flush in the concrete. Modersohn-channel bolts (hammerhead or hooked) with appropriate hexagon nuts and washers are fixed to the channel. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment


3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi- static loading tension loading	See Annex C1, C2, C4
Characteristic resistance under static and quasi-static loading shear loading	See Annex C3, C5
Characteristic resistance to combined static and quasi-static tension and shear loading	See Annex C4
Displacements under static and quasi-static loading	See Annex C2, C4
Characteristic resistance under fatigue tension loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

Z41087.18 8.06.01-61/15

European Technical Assessment ETA-13/0224

Page 4 of 21 | 26 March 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

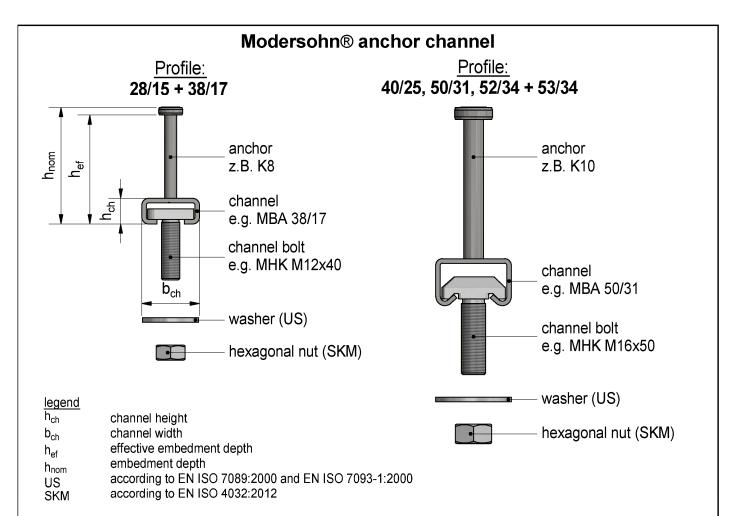
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 26 March 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange

Z41087.18 8.06.01-61/15


Z23204.19

Product description Installed condition

electronic copy of the eta by dibt: eta-13/0224

Annex A1

Marking of the Modersohn® anchor channel, e.g.:

stamping on back of channel:

M indentifying mark of the producer

BA type of anchor channel

38/17 size CRC III material

Close to the anchor a nail hole is positioned.

Material of the channel:

CRC I-V corrosion resistance class according to

EN 1993-1-4:2006 + A1:2015 (table A.3)

Marking of the Modersohn® channel bolt, e.g.:

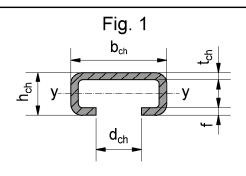
WM identifying mark of the producer A4 material

Strength grade of the channel bolt

50, 70 strength grade

Material of the channel bolt:

stamping	corrosion resistance class according to EN 1993-1-4:2006 + A1:2015 (table A.3)
A2	CRC II
A4	CRC III
D6	CRC IV
D8	CRC V


Modersohn® Anchor Channel MBA

Product description Anchor channel type and marking

Annex A2

723204.19 8.06.01-61/15

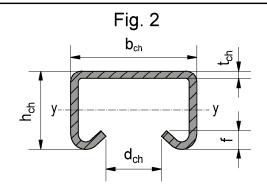
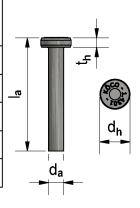



Table A1: Geometrical profile properties

			d	imensior	moment of inertia		
anchor channel	figure	b _{ch}	h _{ch}	t _{ch}	d _{ch}	f	ly
	[mm]						[mm ⁴]
28/15	5 1 28,00 15,0		15,00	2,30	12,00	2,30	3874
38/17	1	38,00	17,00	3,00	18,00	3,00	7787
40/25	25 2	40,00	25,00	2,50	18,00	5,50	19095
50/31	2	50,00	31,00	3,00	22,00	7,35	44781
52/34	2	52,00	34,00	4,00	22,00	7,80	70663
53/34	2	53,00	34,00	4,50	22,00	7,70	76681

