

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0595 of 28 March 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	JET-Vario-Therm
Product family to which the construction product belongs	Self supporting translucent roof kits
Manufacturer	JET Tageslicht & RWA GmbH Weidehorst 28 32609 Hüllhorst DEUTSCHLAND
Manufacturing plant	JET Tageslicht & RWA GmbH Weidehorst 28 32609 Hüllhorst DEUTSCHLAND
This European Technical Assessment contains	81 pages including 72 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	ETAG 010, Edition September 2002, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.
This version replaces	ETA-15/0595 issued on 27 September 2016

European Technical Assessment ETA-15/0595 English translation prepared by DIBt

Page 2 of 81 | 28 March 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 81 | 28 March 2019

European Technical Assessment ETA-15/0595 English translation prepared by DIBt

Specific Part

1 Technical description of the product

1.1 Kit description and setup

The 'JET-Vario-Therm' roof kit is made up of components which are factory-made and assembled on site as a self-supporting translucent roof kit.

The static system of the roof system 'JET-Vario-Therm' complies with the category 'Curved roof systems with additional bearing profiles parallel to the span' as listed in section 5.1.1.1.1 a) of the ETAG 010¹.

The roof kit comprises 1.05 m- or 2.1 m-wide arched translucent PC multi-wall sheets which are positioned on bearing profiles and protected from wind loads with covering profiles. The sheets are mounted on the eaves side in an impost profile partially made from PVC. The multi-wall sheets are abutted along their longitudinal edges via a bearing profile. For the 2.10 m-wide sheets, one (for double-span systems) or two (for triple-span systems) additional bearing profiles are arranged as intermediate supports parallel to the end arches.

The following components are used for the manufacture of the 'JET-Vario-Therm' arched selfsupporting translucent roof kit:

- translucent polycarbonate (PC) multi-wall sheets of thickness 10 mm (PC 10), 16 mm (PC 16) and 20mm (PC20), including combinations of sheets as described in 1.1.9
- glass fibre-reinforced unsaturated polyester resin (GF-UP) sheet (optionally arranged between the 10mm multi-wall sheets) or
- glass fibre mat (optionally arranged between the 10mm multi-wall sheets)
- 3 mm solid sheets made from polycarbonate (optionally arranged on top of a 16mm multiwall sheet)
- 4 mm double-wall sheet made from polycarbonate (optionally arranged between the 10mm 'multi-wall sheets)
- aluminium bearing and covering profiles,
- aluminium covering shells and load converters,
- Base profiles and (where required) roof sheeting connecting profiles made from PVC
- (where required) tension locks
- sealing profiles
- foam tape

ETAG 010:2002-09

- connecting devices.

The components and the system setup of the product are given in Annexes A 1 to A 4.

The material values, dimensions and tolerances of the roof kit not indicated in the annexes shall correspond to the values laid down in the technical documentation² of this European technical approval.

1

2

European Technical Approval Guideline - Self supporting translucent Roof Kits

The technical documentation comprises all information of the holder of this ETA necessary for the production, installation and maintenance of the roof kit; these are in particular the structural analysis, design drawings and the manufacturer's installation instructions. The part to be treated confidentially is deposited with Deutsches Institut für Bautechnik.

ETA-15/0595

Page 4 of 81 | 28 March 2019

English translation prepared by DIBt

1.1.1 Multi-wall sheets

The following multi-wall sheets made from polycarbonate (PC) in accordance with the harmonised European standard EN 16153³ may be used.

Table 1: PC-sheets

Manufacturer	Trade name	Sheet height [mm]	Annex
Covestro AG D – Leverkusen	Makrolon multi UV 2/10-10.5	10	A 4.1
DS Smith Plastics France F – Kaysersberg	Akyver Sun Type 10/1700	10	A 4.2
Covestro AG D – Leverkusen	Makrolon multi UV 2/10-10.5 ES	10	A 4.3
DS Smith Plastics France F – Kaysersberg	Akyver Sun Type 10/2000	10	A 4.4
DS Smith Plastics France F – Kaysersberg	Akyver Sun Type 10/4W-7	10	A 4.5
Koscon Industrial S.A. CH – Stabio	Macrolux LL 4W10	10	A 4.6
Covestro AG D – Leverkusen	Makrolon multi UV 4/10-6	10	A 4.7
Covestro AG D – Leverkusen	Makrolon multi UV 7/16-14	16	A 4.8
DS Smith Plastics France F – Kaysersberg	Akyver Sun Type 16/7W-12	16	A 4.9
Koscon Industrial S.A. CH – Stabio	Macrolux LL 7W16	16	A 4.10
DS Smith Plastics France F – Kaysersberg	Akyver Sun Type 20/7W-12	20	A 4.11
Koscon Industrial S.A. CH – Stabio	Macrolux LL 7W20	20	A 4.12

The multi-wall sheets have unfilled hollow chambers and weatherproofing on the outer surfaces which are unmistakably identified.

1.1.2 Optional (full-surface) covering supplements

1.1.2.1 GF-UP sheet

Sheet made from glass fibre-reinforced unsaturated polyester resin with a thickness of 1.2 mm and with a glass content of at least 20 % by mass. It corresponds to the specifications deposited with Deutsches Institut für Bautechnik.

1.1.2.2 Glass fibre mat

Up to two layers of glass fibre mat with a weight per unit area of 120 g/m² (+18/-11 g/m²) each may alternatively be arranged between the multi-wall sheets. It corresponds to the specifications deposited with Deutsches Institut für Bautechnik.

EN 16153:2015-05

3

Page 5 of 81 | 28 March 2019

English translation prepared by DIBt

1.1.2.3 Solid sheet

ETA-15/0595

The 3mm-thick solid polycarbonate (PC) sheet 'PC UVP 3 mm' produced by Polycasa N.V., BE-2440 Geel, and possessing a weight per unit area of 3.6 kg/m² in accordance with the harmonised European standard EN 16240⁴ can be used.

1.1.2.4 Double-wall sheet

The 4mm double-wall polycarbonate sheet 'Sun Type 4" produced by DS Smith Plastics France in accordance with the harmonised European standard EN 16153 can be used.

1.1.3 Bearing and covering profiles

The aluminium profiles are made from the aluminium alloy EN AW-6060 T66 in accordance with EN 15088⁵ and exhibit the dimensions given in Annexes A 3.1 to A 3.4 of the ETA.

1.1.4 Impost

1.1.4.1 Base profile

The extruded profiles made from polyvinyl chloride PVC U-E-D-L-082-05-28 in accordance with EN ISO 1163-1⁶ are available in the versions 'Base profile 30°' and 'Base profile 18°'. They have the dimensions given in Annex A 3.6.

