

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0419 of 29 November 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R

Bonded expansion fastener for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

20 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-15/0419 issued on 11 April 2019

European Technical Assessment ETA-15/0419

Page 2 of 20 | 29 November 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z64286.19 8.06.01-278/19

European Technical Assessment ETA-15/0419

Page 3 of 20 | 29 November 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R is a bonded expansion fastener consisting of a foil pack with injection mortar Hilti HIT-HY 200-A or Hilti HIT-HY 200-R and an anchor rod (including nut and washer) in the range of of 3/8 inch to 3/4 inch. The anchor rod (including nut and washer) is made of galvanised steel (HIT-Z) or stainless steel (HIT-Z-R). The anchor rod is placed into a drill hole filled with injection mortar.

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the base material (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C1
Characteristic resistance for static and quasi-static shear load	See Annex C2
Displacements (static and quasi-static loading)	See Annex C3
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C4 - C6
Durability	See Annex B1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance	
Content, emission and/or release of dangerous substances	No performance assessed	

Z64286.19 8.06.01-278/19

European Technical Assessment ETA-15/0419

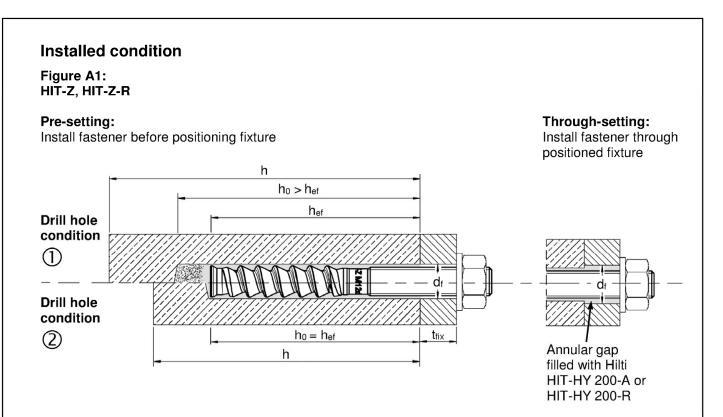
Page 4 of 20 | 29 November 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC] The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

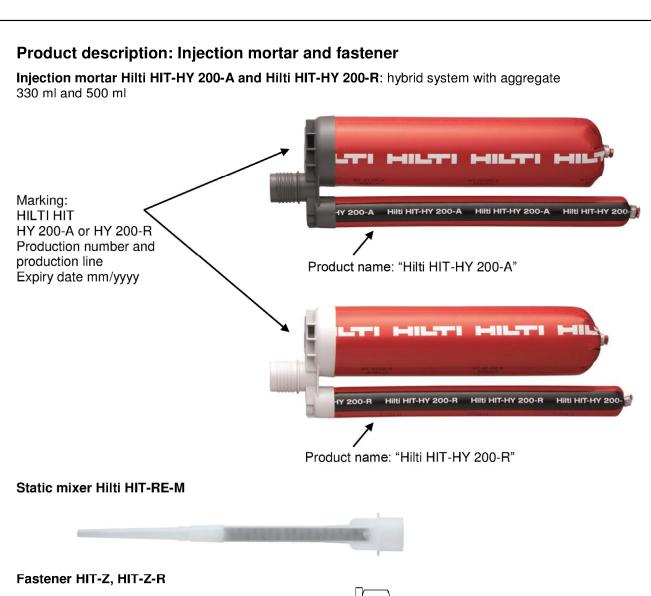

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 29 November 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange

Z64286.19 8.06.01-278/19

Drill hole condition \bigcirc \rightarrow non-cleaned drill hole


Drill hole condition \bigcirc \rightarrow drilling dust is removed

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R

Product description
Installed condition

Annex A1

Electronic copy of the ETA by DIBt: ETA-15/0419

Hilti fastener: HIT-Z and HIT-Z-R: 3/8 inch (9,5 mm) to 3/4 inch (19,1 mm)