Table A2: Types of anchors

type	anchor	shaft head anchor od _a od _h		head thickness t _h	la	A _h
type	channel		[mm²]			
K6	28/15	6	13	5	35	104,5
K8	38/17, 40/25	8	16	5	60	150,8
K10	50/31	10	19	7	75	205,0
K13	52/34, 53/34	13	25	8	125	358,1

Modersohn® Anchor Channel MBA

Product description Geometrical profile properties, types of anchor

Annex A3

Anchor positioning and channel length

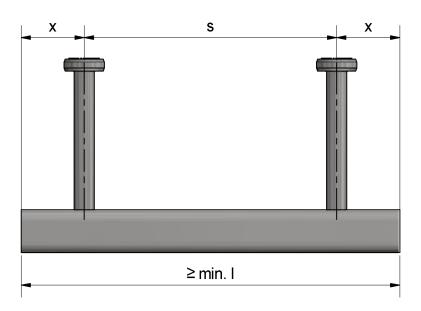
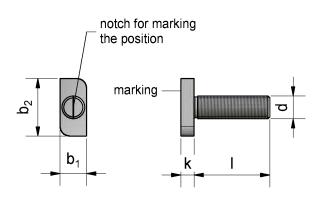


Table A3: Anchor positioning, channel length


	anchor	spacing	end spacing	min. channel length
anchor channel	S _{min}	S _{max}	x	min. l
		[m	m]	
28/15 38/17	50	200	25	100
40/25 50/31	50	250	25	100
52/34 53/34	80	250	35	150

Modersohn® Anchor Channel MBA	
Product description Anchor positioning, channel length	Annex A4

Modersohn® channel bolt

hammer head geometry

hook head geometry

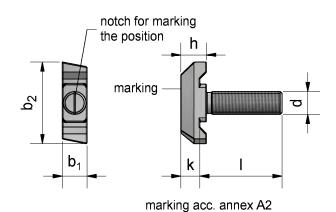


Table A4: Dimensions of hammer head channel bolt [mm]

hammer head alte geometry						ve hamm geometry			
MHK	thread d	width b ₁	length b ₂	thickness k	width b ₁	length b ₂	thickness k	length I	anchor channel
28/15	M10	10,5	22,5	4,5	10	22,5	6	20 - 200	28/15
38/17	M10 M12	14,1 14,1	30,5 30,5	7 7	15 15	30,5 30,5	7 7	20 - 200 20 - 200	38/17

Table A5: Dimensions of hook head channel bolt [mm]

			hook geon			alternative hook head geometry							
MHK	thread	width	length	thick	thickness		thickness		length	thick	ness	length	anchor
IVICITY	d	b ₁	b ₂	k	h all	b ₁	b ₂	k	h all	Ī	channel		
	M10	14	33,7	8	10,5	15	33,7	10	12,5	20 - 150			
40/25	M12	14	33,7	8	10,5	15	33,7	11	13,5	20 - 200	40/25		
	M16	17	32,7	9	12					30 - 200			
	M12	13	43,3	10	13,5	15	43,3	12	15,5	20 - 200	50/31,		
50/30	M16	17	43,3	11	14,5	20	43,3	14	17,5	30 - 200	52/34,		
	M20	21	43,3	12	15,5	20	43,3	15	18,5	30 - 200	53/34		

Table A6: Strength grade

strength grade	50	70
f _{uk} [N/mm²]	500	700
fyk [N/mm²]	210	450

Modersohn® Anchor Channel MBA	
Product description Dimensions, strength grade of channel bolts	Annex A5

Specification of intended use

Anchor channels and channel bolts subject to:

Static and quasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel

Base materials:

- Compacted reinforced or unreinforced concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C12/15 to C90/105 according to EN 206:2013 + A1:2016
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

According EN 1993-1-4:2006 + A1:2015 to the corrosion resistance class (CRC) to Annex A2

Design:

- Anchor channels are designed under the resposibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking into account of the loads to be anchored. The position of the anchor channel and channel bolt are indicated on the design drawings (e.g. position of the anchor channel relative to reinforcements or to supports, etc.).
- For static and quasi-static loading the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels" March 2018 or EN 1992-4:2018.