1.1.4.2 Roof sheeting connecting profile (optional) The extruded profile made from polyvinyl chloride PVC U-E-D-L-082-05-28 in accordance with EN ISO 1163-1 has the dimensions given in Annex A 3.11.

1.1.4.3 Load converter

The load converter is available in the versions 'Load converter 30°' and 'Load converter 18°'. It is made from the aluminium alloy EN AW-6060 T66 in accordance with EN 15088.

The dimensions of the load converter profile correspond to the specifications in Annex A 3.7.

1.1.4.4 Covering shell

The covering shells in the versions 'Covering shell 10/30°', 'Covering shell 16/30°', 'Covering shell 16/18°, 'Covering shell 20/30°', 'Covering shell 20/18°', 'Covering shell 22/30°', 'Covering shell 22/18°', 'Covering shell 32/30°' and 'Covering shell 32/18° are made from the aluminium alloy EN AW-6060 T66 in accordance with EN 15088.

The covering shells have the dimensions given in Annex A 3.8.1 till 3.8.9.

1.1.4.5 Supporting profile

The supporting profiles in the versions 'supporting profile 18°' and 'supporting profile 30°' are made from the aluminium alloy EN AW-6060 T66 in accordance with EN 15088.

The supporting profiles have the dimensions given in Annex A 3.8.10.

1.1.5 Tension lock

The tension locks made from EN AW-6060 T66 in accordance with EN 15088 have the dimensions given in Annex A 3.10.

1.1.6 Sealing profile

The sealing profile is made from ethylene-propylene terpolymer (EPDM) and has the dimensions given in Annex A 3.9. The Shore A hardness is 60° +/- 5° in accordance with EN ISO 868^{7} .

4	EN 16240:2014-03	Light transmitting flat solid polycarbonate (PC) sheets for internal and external use in roofs, walls and ceilings - Requirements and test methods
5	EN 15088:2006-03	Aluminium and aluminium alloys - Structural products for construction works - Technical conditions for inspection and delivery
6	EN ISO 1163-1:1999-10	Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials – Part 1: Designation system and basis for specifications (ISO 1163-1:1995); German version EN ISO 1163-1:1999
7	EN ISO 868:2003-10	Plastics and ebonite - Determination of indentation hardness by means of a durometer (Shore hardness) (ISO 868:2003); German version EN ISO 868:2003

. ETA-15/0595

Page 6 of 81 | 28 March 2019

English translation prepared by DIBt

1.1.7 Foam tape

The foam tape is made from polyethylene foam and has the dimensions given in annex A 2.3.3. The density is 65kg/m³ in accordance with EN ISO 845⁸.

1.1.8 Connecting devices

The tension lock top part and the bearing profile or the tension lock lower part as well as the bearing profile and the covering shell are connected with cup blind rivets \emptyset 4.8 x 11.5 Al (sleeve: aluminium AIMg5 (EN AW 5019) – EN 573⁹; mandrel: galvanised steel – EN 10016-2¹⁰ or stainless steel – EN 10088¹¹ material no. 1.4541).

The blind rivets have the dimensions given in Annex A 3.12.

The tension lock top part and the tension lock lower part are connected using hexagon socket head cap screws in accordance with EN ISO 4762¹² (M6x50 A2-70/ M8x50 A2-70).

1.1.9 'JET-Vario-Therm' roof kit

The roof kit is made up of the components described in Sections 1.1.1 and 1.1.3 to 1.1.8 if necessary 1.1.4.2 (optional roof sheeting connecting profile). The combinations in accordance with table 2 are possible:

Covering	Multi-wall sheet(s) as per Annex	Base profile as per Annex	Load converter as per Annex	Covering shell as per Annex
PC 10	A 4.1 - A 4.7	A 3.6.1	A 3.7.1	A 3.8.1
PC 16	A 4.8 - A 4.10	A 3.6.1	A 3.7.1	A 3.8.2
	A 4.0 - A 4.10	A 3.6.2	A 3.7.2	A 3.8.3
PC 20	A 4.11 - A 4.12	A 3.6.1	A 3.7.1	A 3.8.4
PC 20	A 4.11 - A 4.12	A 3.6.2	A 3.7.2	A 3.8.5
PC 10+10	A 4.5 - 4.7	A 3.6.1	A 3.7.1	A 3.8.6
(2x same PC-sheet)	A 4.5 - 4.7	A 3.6.2	A 3.7.2	A 3.8.7
PC 10+10 DI		A 3.6.1	A 3.7.1	A 3.8.8
(2x same PC-sheet with air layer)	A 4.5 - 4.7	A 3.6.2	A 3.7.2	A 3.8.9

Table 2:Combinations of the roof kit

The 'PC 10+10' covering may optionally be used with an intermediate GF-UP sheet (Section 1.1.2.1) or glass fibre mat (Section 1.1.2.2).

The 'PC 10+10 DI' covering may optionally be used with an intermediate GF-UP sheet (Section 1.1.2.1) or a 4mm double wall sheet (Section 1.1.2.4).

8	EN ISO 845:2009-10	Cellular plastics and rubbers - Determination of apparent density
9	EN 573-3:2013-12	(ISO 845:2006); German version EN ISO 845:2009 Aluminium and aluminium alloys - Chemical composition and form of wrought products – Part 3: Chemical composition and form of products; German version EN 573-3:2013
10	EN 10016-2:1995-04	Non-alloy steel rod for drawing and/or cold rolling - Part 2: Specific requirements for general purpose rod; German version EN 10016-2:1994
11	EN 10088-2:2014-12	Stainless steels - Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes; German version EN 10088-2:2014
12	EN ISO 4762:2004-06	Hexagon socket head cap screws (ISO 4762:2004); German version EN ISO 4762:2004

ETA-15/0595

Page 7 of 81 | 28 March 2019

English translation prepared by DIBt

The roof kit may be designed with additional use of the solid sheet in accordance with Section 1.1.2.3 and in accordance with table 3:

Covering	Multi-wall sheet as per Annex	Base profile as per Annex	Load converter as per Annex	Covering shell as per Annex
PC 3+16	A 4.9 Details in Annov	A 3.6.1	A 3.7.1	A 3.8.6
(inner multi-wall sheet)Details in Annex A 1.4 and A 2.1.8	A 3.6.2	A 3.7.2	A 3.8.7	

Table 4:Reaction to fire of the components

component	Reaction to fire
Multi-wall sheets/ coverings	
GF-UP sheet	
Glass fibre mat	
Solid sheet	Class E as per EN 13501-1 ¹³
Base profile	
Roof sheeting connecting profile	
Foam tape	
Bearing and covering profiles	Class A1 as per EN 13501-1
Load converter	(without further testing as per
Covering shell	Commission Decision 96/603/EC, as
Tension lock	amended by Commission Decisions 2000/605/EC and 2003/424/EC)
Connecting devices	2000/000/20 414 2000/424/20)

2 Specification of the intended use in accordance with the applicable European Assessment Document

The self-supporting translucent roof kit may be used in the roof area for open or closed structures. The coverings may be combined to form continuous rooflights of any length with rectangular bases.