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R

Product description
Injection mortar / Static mixer / Fastener

Annex A2

English translation prepared by DIBt

Table A1: Materials

Designation	Material
Metal parts made of	zinc coated steel
Fastener HIT-Z	For \leq 1/2": $f_{uk} = 650$ N/mm² (94 200 psi), $f_{yk} = 520$ N/mm² (75 300 psi). For $5/8$ ": $f_{uk} = 610$ N/mm² (88 400 psi), $f_{yk} = 490$ N/mm² (71 000 psi), For $3/4$ ": $f_{uk} = 595$ N/mm² (86 200 psi), $f_{yk} = 480$ N/mm² (69 600 psi), Elongation at fracture ($I_0=5d$) > 8% ductile Electroplated zinc coated \geq 5 μ m
Washer	Electroplated zinc coated ≥ 5 μm
Nut	Strength class of nut adapted to strength class of fastener Electroplated zinc coated $\geq 5~\mu m$
Metal parts made of corrosion resistance	stainless steel e class III according EN 1993-1-4:2006+A1:2015
Fastener HIT-Z-R	For \leq 1/2": $f_{uk} = 650$ N/mm² (94 200 psi), $f_{yk} = 520$ N/mm² (75 300 psi). For $5/8$ ": $f_{uk} = 610$ N/mm² (88 400 psi), $f_{yk} = 490$ N/mm² (71 000 psi), For $3/4$ ": $f_{uk} = 595$ N/mm² (86 200 psi), $f_{yk} = 480$ N/mm² (69 600 psi), Elongation at fracture (I_0 =5d) > 8% ductile Stainless steel 1.4401, 1.4404 EN 10088-1:2014
Washer	Stainless steel A4 according to EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of fastener Stainless steel 1.4401, 1.4404 EN 10088-1:2014

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Product description Materials	Annex A3

Specifications of intended use

Anchorages subject to:

- · Static and quasi static loading
 - HIT-Z and HIT-Z-R size 3/8 inch (9,5 mm) to 3/4 inch (19,1 mm).
- Seismic performance category:
 - Seismic C1: HIT-Z, HIT-Z-R sizes 3/8 inch (9,5 mm) to 3/4 inch (19,1 mm) in hammer drilled holes.
 - Seismic C2: HIT-Z, HIT-Z-R sizes 1/2 inch (12,7 mm) and 5/8 inch (15,9 mm) in hammer drilled holes.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016.
- Cracked and uncracked concrete.

Temperature in the base material:

- at installation
 - +5 °C to +40 °C for the standard variation of temperature after installation
- in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

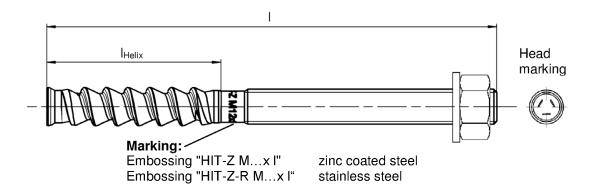
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions according EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class Table A1 Annex A3 (stainless steels)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:


- Concrete condition I1: Installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- Installation direction D3: downward and horizontal and upward (e.g. overhead).
- Drilling technique: hammer drilling, diamond coring or hammer drilling with hollow drill bit TE-CD, TE-YD
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Intended Use Specifications	Annex B1