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without manipulations, repositioning or exchanging of channel components.
- Installation in accordance with the installation instruction given in Annexes B4, B5 and B6.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annes A5 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B5) rectangular to the channel axis.
- The required installation torques given in Annex B3, Table B2 must be applied and must not be exceeded.

Modersohn® Anchor Channel MBA	
Intended Use Specification and installation	Annex B1

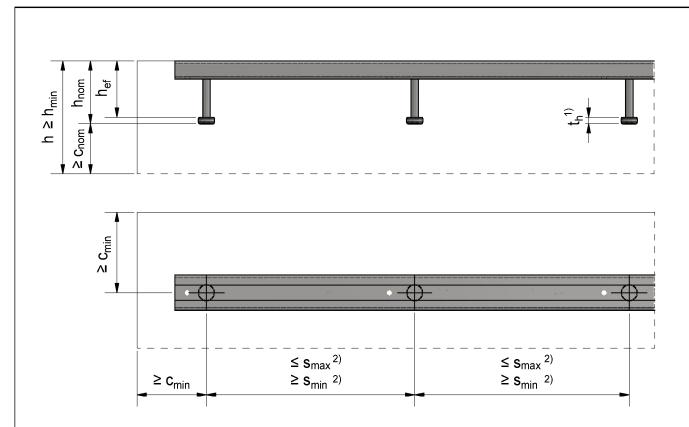


Table B1: Effective embedment depth, minimum edge distance and member thickness

anchor channel		28/15	38/17	40/25	50/31	52/34	53/34	
Effective embedment depth	[mm]	h _{ef}	45	72	80	99	151	151
min. edge distance	[mm]	C _{min}	40	50	50	75	100	100
min. member thickness		h _{min}		$h_{ef} + t_h^{1)} + c_{nom}^{3)}$				

¹⁾ t_h = anchor head thickness acc. Annex A3, Table A2

electronic copy of the eta by dibt: eta-13/0224

Modersohn® Anchor Channel MBA	
Intended use Installation parameters of Modersohn® anchor channel	Annex B2

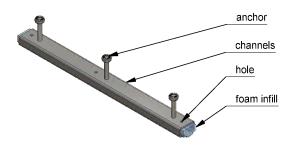
²⁾ s_{min} , s_{max} acc. Annex A4, Table A3

³⁾ $c_{nom} \ge 30 \text{ mm}$

Table B2: Minimum spacing and installation torque of Modersohn® channel bolt

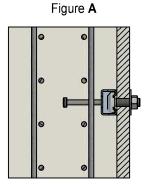
			installation torque 5)					
anchor channel		min spacing		st,g	T _{inst,s}			
	channel bolt Ø	s _{min,cbo} ⁴⁾ of the channel bolt	gen	eral ²⁾	steel-steel contact 3)			
			50 ¹⁾	70 ¹⁾	50 ¹⁾	70 ¹⁾		
	[mm]	[mm]		[N	m]			
28/15	10	50	-	13	-	40		
20/47	10	50	-	15	-	40		
30/17	38/17 12		-	25	-	70		
	10	50	13 ⁶⁾	-	15	-		
40/25	12	60	22 ⁶⁾	-	25	-		
	16	80	40 ⁶⁾	-	65	-		
	12	60	25	-	25	-		
50/31	16	80	60	-	65	-		
	20	100	75	-	130	-		
	12	60	25	-	25	-		
52/34 53/34	16	80	60	-	65	-		
	20	100	75	-	130	-		

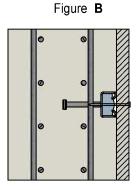
- 1) strength class
- 2) acc. Annex B7, Fig. 1
- 3) acc. Annex B7, Fig. 2
- 4) acc. Annex C1, Fig. 1
- 5) $T_{inst,g}$ and $T_{inst,s}$ = 10 Nm must not be exceeded
- 6) For installation in C12/15 and C16/20:


M10 : $T_{inst,g} = 10 \text{ Nm}$ M12 : $T_{inst,g} = 17 \text{ Nm}$ M16 : $T_{inst,g} = 30 \text{ Nm}$

Modersohn® Anchor Channel MBA	
Intended use Installation parameters of Modersohn® channel bolt	Annex B3

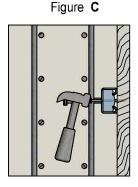
Instructions for fixing the Modersohn® anchor channel


Modersohn® anchor channels are fille with foam and have pre-punched holes in the back. the foam is to be cut flush to the edge of the channel. The channels should be installed according to the reinforcement plans and even with the concrete surface. To avoid displacing them, the anchor channels have to be fixed to the formwork while pouring the concrete.

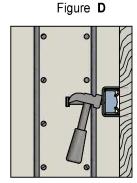

Fixing anchor channel to formwork

Steel formwork:

Fixing the anchor channel to the steel formwork with Modersohn® channel bolts and nuts.

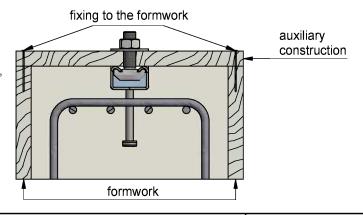


Fixing the anchor channel to the formwork with rivets through the pre-punched holes in the back of the channels.



Timber formwork:

Fixing the anchor channel to the timber formwork with nails through the pre-punched holes in the back of the channel. Stainless steel channels and channels in external use are to be fixed with stainless steel nails.



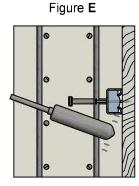
Fixing the anchor channel to the timber formwork with staples.

Fixing anchor channel at the top

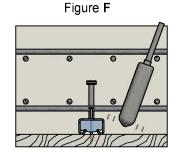
If the anchor channel is installed on the top of the component, it must be fixed to an auxiliary construction, e.g. with a Modersohn® channel bolt. This auxiliary construction prevents the displacing or slipping of the anchor channel while compacting the concrete.

Modersohn® Anchor Channel MBA

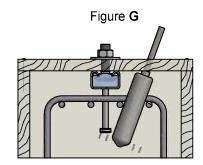
Intended use Installation instructions for anchor channel - part 1


Annex B4

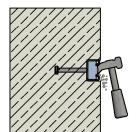
Z23204.19



Regular compacting of concrete

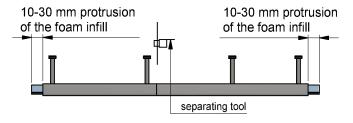

If anchor channels are installed at the side of the component, the concrete below the anchor channel must be thoroughly compacted. Improper compacting of the concrete can lead to air entrapments and thereby a reduced load capacity.

When installing an anchor channel at the bottom side of a member, the concrete needs to be compacted thoroughly to ensure a sufficient bonding.



Anchor channels installed at the top of the component must be fixed to an auxiliary construction to prevent displacing or slipping. A suitable vibrator has to be used to compact the concrete. If you press the anchor channel into the concrete, you have to compact the concrete with a vibrator!

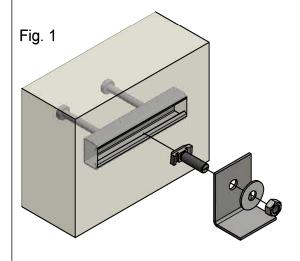
How to remove the channel filling


After dismanteling the formwork remove the fixing material and the remaining concrete. Next remove the foam infill with a suitable tool e.g. a screwdriver.