The roof kit is not a walk-on system; it may not be used for bracing of the roof support structure. The performance data given in Section 3 are only valid if the roof kit is used in compliance with the specifications and the conditions given in Annexes A, B, C and D.

The verifications and assessment methods on which this European Technical Assessment (hereinafter referred to as 'ETA') is based lead to the assumption of a working life of the roof kit of at least ten years. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the structure.

Page 8 of 81 | 28 March 2019

European Technical Assessment

ETA-15/0595

English translation prepared by DIBt

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic structural resistance of the multi-wall sheets to forces (actions) resulting from gravity loads and uplift loads [kN/m ²] provided that the bearing conditions as described in Annexes A 2.1 to A 2.3 are respected	See Annex B 3.1	
Characteristic structural resistance of the impost to forces (actions) resulting from uplift loads [kN]	See Annex B 3.2	
Consideration of the effect of load duration	See Annex B 1	
Consideration of ageing and environmental effects	See Annex B 1/ B 2	
Consideration of thermal effects	See Annex B 1/ B 2	
Values for characteristic structural resistance of aluminium bearing and covering profiles	In accordance with structural calculation.	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Fire performance in case of external fire exposure of 'JET-Vario-Therm' roof kit	No performance assessed
Reaction to fire of 'JET-Vario-Therm' roof kit	Class E
Resistance to fire of 'JET-Vario-Therm' roof kit	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Release of dangerous substances or radiation	The chemical composition of the product has to be in compliance with the composition deposited at the Technical Assessment Body (DIBt). The kit does not contain dangerous substances in accordance with EOTA TR 034 (Version October 2015) or based on an individual assessment on current knowledge there is no risk for the environment due to a release of dangerous substances. *
Watertightness andCategory 1 (no leaks with no differen-tial air pressu up to inclination of the substructure from the horizo 5° Design details as per information deposited with DI	
* Note: In addition to the specific provisions relating to dangerous substances contained in this ETA, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). For the purposes of meeting the provisions of the Construction Products Regulation, these requirements shall also be complied with insofar as they are applicable.	

ETA-15/0595

Page 9 of 81 | 28 March 2019

English translation prepared by DIBt

3.4 Safety and accessibility (BWR 4)

Essential characteristic	Performance
Resistance to damage by impact loads with a soft object (50 kg)	SB 0 (no requirement)
Resistance to impact loads from a hard object (250 g)	Passed (declaration of performance in accordance with EN 16153)
Resistance to horizontal live loads	No performance assessed

3.5 **Protection against noise (BWR 5)**

Essential characteristic	Performance
Airborne sound insulation	No performance assessed

3.6 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance		
Thermal resistance	See Annex C		
Air permeability	No performance assessed		
 Radiation Properties Light transmittance Solar direct transmittance Total solar energy transmittance 	See declaration of performance according to EN 16153		

4 Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal basis

In accordance with the ETAG 010 used as EAD the applicable European legal act is: 98/600/EC The System to be applied is:

Product	Intended use	Levels or classes (reaction to fire)	Systems	
'JET-Vario-Therm' roof kit	For general use in roofs and roof structures	E	3	

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 28 March 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Wachner

Page 10 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 11 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 12 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 13 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 14 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 15 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 16 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 17 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 18 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 19 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 20 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 21 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 22 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

		Minimum bearing width b _a [mm] for			
Covering	Section B-B or G-G / G'-G' as per Annex	1-span system	2-span system	3-span system	
		a _p ≤1060	a _p ≤1060	a _p ≤707	
		l _{es} or l _e ≤ 1050 l _e ≤ 2100		l _e ≤ 2100	
	2.1.1		20		
	2.1.2	30	30	30	
PC 10	2.1.3	30	30	30	
	2.1.4		30	30	
	2.1.6		30		
PC 10+10	2.1.7	30	30	30	
PC 10+10 DI	2.1.10	30	30	30	
	2.1.1		20		
	2.1.2	30		30	
PC 16	2.1.3	23	30		
	2.1.4		30		
	2.1.6	20	20		
	2.1.5		20		
PC 20	2.1.6	20	20		
PC 3+16	2.1.8	30	30	30	

When the sheet edges are cut, the distance between the bearing profile and the last fully

preserved rib is considered bearing width b_a.

Page 23 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 24 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 25 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 26 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 27 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 28 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 29 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 30 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 31 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 32 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Covering	Thickness of covering [mm]	Multi-wall sheet(s) as per Annex	Base profil as per Annex	Load converter as per Annex	Covering shell as per Annex
PC 10	10	A 4.1 - A 4.7	A 3.6.1	A 3.7.1	A 3.8.1
PC 16	16	A 4.8 - A 4.10	A 3.6.1	A 3.7.1	A 3.8.2
PC 20	20	A 4.11 - A 4.12	A 3.6.1	A 3.7.1	A 3.8.4
PC 10+10	22	A 4.5 - A 4.7	A 3.6.1	A 3.7.1	A 3.8.6
PC 10+10 DI	32	A 4.5 - A 4.7	A 3.6.1	A 3.7.1	A 3.8.8

All dimensions in mm

JET-Vario-Therm

Impost profile 30° with covering shells

Annex A 3.5.1

Page 33 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Covering	Thickness of covering [mm]	Multi-wall sheet(s) as per Annex	Base profil as per Annex	Load converter as per Annex	Covering shell as per Annex
PC 16	16	A 4.8 - A 4.10	A 3.6.2	A 3.7.2	A 3.8.3
PC 20	20	A 4.11 - A 4.12	A 3.6.2	A 3.7.2	A 3.8.5
PC 10+10	22	A 4.5 - A 4.7	A 3.6.2	A 3.7.2	A 3.8.7
PC 10+10 DI	32	A 4.5 - A 4.7	A 3.6.2	A 3.7.2	A 3.8.9