Table B1:	Installation	parameters	HIT-Z	, HIT-Z-R

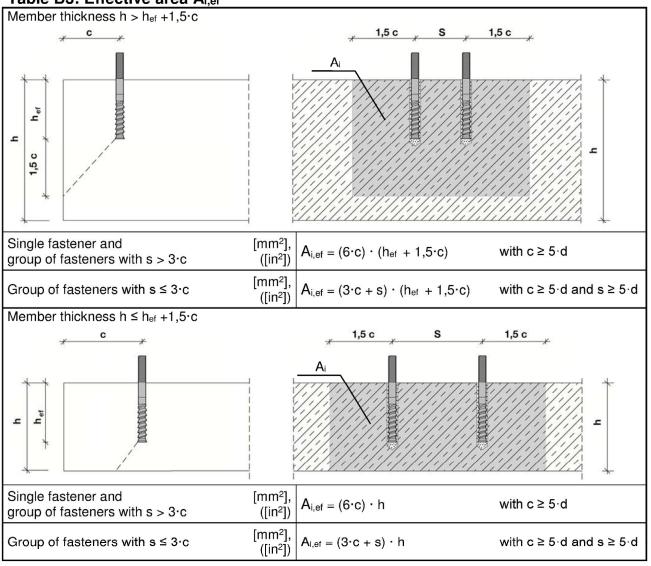
				3/8	1/2	5/8	3/4
Nominal diameter		d	[mm]	9,5	12,7	15,9	19,1
Nominal diameter o	f drill bit	d ₀	[in] ([mm])	7/16 (11,1)	9/16 (14,3)	3/4 (19,1)	7/8 (22,2)
Length of fastener		min l	[mm] ([in])	111 (4 3/8)	114 (4 1/2)	152 (6)	216 (8 1/2)
Length of fasterier		max I	[mm] ([in])	162 (6 3/8)	197 (7 3/4)	241 (9 1/2)	248 (9 3/4)
Length of helix		I_{Helix}	[mm] ([in])	57 (2 1/4)	63 (2 1/2)	92 (3 5/8)	102 (4)
Nominal anchorese	donth	h _{ef,min}	[mm] ([in])	60 (2 3/8)	70 (2 3/4)	95 (3 3/4)	102 (4)
Nominal anchorage	deрш	h _{ef,max}	[mm] ([in])	114 (4 1/2)	152 (6)	190 (7 1/2)	216 (8 1/2)
Drill hole condition ⁰ Min. thickness of co		h _{min}	[mm] ([in])	h _{ef} + 5 (h _{ef} + 2			02 mm · 4 in)
Drill hole condition ⁰ Min. thickness of co		h _{min}	[mm] ([in])		n ≥ 102 mm 4 in ≥ 4 in)	h _{ef} + 4 (h _{ef} + 1	15 mm 3/4 in)
Maximum depth of	drill hole	h ₀	[mm] ([in])	h – 32 (h – 1	2 mm 1/4 in)	h –	2 d ₀
Pre-setting: Maximum diameter in the fixture	of clearance hole	df	[in] ([mm])	7/16 (11,1)	9/16 (14,3)	11/16 (17,5)	13/16 (20,6)
Through-setting: Maximum diameter in the fixture	of clearance hole	df	[in] ([mm])	1/2 (12,7)	5/8 (15,9)	13/16 (20,6)	15/16 (23,8)
Maximum fixture thi	ckness	t _{fix}	[mm] ([in])	89 (3 1/2)	110 (4 1/4)	125 (4 7/8)	121 (4 3/4)
Installation torque	HIT-Z	T _{inst}	[Nm] ([ft-lb])	20 (15)	40 (30)	80 (60)	150 (110)
moment	HIT-Z-R	T _{inst}	[Nm] ([ft-lb])	40 (30)	90 (65)	170 (125)	220 (165)

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R

Intended Use
Installation parameters

Annex B2

Minimum edge distance and spacing


For the calculation of minimum spacing and minimum edge distance of fasteners in combination with different embedment depth and thickness of concrete member the following equation shall be fulfilled:

 $A_{i,req} < A_{i,ef}$

Table B2: Required area Ai,req

				1		1
		[in]	3/8	1/2	5/8	3/4
		([mm])	(9,5)	(12,7)	(15,9)	(19,1)
Cupalitad as manata	۸.	[mm²],	32200	54800	95500	157000
Cracked concrete	A i,req	([in²])	(49,9)	(85,0)	(148,1)	(243,4)
Non available apparets	۸.	[mm²],	46100	75700	129000	209000
Non-cracked concrete	A i,req	([in²])	(71,5)	(117,4)	(200,0)	(324,0)