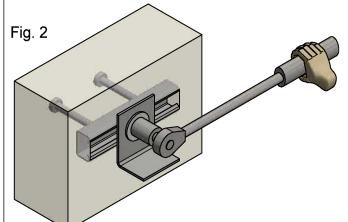
Cutting to size long anchor channels

Modersohn® anchor channels will be delivered prefabricated. The channels can be cut to size at the construction site. Then please follow the instructions:

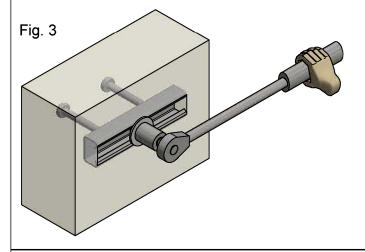
- 1. Every piece of channel must have at least two anchors.
- 2. The channel must be cut according to Annex A4 Table A3.
- The protrusion of the foam infill with 10-30 mm (delivery condition) must be cut flush to the edge of the Modersohn® anchor channel before installing.


Modersohn® Anchor Channel MBA

Intented use Installation instructions for anchor channel - part 2


Annex B5

Z23204.19


Fastening the Modersohn® channel bolt to the anchor channel

- a) Torque (general)
- Insert the Modersohn® channel bolt into the horizontal slot of the channel (Fig. 1).
- 2. Turn the channel bolt 90° in clockwise direction, then the head of the bolt locks into position (Fig. 1).
- 3. Minimum distance to the edge of the channel is to be set acc. Annex A4, Table A3.
- 4. Place washer under the nut (Fig. 1).

- Check if the Modersohn® channel bolt is installed correctly.
 The notch on the bottom of the threaded bolt of the screw must be set crosswise to the longitudinal axis.
- Tighten the nut with the torque mentioned in Annex B3 Table B2. The torque must not be exceeded.

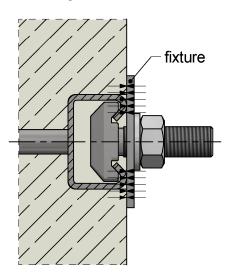
- b) Torque (steel-to-steel contact)
- 1. Place a washer between the channel and the attachment to create a defined contact.
- 2. Tighten the nut with the torque mentioned in Annex B3, Table B2. The torque must not be exceeded.

Modersohn® Anchor Channel MBA

Intended use Installation instructions for anchor channel - part 3

Annex B6

electronic copy of the eta by dibt: eta-13/0224

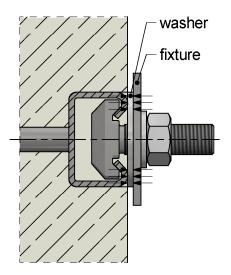


General

The fixture is in contact with the channel profile and the concrete surface.

The installation torques according to Annex B3, Table B2 shall be applied and must not be exceeded.

Fig. 1



Steel-to-steel contact

The fixture is fastened to the anchor channel by suitable steel part (e.g. washer).

The installation torques according to Annex B3 Table B2 shall be applied and must not be exceeded.

Fig. 2

Modersohn® Anchor Channel MBA

Intended use Position of fixture

Annex B7

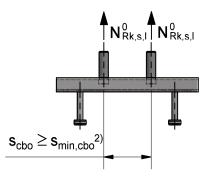


Table C1: Characteristic resistances under tension load steel failure of Modersohn® anchor channel

Steel landre of Modersoning anchor Channel											
anchor cha	nnel		28/15	38/17	40/25	50/31	52/34, 53/34				
steel failure, anchor											
characteristic resistance	$N_{Rk,s,a}$	[kN]	15,3	27,1	27,1	42,4	71,7				
partial factor	γ	1) Ms			1,85						
steel failure, connection b	etween ar	chor and	channel								
characteristic resistance	$N_{Rk,s,c}$	[kN]	18	28	20	32	76				
partial factor	γ	1) Ms,ca	1,8								
steel failure, local flexure	of channe	llips									
characteristic spacing of channel bolts for N _{Rk,s,l}	S _{I,N}	[mm]	56	76	80	100	106				
characteristic resistance	N _{Rk,s,I}	[kN]	18	28	20	32	76				
partial factor	γ	1) Ms,I	1,8								
steel failure, flexure resist	tance of cl	nannel									
characteristic flexure resistance of channel	$M_{Rk,s,flex}$	[Nm]	432	836	1262	2528	3297				
partial factor	γ	1) Ms,flex			1,15	1,15					