All dimensions in mm

JET-Vario-Therm

Impost profile 18° with covering shells

Annex A 3.5.2

Page 34 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Base profile (PVC) 30° Section, dimensions and weight Annex A 3.6.1

Page 35 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Annex A 3.6.2

Base profile (PVC) 18° Section, dimensions and weight

Page 36 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 37 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 38 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 39 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 40 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 41 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 42 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 43 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 44 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Page 45 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 46 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 47 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 48 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

undimensioned radius = R 0,5 mm

EPDM (60±5) Shore A as per EN ISO 868

All dimensions in mm

JET-Vario-Therm

Sealing profile Section

Annex A 3.9

Page 49 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 50 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 51 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 52 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

electronic copy of the eta by dibt: eta-15/0595

undimensioned wall thickness 1,5 mm $^{+0,3}_{-0,1}$ inner radius R 2 mm outer radius R 0,5 mm

All dimensions in mm

ISO 1163-PVC-U, EDL, 082-05-T28

JET-Vario-Therm

Roof sheeting connecting profile

Annex A 3.11

Page 53 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

electronic copy of the eta by dibt: eta-15/0595

Annex A 3.12

Page 54 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Sheet: Makrolon Multi UV 2/10-10,5 Manufacturer: Covestro AG, Leverkusen Resin: ISO 7391-PC, EL, 61-03-9

l _e mm	h mm	a _S mm	a _R mm	t _A mm	t _l mm	t _S mm	t _R mm	Flächen- gewicht kg/m²	Differenz $ \Delta \alpha $
2100	10,3	10,9	4,5	0,49	0,54	0,37	0,27	1,76	zu 90°
+6 - 2	± 0,5	+ 0,2	+ 1,8	- 0,06	- 0,04	- 0,08	- 0,08	+ 0,11 - 0,03	≤7°

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)						
B _x	B _y S _y M _{b,pos} M _{b,neg}					
64,0	30,9	2362	36,8	43,9		
Nm²/m Nm²/m N/m Nm/m Nm/m						

 $M_{b,pos}$: outer skin under pressure $M_{b,neg}$: inner skin under pressure

	Durability, as variation (after ageing)					
of yellow	ness index	of the light transmittance	of deformation flexural modulus	of tensile strength		
10%	ω (ΔΑ)	5% (ΔA)	Cu 1	Ku 1		

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Makrolon multi UV 2/10-10,5"

Page 55 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Sheet: Akyver Sun Type 10/1700 Manufacturer: DS Smith Plastics, Kaysersberg Resin: ISO 7391-PC, EL, 61-03-9

l _e mm	h mm	a _S mm	a _R mm	t _A mm	t _l mm	t _S mm	t _R mm	Flächen- gewicht kg/m²	Differenz $ \Delta \alpha $
2100	10,3	10,9	10,1	0,46	0,46	0,47	0,37	1,70	zu 90°
+6 -2	±0,5	+ 0,75	+ 1,9	- 0,06	- 0,04	- 0,12	- 0,08	+ 0,10 - 0,07	≤ 7 °

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)						
B _x	B _x B _y S _y M _{b,pos} M _{b,neg}					
58,1	35,1	2756	35,2	36,1		
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m		

 $M_{b,pos}$: outer skin under pressure $M_{b,neg}$: inner skin under pressure

Durability, as variation (after ageing)						
of yellowness indexof the light transmittanceof deformation flexural modulusof tensile strength						
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1			

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Akyver Sun Type 10/1700"

Page 56 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Sheet: Makrolon Multi UV 2/10-10,5 ES Manufacturer: Covestro AG, Leverkusen Resin: ISO 7391-PC, EL, 61-03-9

l _e mm	h mm	a _S mm	a _R mm	t _A mm	t _l mm	t _S mm	t _R mm	Flächen- gewicht kg/m²	Differenz $ \Delta \alpha $
2100	10,1	10,7	4,3	0,61	0,59	0,46	0,44	1,98	zu 90°
+6 -2	±0,5	+ 0,2	+ 0,85	- 0,04	- 0,06	- 0,05	- 0,05	+ 0,12 - 0,10	≤ 4 °

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)						
B _x	x By Sy M _{b,pos} M _{b,neg}					
70,3	32,6	3291	60,7	51,9		
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m		

M_{b,pos}: outer skin under pressure

 $M_{\text{b,neg}}\!\!:$ inner skin under pressure

Durability, as variation (after ageing)						
of yellowness indexof the light transmittanceof deformation flexural modulusof tensile strength						
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1			

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Makrolon multi UV 2/10-10,5 ES"

Page 57 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

Sheet: Manufacturer: DS Smith Plastics, Kaysersberg Resin: ISO 7391-PC, EL, 61-03-9

l _e mm	h mm	a _S mm	a _R mm	t _A mm	t _l mm	t _S mm	t _R mm	Flächen- gewicht kg/m²	Differenz $ \Delta \alpha $
2100	10,4	11,0	10,3	0,54	0,56	0,57	0,41	1,99	zu 90°
+6 -2	± 0,5	+ 0,65	+ 1,55	- 0,07	- 0,05	- 0,12	- 0,14	+ 0,12 - 0,10	≤ 5°

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)						
B _x B _y S _y M _{b,pos} M _{b,neg}						
68,4	41,6	4645	58,6	56,0	N	
Nm²/m Nm²/m N/m Nm/m Nm/m						

 $M_{b,pos}$: outer skin under pressure $M_{b,neg}$: inner skin under pressure

Durability, as variation (after ageing)					
of yellowness indexof the light transmittanceof deformation flexural modulusof tensile strength					
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1		

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Akyver Sun Type 10/2000"

Page 58 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

JT2015-153-G01-TZ019

t _{Mo} mm	t _{Mu} mm	t _R mm	weight per area kg/m²	difference $ \Delta \alpha $
0,05	0,08	0,48	1,72	to 90°
- 0,01	- 0,01	- 0,05	+0,10 - 0,01	≤6°

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mec	hanical resis				
B _x	By	Sy	$M_{b,pos}$	$M_{b,neg}$	M _{b,pos} : outer skin under pressure
54,9	40,2	1858	39,6	39,6	$M_{b,neg}$: inner skin under pressure
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m	

Durability, as variation (after ageing)						
of yellowness index of the light transmittance of deformation flexural of tensile stren						
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1			

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Akyver Sun Type 10/4W-7"

Page 59 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

JT2015-153-G01-TZ022

tм	t _R	weight per area	difference
mm	mm	kg/m²	$ \Delta \alpha $
0,04	0,56	1,69	to 90°
- 0,01	- 0,20	+ 0,16 - 0,10	≤ 8 °