Table B3: Effective area A_{i,ef}

 c_{min} and s_{min} in 5 mm steps

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Intended Use Installation parameters: member thickness, spacing and edge distances	Annex B3

Table B4: Maximum working time and minimum curing time, HIT-HY 200-A

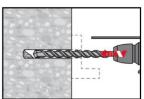
Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
5 °C	25 min	2 hours
6 °C to 10 °C	15 min	75 min
11 °C to 20 °C	7 min	45 min
21 °C to 30 °C	4 min	30 min
31 °C to 40 °C	3 min	30 min

Table B5: Maximum working time and minimum curing time, HIT-HY 200-R

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
5 °C	1 hour	4 hours
6 °C to 10 °C	40 min	2,5 hours
11 °C to 20 °C	15 min	1,5 hours
21 °C to 30 °C	9 min	1 hour
31 °C to 40 °C	6 min	1 hour

Table B6: Parameters of drilling and setting tools

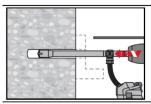
Fastener		Installation		
	Hamme	r drilling		
HIT-Z / HIT-Z-R	Drill bit	Hollow drill bit TE- CD, TE-YD	Diamond coring	Piston plug
			€ 🗈 🕒	
Size [in] ([mm])	d₀ [in] ([mm])	d₀ [in] ([mm])	d ₀ [in] ([mm])	HIT-SZ
3/8 (9,5)	7/16 (11,1)		7/16 (11,1)	
1/2 (12,7)	9/16 (14,3)	9/16 (14,3)	9/16 (14,3)	9/16 "
5/8 (15,9)	3/4 (19,1)	3/4 (19,1)	3/4 (19,1)	3/4 "
3/4 (19,1)	7/8 (22,2)	7/8 (22,2)	7/8 (22,2)	7/8 "


Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Intended Use Maximum working time and minimum working time Cleaning and setting tools	Annex B4

Installation instruction

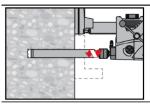
Hole drilling

a) Hammer drilling



<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

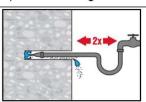
<u>Pre-setting</u>: Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


After drilling is complete, proceed to the "injection preparation" step in the installation instruction.

b) Hammer drilling with hollow drill bit

<u>Pre- / Through-setting:</u> Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual (see Annex A1 – Drill hole condition ②). After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

c) Diamond coring


Diamond coring is permissible when suitable diamond core drilling machines and corresponding core bits are used.

<u>Through-setting:</u> Drill hole through the clearance hole in the fixture to the required drilling depth.

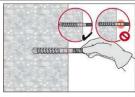

Pre-setting: Drill hole to the required embedment depth.

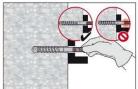
Drill hole cleaning

- a) No cleaning required for hammer drilled holes.
- b) Hole flushing and evacuation required for wet-drilled diamond cored holes.

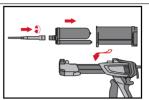
Flush 2 times from the back of the hole over the whole length until water runs clear. Water-line pressure is sufficient.

Blow 2 times from the back of the hole (if needed with nozzle extension) with oil-free compressed air (min. 6 bar at 6 m³/h) to evacuate the water.


Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R


Intended Use
Installation instructions

Annex B5

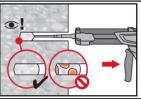

Checking of setting depth

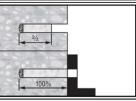
Mark the element and check the setting depth. The element has to fit in the hole until the required embedment depth. If it is not possible to insert the element to the required embedment depth, remove the dust in the drill hole or drill deeper.

Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.


Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into the dispenser.


The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are:

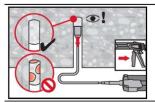
2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack.

Inject adhesive from the back of the drill hole without forming air voids.

Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

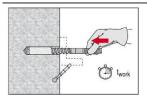
Pre-setting: Fill approximately 2/3 of the drill hole.

Through-setting: Fill 100% of the drill hole

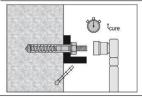


After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Intended Use	Annex B6
Installation instructions	



Overhead installation



For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B6). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.

Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Set element to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B4 or Table B5. After setting the element the annular gap between the fastener and the fixture (through-setting) or concrete (presetting) has to be filled with mortar.

After required curing time t_{cure} (see Table B4 or Table B5) remove excess mortar. The required installation torque T_{inst} is given in Table B1. The fastener can be loaded.

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R

Intended Use
Installation instructions

Annex B7

Table C1: Essential characteristics for HIT-Z (-R), under tension load in case of static and quasi static loading

		[in] ([mm])	3/8 (9,5)	1/2 (12,7)	5/8 (15,9)	3/4 (19,1)
Installation safety factor	γinst	[-]	(=,=)	(-, -, -	1,0	(12,1)
Steel failure						
HIT-Z	N _{Rk,s}	[kN] ([lb])	33 (7305)	60 (13375)	95 (21300)	140 (31470)
HIT-Z-R	$N_{Rk,s}$	[kN] ([lb])	33 (7305)	60 (13375)	95 (21300)	140 (31470)
Pull-out failure						
in uncracked concrete						
Temperature range I: 40 °C / 24 °C	N _{Rk,p,ucr}	[kN] ([lb])	40 (8990)	60 (13480)	110 (24720)	145 (32590)
Temperature range II: 80 °C / 50 °C	$N_{Rk,p,ucr}$	[kN] ([lb])	36 (8090)	55 (12360)	100 (22480)	130 (29220)
Temperature range III: 120 °C / 72 °C	$N_{Rk,p,ucr}$	[kN] ([lb])	34 (7640)	50 (11240)	90 (20230)	120 (26970)
in cracked concrete						
Temperature range I: 40 °C / 24 °C	$N_{Rk,p,cr}$	[kN] ([lb])	36 (8090)	55 (12360)	100 (22480)	130 (29220)
Temperature range II: 80 °C / 50 °C	$N_{Rk,p,cr}$	[kN] ([lb])	34 (7640)	50 (11240)	90 (20230)	120 (26970)
Temperature range III: 120 °C / 72 °C	$N_{Rk,p,cr}$	[kN] ([lb])	30 (6740)	45 (10110)	80 (17980)	105 (23600)
Concrete cone failure						
Effective embedment depth	h _{ef,min}	[mm] ([in])	60 (2 3/8)	70 (2 3/4)	95 (3 3/4)	102 (4)
Enective embedment depth	h _{ef,max}	[mm] ([in])	114 (4 1/2)	152 (6)	190 (7 1/2)	216 (8 1/2)
Factor for uncracked concrete	$k_{ucr,N}$	[-]			11,0	
Factor for cracked concrete	k cr,N	[-]			7,7	
Edge distance C _{cr,N}	[mm	n] / ([in])		1	,5 ⋅ h _{ef}	
Spacing S _{cr,N}	acing s _{cr,N} [mm] / ([in]) 3,0 · h _{ef}					
Splitting failure						
	h / he	_{ef} ≥ 2,35	1,5 · h _{ef} 6,2 · h _{ef} - 2,0 · h 1,35			
Edge distance 2,3	5 > h / h _e	f > 1,35				
c _{cr,sp} [mm], ([in]) for	h / h _e	_f ≤ 1,35	2.5 h		c _{cr,sp}	
Spacing S _{cr,s}	p [mm	n] / ([in])		2	2·C _{cr,sp}	

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Performances Essential characteristics under tension load in case of static and quasi static loading	Annex C1

Table C2: Essential characteristics for HIT-Z (-R) under shear load for static and quasi static loading