¹⁾ in absence of other national regulations

Fig. 1: Spacing

2) $s_{\text{min,cbo}}$ acc. Annex B3, Table B2 $\,$

Modersohn® Anchor Channel MBA	
Characteristic resistances under tension load Steel failure of anchor channel	Annex C1

Table C2: Characteristic resistances under tension lo	ad
concrete failure	

concrete	e failure									
ancl	anchor channel				38/17	40/25	50/31	52/34, 53/34		
pullout failure										
characteristic resista in cracked concrete	C12/15	$N_{Rk,p}$	[kN]	9,4	13,6	13,6	18,4	32,2		
characteristic resista in uncracked concre	te C12/15	· · · · · · · · · · · · · · · · · · ·	[KV]	13,2	16,3	19,0	25,8	45,1		
	C20/25					1,67				
	C25/30					2,08				
	C30/37					2,50				
increasing factor	C35/45				2,92					
for N _{Rk,p}	C40/50	$\Psi_{\! {\sf c}}$	[-]	3,33						
Ι Ι Ι Ι Ι ΚΚ,Ρ	C45/55			3,75						
	C50/60			4,17						
	C55/67			4,58						
	≥C60/75			5,00						
partial factor		$\gamma_{Mp} = \gamma_{Mc}^{1}$		1,5						
concrete cone fail	ure									
factor for cracked co	ncrete	k _{cr,N}		7,2	7,8	7,9	8,1	8,7		
factor for uncracked	concrete	k_{uc}	cr,N	10,3	11,1	11,3	11,6	12,4		
effective embedmen	t depth	h_{ef}	[mm]	45	72	80	99	151		
partial factor		γ	(1) Mc	1,5						
splitting failure										
characteristic edge of	listance	$c_{cr,Sp}$	[mm]	3·hef						
characteristic spacin	g	s _{cr,Sp}		6·hef						
partial factor		γ	msp			1,5				

¹⁾ in absence of other national regulations

Table C3: Displacements under tension load

anchor channel			28/15	38/17	40/25	50/31	52/34, 53/34
tension load	N	[kN]	4,2	7,6	9,9	18,7	29,2
short time displacement	δ_{N0}	[mm]	0,4	0,4	0,5	0,5	0,6
long time displacement	$\delta_{N^{\infty}}$	[mm]	1,6	1,6	1,6	1,6	1,6

Modersohn® Anchor Channel MBA	
Characteristic resistances under tension load Concrete failure and displacements	Annex C2

Table C4: Load perpendicular to longitudinal axis of channel
steel failure of Modersohn® anchor channel and concrete failure

Steel failure of woo	2013011110	anchoi	CHAIIIC	and coi	iorete ia		
anchor channe	I		28/15	38/17	40/25	50/31	52/34, 53/34
steel failure, anchor							
characteristic resistance	$V_{Rk,s,a,y}$	[kN]	18	30	31	59	74
partial factor	γ	n 1) Ms,a			1,54		
steel failure, connection between anchor and channel							
characteristic resistance	$V_{Rk,s,c,y}$	[kN]	18	30	31	59	74
partial factor	γ	n 1) Ms,c			1,8		
steel failure, local flexure of	channel	lips					
characteristic resistance	$V_{Rk,s,l,y}^0$	[kN]	18	30	31	59	74
partial factor	γ	, 1) Ms,I		1,8			
characteristic spacing of channel bolts for V _{Rk,s,l}	s _{I,V}	[mm]	56	76	80	100	106
pry out failure					•		
factor k	k	. 2) 8	1,0		2	,0	
partial factor	γ	, 1) Mc			1,5		
concrete edge failure							
factor for cracked concrete	k _{cr,V}		3,1	7,3	6,5	5,6	6,4
factor for uncracked concrete	k _{uc}	or,V	4,3	10,2	9,1	7,8	9,0
partial factor	γ	, 1) Mc			1,5		

Characteristic resistances for load in channel longitudinal direction are not rated.

- 1) in absence of other national regulations

without reinforcement In case of supplementary reinforcement the factor k₈ could be multiplied with 0,75.