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)						
B _x	By	Sy	$M_{b,pos}$	$M_{b,neg}$		
49,7	17,3	2129	41,2	44,0		
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m		

 $M_{b,\text{pos}}$: outer skin under pressure $M_{b,\text{neg}}$: inner skin under pressure

Durability, as variation (after ageing)						
of yellowness index	of the light transmittance	of deformation flexural modulus	of tensile strength			
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1			

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Macrolux LL 4W 10"

Page 60 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

JT2015-153-G01-TZ003

l _e	h	h _{M1}	h _{M2}	a _S	a _R	t _A	t _I	t _{So}	t _{Sm}	t _{Su}
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
2100	10,0	3,4	6,8	6,0	3,2	0,44	0,44	0,20	0,16	0,23
+ 6 - 2	+ 0,5 - 0,5	+ 0,4 - 0,3	+ 0,35 - 0,45	+ 0,25	+ 0,3	- 0,04	- 0,05	- 0,03	- 0,05	- 0,04

t _M	t _R	Flächen- gewicht	Differenz
mm	mm	kg/m²	$ \Delta \alpha $
0,08	0,26	1,73	zu 90°
- 0,02	- 0,08	+0,10 - 0,02	≤ 8°

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)					
B _x	By Sy M _{b,pos} M _{b,neg}				
49,0	23,1	2152	47,4	39,6	
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m	

 $M_{b,pos}$: outer skin under pressure $M_{b,neg}$: inner skin under pressure

Durability, as variation (after ageing)						
of yellowness indexof the light transmittanceof deformation flexural modulusof tensile strength						
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1			

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Makrolon multi UV 4/10-6"

Page 61 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

t _A mm	t _l mm	ts mm	t _M mm	t _R mm	Differenz $ \Delta \alpha $
0,57	0,60	0,37	0,08	0,78	zu 90°
- 0,04	- 0,05	- 0,08	- 0,01	- 0,06	≤ 3°

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

med					
B _x	By	Sy	$M_{b,pos}$	$M_{b,neg}$	M _{b,pos} : outer s
170,9	70,1	2845	63,2	49,9	M _{b,neg} : inner s
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m	

 $M_{b,pos}$: outer skin under pressure $M_{b,neg}$: inner skin under pressure

Durability, as variation (after ageing)								
of yellowness index of the light transmittance of deformation flexural of tensile stren								
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1					

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Makrolon multi UV 7/16-14" Annex A 4.8

electronic copy of the eta by dibt: eta-15/0595

Page 62 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

JT2015-153-G01-TZ008

l _e mm	h mm	h _{M1} mm	h _{M2} mm	h _{M3} mm	h _{M4} mm	h _{M5} mm	a _S mm	a _R mm	t _A mm	t _l mm
2100	16,1	2,7	5,2	7,9	10,5	12,9	12,0	8,0	0,61	0,54
+6 -2	±0,5	+ 0,45 - 0,3	+ 0,4 - 0,55	+ 0,55 - 0,7	+ 0,5 - 0,7	+ 0,4 - 0,35	+ 0,40	+ 3,05	- 0,11	- 0,11

t _{S1} mm	t _{S2} mm	t _{S3} mm	t _{S4} mm	t _M mm	t _R mm	Flächen- gewicht kg/m²	Differenz $ \Delta \alpha $
0,45	0,45	0,37	0,36	0,06	0,50	2,63	zu 90°
- 0,07	- 0,10	- 0,12	- 0,13	- 0,02	- 0,32	+ 0,16 - 0,20	≤ 9°

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)								
B _x B _y S _y M _{b,pos} M _{b,neg}								
176,9	49,0	2566	65,6	54,1				
Nm²/m N/m Nm/m Nm/m								

 $M_{b,pos}$: outer skin under pressure $M_{b,neg}$: inner skin under pressure

Durability, as variation (after ageing)								
of yellowness index of the light transmittance of deformation flexural modulus of tensile strength								
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1					

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Akyver Sun Type 16/7W-12"

Page 63 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

(as declared in the DoP in accordance with EN 16153)

mechanical resistance (deformation behavior)									
B _x B _y S _y M _{b,pos} M _{b,neg}									
158,6	74,8	2761	60,7	63,1					
Nm²/m Nm²/m N/m Nm/m N									

M_{b.pos}: outer skin under pressure M_{b,neg}: inner skin under pressure

Durability, as variation (after ageing)								
of yellowness index of the light transmittance of deformation flexural of tensile strength								
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1					

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Macrolux LL 7W 16"

Annex A 4.10

electronic copy of the eta by dibt: eta-15/0595

Page 64 of European Technical Assessment ETA-15/0595 of 28 March 2019

Page 65 of European Technical Assessment ETA-15/0595 of 28 March 2019

English translation prepared by DIBt

le	h	h _{M1}	h _{M2}	h _{M3}	h _{M4}	h _{M5}	a _S	a _R	tA	t _l
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
2100	20,2	3,3	6,0	8,7	12,3	16,2	15,8	13,8	0,67	0,71
+6 -2	± 0,5	+ 0,55 - 0,3	+ 0,7 - 0,6	+ 0,75 - 0,6	+ 0,7 - 0,8	+ 0,3 - 0,4	+ 0,35	+ 2,9	- 0,07	- 0,11

t _{SA} mm	t _{SI} mm	t _M mm	t _R mm	Flächen- gewicht kg/m²	Differenz Δα
0,36	0,52	0,09	0,60	3,08	zu 90°
- 0,09	- 0,14	- 0,03	- 0,10	+ 0,18 - 0,11	≤ 3 °

Minimum performance levels or classes for the sheets (as declared in the DoP in accordance with EN 16153)

mec	hanical resis				
B _x	By	Sy	$M_{b,pos}$	$M_{b,neg}$	$M_{b,pos}$: outer skin under pressure
292,7	75,1	2843	81,9	76,5	$M_{b,neg}$: inner skin under pressure
Nm²/m	Nm²/m	N/m	Nm/m	Nm/m	

Durability, as variation (after ageing)								
of yellowness index	of the light transmittance	of deformation flexural modulus	of tensile strength					
10% (ΔA)	5% (ΔA)	Cu 1	Ku 1					

JET-Vario-Therm

Geometry/ weight per area Minimum performance levels or classes for the sheets in accordance with EN 16153 "Macrolux LL 7W 20" Annex A 4.12

electronic copy of the eta by dibt: eta-15/0595

JET-Vario-Therm

Annex B

Provisions for design and dimensioning

Dimensioning, installation and execution of the roof kit shall be in compliance with the national technical specifications. These differ in terms of their content as well as their status within the legal frameworks of the member states.