		[in] ([mm])	3/8 (9,5)	1/2 (12,7)	5/8 (15,9)	3/4 (19,1)
Installation safety factor	γinst	[-]	1,0			
Steel failure without lever arm						
HIT-Z	$V_{Rk,s}$	[kN] ([lb])	14 (3215)	26 (5885)	42 (9375)	62 (13850)
HIT-Z-R	$V_{Rk,s}$	[kN] ([lb])	20 (4385)	36 (8025)	57 (12785)	84 (18885)
Ductility factor	k ₇	[-]		1	,0	
Steel failure with lever arm						
HIT-Z	M ⁰ Rk,s	[Nm] ([ft-lb])	39 (29)	96 (71)	194 (143)	349 (257)
HIT-Z-R	M ⁰ Rk,s	[Nm] ([ft-lb])	39 (29)	96 (71)	194 (143)	349 (257)
Ductility factor	k ₇	[-]		1	,0	
Concrete pry-out failure						
Pry-out factor	k ₈	[-]		2	,0	
Concrete edge failure						
Effective length of fastener in shear loading	lf	[mm] ([in])	h _{ef}			
Diameter of fastener	d _{nom}	[mm] ([in])	9,5 (3/8)	12,7 (1/2)	15,9 (5/8)	19,1 (3/4)

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Performances Essential characteristics under shear load in case of static and quasi static loading	Annex C2

Table C3: Displacements under tension load for HIT-Z (-R) for static and quasi static loading¹⁾

		[in] ([mm])	3/8 (9,5)	1/2 (12,7)	5/8 (15,9)	3/4 (19,1)
Uncracked concrete	e, Temperature range	e I: 40 °C / 24	°C			
Diamlacament	δ _{N0} -factor	[mm/kN]	0,03	0,04	0,05	0,06
Displacement	- δ _{N∞} -factor	[mm/kN]	0,08	0,10	0,13	0,16
Uncracked concrete	e, Temperature range	e II: 80 °C / 50	o °C			
Diantagament	δ _{N0} -factor	[mm/kN]	0,03	0,05	0,06	0,07
Displacement	- δ _{N∞} -factor	[mm/kN]	0,08	0,11	0,14	0,18
Uncracked concrete	e, Temperature range	e III: 120 °C /	72 °C			
Displacement	δ _{N0} -factor	[mm/kN]	0,04	0,05	0,06	0,08
		[mm/kN]	0,09	0,12	0,16	0,19
Cracked concrete, 7	emperature range I:	: 40 °C / 24 °C	;	•		
	δ _{N0} -factor	[mm/kN]	0,07	0,08	0,09	0,10
Displacement		[mm/kN]	0,21	0,21	0,21	0,21
Cracked concrete, T	emperature range II	: 80 °C / 50 °C	С			
Displacement	δ _{N0} -factor	[mm/kN]	0,07	0,09	0,10	0,11
Displacement		[mm/kN]	0,23	0,23	0,23	0,23
Cracked concrete, 7	emperature range II	I: 120 °C / 72	°C			
Diaplacement	δ _{N0} -factor	[mm/kN]	0,08	0,09	0,11	0,12
Displacement		[mm/kN]	0,25	0,25	0,25	0,25

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N\infty} = \delta_{N\infty}$ -factor · N; (N: action tension load).

Table C4: Displacements under shear load for HIT-Z (-R) for static and quasi static loading¹⁾

		[in] ([mm])	3/8 (9,5)	1/2 (12,7)	5/8 (15,9)	3/4 (19,1)
Dianlacement	δvo-factor	[mm/kN]	0,06	0,05	0,04	0,04
Displacement	- δν∞-factor	[mm/kN]	0,09	0,07	0,07	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V\infty} = \delta_{V\infty}$ -factor · V; (V: action shear load)

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Performances	Annex C3
Displacements in case of static and quasi-static loading	

Table C5: Essential characteristics under tension load for HIT-Z (-R) for seismic performance category C1