Modersohn® Anchor Channel MBA	
Load perpendicular to longitudinal axis of channel Steel failure of anchor channel and concrete failure	Annex C3

Table C5: Displacements under shear load

anchor channel			28/15	38/17	40/25	50/31	52/34, 53/34
shear load	V	[kN]	2,7	7,8	7,6	9,4	16,2
short time displacement	$\delta_{V,y,0}$	[mm]	0,4	0,6	0,6	0,8	0,9
long time displacement	$\delta_{V,y,\infty}$	[mm]	0,6	0,9	0,9	1,2	1,4

Table C6: Characteristic resistances with combined shear and tension load

anchor ch	28/15	38/17	40/25	50/31	52/34, 53/34		
steel failure, local flexure of channel lips							
factor	k ₁₃	1,0	1,0	1,0	1,0	1,0	
steel failure, anchor and connection between anchor and channel							
factor	k ₁₄	1,0	1,0	1,0	1,0	1,0	

Table C7: Characteristic resistances under tension load steel failure of Modersohn® channel bolt

channel bolt					28/15	38/17	40/25	50/30
steel failure, channel bolt								
		[kN] -	M10	50 ¹⁾	-	-	25,4	-
	$N_{Rk,s}$		IVIIU	70 ¹⁾	30,9	40,6	-	-
characteristic resistance			M12 M16 M20	50 ¹⁾	-	-	41,9	42,2
				70 ¹⁾	-	45,7	-	-
				50 ¹⁾	-	-	55,7	68,3
				70 ¹⁾	-	-	-	-
				50 ¹⁾	-	-	-	88,9
			IVIZU	70 ¹⁾	-	-	-	-
partial factor		√ 2)		50 ¹⁾	2,86			
partial factor	$\gamma_{Ms}^{(2)}$			70 ¹⁾	1,87			

- 1) strength class
- 2) in absence of other national regulations

Modersohn® Anchor Channel MBA	
Displacements under shear load Characteristic resistance of Modersohn® channel bolt	Annex C4

Table C8: Characteristic resistances under shear load steel failure of Modersohn® channel bolt

channel bolt					28/15	38/17	40/25	50/30	
steel failure, channel bolt									
			Bad O	N440	50 ¹⁾	-	-	17,4	-
		$\begin{array}{c c} \mathbf{M16} & 50^{1/2} \\ \hline & 70^{1/2} \\ \hline & 50^{1/2} \end{array}$	70 ¹⁾	24,4	24,4	-	-		
characteristic resistance	$V_{Rk,s}$			50 ¹⁾	-	-	25,3	25,3	
				70 ¹⁾	-	35,4	-	-	
				50 ¹⁾	-	-	47,1	47,1	
				70 ¹⁾	-	-	-	-	
				M20	50 ¹⁾	-	-	-	73,5
			IVIZU	70 ¹⁾	-	-	-	-	
partial factor		$\gamma_{Ms}^{2)}$		50 ¹⁾	2,38				
partial factor		γ _{Ms} -′ 70			1,56				

Table C9: Characteristic flexure resistances steel failure of Modersohn® channel bolt

channel bolt					28/15	38/17	40/25	50/30
steel failure, channel bolt								
		M10 - M12 - M16 - M20	50 ¹⁾	-	-	37,4	-	
			IVIIU	70 ¹⁾	52,3	52,3	-	-
characteristic flexure resistance			M42	50 ¹⁾	-	-	65,5	65,5
	M _{Rk,s}		WITZ	70 ¹⁾	-	91,7	-	-
			M16	50 ¹⁾	-	-	166,5	166,5
				70 ¹⁾	-	-	-	-
				M20	50 ¹⁾	-	-	-
			IVIZU	70 ¹⁾	-	-	-	-
partial factor $\gamma_{Ms}^{\ 2)}$		50 ¹⁾	2,38					
		/ Ms	γ _{Ms} ⁻⁷ 70 ¹⁾		1,56			

- 1) strength class
- 2) in absence of other national regulations

Modersohn® Anchor Channel MBA	
Characteristic resistances under shear load Characteristic flexure resistances	Annex C5