If no national provisions exist, dimensioning can be carried out in accordance with Annexes B 1 and B 2. In case the roof system, in particular the multi-wall sheets are systematically in contact with chemicals, the resistance to these substances shall be checked. Thereby, high concentrations of chemicals in the surrounding air shall be also considered.

Installation, packaging, transport, storage as well as use, maintenance and repair shall be carried out in accordance with the manufacturer's instructions (extract see Annex D).

B1 Load-bearing capacity and serviceability of the covering

B 1.1 General

The design and arrangement of the multi-wall sheets as described in Section 1.1.1 in the translucent roof kit shall correspond to the specifications given in Annexes A 1 to A 4. The design specifications (see Section 2) shall be complied with.

The stability shall be verified for the ultimate limit state (ULS)

 $E_d \leq R_d$

and for the serviceability limit state (SLS)

 $E_d \leq C_d$.

E_d: design value of the action

R_d: design value of the structural resistance for verification of the ultimate limit state

C_d: design value of the structural resistance for verification of the serviceability limit state

The multi-wall sheets shall not be used for bracing the aluminium structure.

The multi-wall sheets shall not be walked on.

Assessment pertaining to fall-through protection is not included in this ETA.

B 1.2 Design values for actions, E_d

The action resulting from the dead weight of the multi-wall sheets may be neglected in the roof kit verifications. Live loads are not permitted.

The design values for the actions shall be determined in accordance with the applicable European specifications.

The actions E_k shall be increased through multiplication by the factors C_t in consideration of the action duration and based on load.

Load action	Duration of load action	Ct
Wind	very short	1.00
Snow as an extraordinary snow load (e.g. in the low-lying plains of northern Germany)	short: up to one week	1.15
Snow	medium: up to three months	1.20

For the wind and temperature effects to be considered in the load case 'summer' the ψ coefficient defined in EN 1990 may be applied. In design situations where the wind is applied as the dominant variable action, the ψ coefficient may be considered in the design value of the structural resistance R_d (see Section B.1.3).

If the roof kit is installed with a substructure angle $\alpha \le 45^{\circ}$ in roofs with pitches $\le 20^{\circ}$ the negative wind pressure loads (wind suction loads) may be applied in simplified form as acting on the transluscent roof kit area with a constant aerodynamic coefficient c_p .

$$w_e = q_p(z_e) \cdot c_p$$

The gust velocity pressure $q_p(z_e)$ shall be taken from EN 1991-1-4 and DIN EN 1991-1-4/NA.

The coefficient c_p shall be selected in accordance with the roof position and type. For enclosed buildings in which the translucent roof kit is installed in the region H, I or N in accordance with Sections 7.2.3 to 7.2.7 of EN 1991-1-4:2010-12 the external pressure coefficient is $c_{pe} = -0.7$.

If the roof kit is installed on the ridge of a mono-gable roof or a hipped end roof in the region J or K in accordance with Section 7.2.5 or 7.2.6 of EN 1991-1-4:2010-12 with a roof pitch $> 10^{\circ}$ the factor c_{pe} = -1.2 applies for enclosed buildings and $c_{p,net}$ = -2.0 for freestanding roofs.

In case of conditions deviating from the specified conditions or use of translucent roof kit in region F, G, L or M in accordance with Sections 7.2.3 to 7.2.7 of EN 1991-1-4:2010-12 the verifications shall be done applying special loads (see Section 1.5 of EN 1991-1-4).

B 1.3 Design values for structural resistance R_d and C_d

The design values for structural resistance R_d and C_d result from the characteristic value of structural resistance R_k in consideration of the material safety factor γ_M , the factor taking into account the effects of media C_u and the temperature factor C_{θ} as follows:

$$R_{d} = \frac{R_{k}}{\gamma_{MR} \cdot C_{u} \cdot C_{\theta}} \qquad \qquad C_{d} = \frac{C_{k}}{\gamma_{MC} \cdot C_{u} \cdot C_{\theta}}$$

The following factors shall be applied:

Factor taking into account the effects of media and	1.10	
Temperature factor C_{θ}	summer	1.20
	winter	1.00

The following material safety factors shall be applied as a function of the consequence class (CC) in accordance with EN 1990:

Consequence class	Material safety factor γ_{MR}	Material safety factor γ_{MC}
CC 1	1.25	1.09
CC 2	1.30	1.13

In design situations where wind is considered to be the dominant variable action, the reduction in structural resistance due to temperature may be reduced by means of the ψ coefficient for the summer load case. For this design situation a reduction factor for temperature of C'_{θ} = 1 + ψ · (C_{θ} -1.0) may be applied.

The characteristic values for structural resistance R_k and C_k shall be taken from the tables in Annex B 3.1 for the given multi-wall sheets and direction of loading.

B 2 Load-bearing capacity and serviceability of the impost

B 2.1 General

The implementation and arrangement of the impost in accordance with Section 1.1.4 shall correspond to the specifications given in Annexes A 1, A 2.2 and A 2.3. The design specifications (see Section 2.3) shall be complied with.

The imposts are used to take up tensile forces. The tensile forces from wind suction loads are introduced into the imposts via the roof kit covering profiles.

Verification is done on the plane of the acting tensile force F_z . For each application case the stability verification shall be done for the ultimate limit state;

$$\frac{\mathsf{F}_{Z,\mathsf{E},\mathsf{d}}}{\mathsf{F}_{Z,\mathsf{R},\mathsf{d}}} \le 1,0$$

F_{Z,E,d}: design value of the action

F_{Z.R.d}: design value for structural resistance

shall be adhered to.

The verification of the serviceability limit state shall be deemed provided with the verification of the ultimate limit state for load-bearing capacity.

B 2.2 Design value of the action, F_{Z,E,d}

The design values for the action shall be determined in accordance with the applicable European specifications.

The design value of the action $F_{Z,E,d}$ results from the characteristic value of the wind suction load in consideration of the partial safety factor γ_F , the coefficient ψ and a factor taking into account the duration of the action K_t .

The characteristic action shall be multiplied by the factor K_t . K_t shall be assumed to be 1.0 for the load action resulting from wind loads (very short duration).