			[in] ([mm])	3/8 (9,5)	1/2 (12,7)	5/8 (15,9)	3/4 (19,1)
Installation safety facto	r	γinst	[-]		1	,0	
Steel failure							
HIT-Z		N _{Rk,s,seis}	[kN] ([lb])	33 (7305)	60 (13375)	95 (21300)	140 (31470)
HIT-Z-R		N _{Rk,s,seis}	[kN] ([lb])	33 (7305)	60 (13375)	95 (21300)	140 (31470)
Pull-out failure							
in cracked concrete C2	0/25						
Temperature range I:	40 °C / 24 °C	N _{Rk,p,seis}	[kN] ([lb])	34 (7640)	50 (11240)	95 (21300)	125 (28100)
Temperature range II:	80 °C / 50 °C	N _{Rk,p,sels}	[kN] ([lb])	32 (7190)	46 (10340)	85 (19100)	115 (25850)
Temperature range III:	120 °C / 72 °C	N _{Rk,p,seis}	[kN] ([lb])	28 (6290)	42 (9440)	75 (16860)	100 (22480)

Table C6: Essential characteristics under shear load for HIT-Z (-R) for seismic performance category C1

	([in] ([mm])	3/8 (9,5)	1/2 (12,7)	5/8 (15,9)	3/4 (19,1)
Steel failure						
HIT-Z	V _{Rk,s,seis}	[kN] ([lb])	14 (3215)	17 (3825)	27 (6185)	43 (9700
HIT-Z-R	$V_{Rk,s,seis}$	[kN] ([lb])	16 (3680)	23 (5215)	31 (7030)	46 (10390)

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Performances	Annex C4
Essential characteristics – seismic performance category C1	

Table C7: Essential characteristics for HIT-Z (-R) under tension load for seismic performance category C2

			[in] ([mm])	1/2 (12,7)	5/8 (15,9)
Installation safety factor γ _{inst}		[-]	1,0		
Steel failure					
HIT-Z		N _{Rk,s,seis}	[kN] ([lb])	60 (13375)	95 (21300)
HIT-Z-R		N _{Rk,s,seis}	[kN] ([lb])	60 (13375)	95 (21300)
Pull-out failure					
in cracked concrete C20	/25				
Temperature range I:	40 °C / 24 °C	N _{Rk,p,seis}	[kN] ([lb])	26 (5840)	70 (15730)
Temperature range II:	80 °C / 50 °C	N _{Rk,p,seis}	[kN] ([lb])	20 (4490)	55 (12360)
Temperature range III:	120 °C / 72 °C	N _{Rk,p,seis}	[kN] ([lb])	18 (4040)	48 (10790)

Table C8: Essential characteristics under shear load for HIT-Z (-R) for seismic performance category C2

	[in] ([mm])	1/2 (12,7)	5/8 (15,9)
Steel failure			
HIT-Z	$V_{Rk,s,seis}$ $\begin{bmatrix} kN \end{bmatrix}$ $([lb])$	11 (2470)	17 (3850)
HIT-Z-R	$V_{Rk,s,seis}$ $\begin{bmatrix} kN \end{bmatrix}$ $([lb])$	15 (3375)	20 (4600)

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Performances Essential characteristics – seismic performance category C2	Annex C5

Table C9: Displacements under tension load for HIT-Z (-R) for seismic performance category C2

		[in] ([mm])	1/2 (12,7)	5/8 (15,9)
Displacement DLS	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]	1,3	1,9
Displacement ULS	δ N,seis(ULS)	[mm]	3,2	3,6

Table C10: Displacements under shear load for HIT-Z (-R) for seismic performance category C2

	[in] ([mm])	1/2 (12,7)	5/8 (15,9)
Displacement DLS HIT-Z	$\delta_{\text{V,seis(DLS)}}$ [mm]	2,8	3,1
Displacement ULS HIT-Z	$\delta_{\text{V,seis(ULS)}}$ [mm]	4,6	6,2
Displacement DLS HIT-Z-R	$\delta_{V,seis(DLS)}$ [mm]	3,0	3,1
Displacement ULS HIT-Z-R	$\delta_{\text{V,seis(ULS)}}$ [mm]	6,2	6,2

Injection system Hilti HIT-HY 200-A, Hilti HIT-HY 200-R with HIT-Z / HIT-Z-R	
Performances	Annex C6
Displacements for seismic performance category C2	