B 2.3 Design value of the structural resistance, $F_{Z,R,d}$

The design value for structural resistance $F_{Z,R,d}$ results from the characteristic value of structural resistance $F_{Z,R,k}$ in consideration of the material safety factor γ_M , the factor taking into account the effects of media K_u and the temperature factor K_{θ} as follows:

$$\mathsf{F}_{\mathsf{Z},\mathsf{R},\mathsf{d}} = \frac{\mathsf{F}_{\mathsf{Z},\mathsf{R},\mathsf{k}}}{\gamma_{\mathsf{M}} \cdot \mathsf{K}_{\mathsf{u}} \cdot \mathsf{K}_{\theta}}$$

The following material safety factors and influencing factors shall be applied:

Matarial asfaty factor	CC 1	1.25
Material safety factor γ_M	CC 2	1.30
Factor taking into account the effects of media and	1.05	
Tomporatura factor K	summer	1.15
Temperature factor K_{θ}	winter	1.05

The characteristic values for structural resistance $F_{Z,R,k}$ shall be taken from the tables in Annex B 3.2 for the given base profile and covering shell.

B 3 Characteristic structural resistances

B 3.1 Characteristic structural resistances of the covering

Covering "PC 10" – Annexes A 4.1 – A 4.7

Multi-wall sheet in accordance with Annex	Radius	System	Section as per Annex	Characteristics values of structural resistance [kN/m ²]			
	R [m]				ward ad	uplift	load
				R _k	C _k	R _k	C _k
	1,50 ≤ R ≤ 2,60	2-span	A 2.1.1	3,98	3,19	1,75	1,36
A 4.1	1,50 ≤ R ≤ 5,20	2-span	A 2.1.3	2,14	1,16	0,76	0,76
Makrolon multi UV	1,50 ≤ R ≤ 3,85		A 2.1.2	4,35	4,35	2,99	2,99
2/10-10,5	1,50 ≤ R ≤ 5,20	3-span	A 2.1.3	4,43	3,60	1,71	1,71
	1,50 ≤ R ≤ 9,00		A 2.1.4	3,21	3,11	2,92	2,32
	1,50 ≤ R ≤ 2,60	2-span	A 2.1.1	3,98	3,20	1,75	1,36
A 4.2	1,50 ≤ R ≤ 5,20	2-3pan	A 2.1.3	2,14	1,16	0,76	0,76
Akyver Sun Type	1,50 ≤ R ≤ 3,85		A 2.1.2	4,35	4,35	2,99	2,99
10/1700	1,50 ≤ R ≤ 5,20	3-span	A 2.1.3	4,43	3,60	1,71	1,71
	1,50 ≤ R ≤ 9,00		A 2.1.4	3,21	3,11	2,92	2,32
	1,50 ≤ R ≤ 3,85	1-span	A 2.1.2	1,84	1,79	1,72	1,60
	1,50 ≤ R ≤ 5,20		A 2.1.3	1,79	1,79	0,97	0,97
A 4.3 Makrolon Multi UV	1,50 ≤ R ≤ 2,60		A 2.1.1	4,26	2,59	2,33	2,33
2/10-10,5 ES	1,50 ≤ R ≤ 3,85	2-span	A 2.1.2	2,20	2,17	1,80	1,72
	1,50 ≤ R ≤ 5,20		A 2.1.3	2,26	2,00	1,04	1,04
	1,50 ≤ R ≤ 9,00		A 2.1.4	1,80	1,52	1,64	1,64
	1,50 ≤ R ≤ 3,85	1	A 2.1.2	1,84	1,79	1,72	1,60
	1,50 ≤ R ≤ 5,20	1-span	A 2.1.3	1,79	1,79	0,97	0,97
A 4.4	1,50 ≤ R ≤ 2,60		A 2.1.1	4,26	2,59	2,33	2,33
Akyver Sun Type 10/2000	1,50 ≤ R ≤ 3,85		A 2.1.2	2,20	2,17	1,80	1,72
10/2000	1,50 ≤ R ≤ 5,20	2-span	A 2.1.3	2,26	2,00	1,04	1,04
	1,50 ≤ R ≤ 9,00		A 2.1.4	1,80	1,52	1,64	1,64
			A 2.1.1	3,95	3,17	1,74	1,35
	1,50 ≤ R ≤ 2,60	0.5	A 2.1.6	1,69	1,69	1,53	1,53
A 4.5 Akyver Sun Type	1,50 ≤ R ≤ 3,85	2-span	A 2.1.2	1,52	1,52	1,00	0,82
	1,50 ≤ R ≤ 5,20		A 2.1.3	2,13	1,15	0,75	0,75
10/4W-7	1,50 ≤ R ≤ 3,85		A 2.1.2	4,31	4,31	2,97	2,97
	1,50 ≤ R ≤ 5,20	3-span	A 2.1.3	4,40	3,57	1,70	1,70
	1,50 ≤ R ≤ 9,00		A 2.1.4	3,18	3,08	2,90	2,30

Multi-wall sheet in accordance with Annex	Radius	System	Section as per Annex	Characteristics values o structural resistance [kN/m ²]			
	R [m]				iward ad	uplift	load
				R _k	C _k	R _k	C _k
	1,50 ≤ R ≤ 2,60		A 2.1.1	3,37	2,71	1,48	1,15
	1,50 3 11 3 2,00	2 chan	A 2.1.6	1,67	1,67	1,56	1,56
A 4.6	1,50 ≤ R ≤ 3,85	2-span	A 2.1.2	1,56	1,56	1,05	0,91
Macrolux LL	1,50 ≤ R ≤ 5,20		A 2.1.3	1,82	0,98	0,65	0,65
4W10	1,50 ≤ R ≤ 3,85		A 2.1.2	3,69	3,69	2,53	2,53
	1,50 ≤ R ≤ 5,20	3-span	A 2.1.3	3,76	3,05	1,45	1,45
	1,50 ≤ R ≤ 9,00		A 2.1.4	2,72	2,64	2,48	1,97
	1 50 < D < 2 60		A 2.1.1	3,41	2,40	1,50	1,17
	1,50 ≤ R ≤ 2,60	2	A 2.1.6	1,86	1,86	1,56	1,56
A 4.7	1,50 ≤ R ≤ 3,85	2-span	A 2.1.2	1,68	1,68	1,01	0,84
Makrolon Multi UV	1,50 ≤ R ≤ 5,20		A 2.1.3	1,84	0,99	0,65	0,65
4/10-6	1,50 ≤ R ≤ 3,85		A 2.1.2	3,74	3,74	2,57	2,57
	1,50 ≤ R ≤ 5,20	3-span	A 2.1.3	3,81	3,08	1,47	1,47
	1,50 ≤ R ≤ 9,00		A 2.1.4	2,76	2,66	2,51	1,98

Covering "PC 10+10" – Annexes A 4.5 – A 4.7

Multi-wall sheet in accordance with Annex	Radius	System	Section as per Annex	Characteristics values o structural resistance [kN/m²]			
(double configuration)	R [m]				ward ad	uplift	load
				R _k	C _k	R _k	C _k
	1,50 ≤ R ≤ 1,90	1-span	A 2.1.7	5,70	5,62	4,06	3,82
A 4.5	1,50 ≤ R ≤ 2,62	0	A 2.1.7	5,29	4,91	3,16	3,09
Akyver Sun Type	1,50 ≤ R ≤ 5,27	2-span	A 2.1.7	3,39	3,32	1,55	1,55
10/4W-7	1,50 ≤ R ≤ 2,62	3-span	A 2.1.7	11,0	9,59	6,22	6,14
	1,50 ≤ R ≤ 3,85		A 2.1.7	7,53	6,62	2,53	2,53
	1,50 ≤ R ≤ 1,90	1-span	A 2.1.7	5,42	5,33	4,17	3,93
A 4.6	1,50 ≤ R ≤ 2,62	0	A 2.1.7	5,05	4,50	3,25	3,18
Macrolux LL	1,50 ≤ R ≤ 5,27	2-span	A 2.1.7	3,24	3,18	1,60	1,58
4W10	1,50 ≤ R ≤ 2,62	2	A 2.1.7	10,5	9,18	6,40	6,32
	1,50 ≤ R ≤ 3,85	3-span	A 2.1.7	7,09	7,09	2,95	2,95
	1,50 ≤ R ≤ 1,90	1-span	A 2.1.7	5,43	5,36	4,13	3,90
A 4.7	1,50 ≤ R ≤ 2,62	2 anar	A 2.1.7	5,04	4,68	3,22	3,15
Makrolon Multi UV	1,50 ≤ R ≤ 5,27	2-span	A 2.1.7	3,23	3,16	1,58	1,56
4/10-6	1,50 ≤ R ≤ 2,62	2 0000	A 2.1.7	10,4	9,14	6,34	6,26
	1,50 ≤ R ≤ 3,85	3-span	A 2.1.7	9,12	7,38	2,58	2,58

Covering "PC 16" – Annexes 4.8 - 4.10 (incl."PC 3+16" – Section as per Annex A 2.1.8)

Multi-wall sheet in accordance with Annex	Radius	System	Section as per Annex	Characteristics values of structural resistance [kN/m ²]			
	R [m]			dowr Io	ward ad	uplift	load
				R _k	C _k	R _k	C _k
	2,40 ≤ R ≤ 3,85	1	A 2.1.2	2,34	1,64	1,62	1,62
	2,40 ≤ R ≤ 5,20	1-span	A 2.1.3	2,94	1,57	1,45	1,45
A 4.8 Makrolon Multi UV	2,40 ≤ R ≤ 2,60		A 2.1.1	4,29	3,21	2,80	2,80
7/16-14	2,40 ≤ R ≤ 3,85	2-span	A 2.1.2	2,41	2,06	1,59	1,59
///0///	2,40 ≤ R ≤ 5,20	z-span	A 2.1.3	2,96	1,54	1,32	1,32
	2,40 ≤ R ≤ 9,00		A 2.1.4	2,22	2,03	1,66	1,64
	240 < D < 2.95	1-span	A 2.1.2	2,40	1,64	1,66	1,66
	2,40 ≤ R ≤ 3,85		A 2.1.6	1,54	1,54	1,35	1,35
	2,40 ≤ R ≤ 5,20		A 2.1.3	3,02	1,61	1,49	1,49
A 4.9	2,40 ≤ R ≤ 2,60	2-span	A 2.1.1	4,40	3,29	2,87	2,87
Akyver Sun Type	2,40 3 K 3 2,00		A 2.1.5	1,83	1,83	1,97	1,97
16/7W-12	2,40 ≤ R ≤ 3,85		A 2.1.2	2,44	2,10	1,57	1,57
			A 2.1.6	1,54	1,54	1,35	1,35
	2,40 ≤ R ≤ 5,20		A 2.1.3	3,04	1,58	1,35	1,35
	2,40 ≤ R ≤ 9,00		A 2.1.4	2,28	2,08	1,70	1,68
	2,40 ≤ R ≤ 3,85	3-span	A 2.1.2	5,85	5,85	1,68	1,68
	2,40 ≤ R ≤ 3,85	1-span	A 2.1.2	2,29	1,60	1,59	1,59
	2,40 ≤ R ≤ 5,20	i-spair	A 2.1.3	2,88	1,54	1,42	1,42
A 4.10	2,40 ≤ R ≤ 2,60		A 2.1.1	4,20	3,14	2,74	2,74
Macrolux LL 7W16	2,40 ≤ R ≤ 3,85	2 char	A 2.1.2	2,36	2,02	1,56	1,56
,,,,,,	2,40 ≤ R ≤ 5,20	2-span	A 2.1.3	2,90	1,51	1,29	1,29
	2,40 ≤ R ≤ 9,00		A 2.1.4	2,17	1,99	1,63	1,60
	2,40 ≤ R ≤ 3,85	3-span	A 2.1.2	5,70	5,15	1,96	1,96

Multi-wall sheet in accordance with Annex	Radius	System	Section as per Annex	Characteristics values of structural resistance [kN/m ²]			
	R [m]			dowr Io	ward ad	uplift	load
				R _k	C _k	R _k	C _k
	3,00 ≤ R ≤ 3,85	1-span	A 2.1.6	1,61	1,61	2,29	2,29
A 4.11 Akyver Sun Type	3,00 ≤ R ≤ 4,40		A 2.1.6	1,23	1,23	2,00	2,00
20/7W-12	3,00 ≤ R ≤ 3,85	2 0000	A 2.1.6	1,61	1,61	2,29	2,29
20/111 12	$3,00 \leq R \leq 4,40$	2-span	A 2.1.6	1,23	1,23	2,00	2,00
	3,00 ≤ R ≤ 3,85	1	A 2.1.6	1,93	1,93	2,29	2,29
A 4.12 Macrolux LL 7W20	$3,00 \leq R \leq 4,40$	1-span	A 2.1.6	1,48	1,48	2,00	2,00
	3,00 ≤ R ≤ 3,85	2 anar	A 2.1.6	1,93	1,93	2,29	2,29
	3,00 ≤ R ≤ 4,40	2-span	A 2.1.6	1,48	1,48	2,00	2,00

Covering "PC 10+10 DI" – Annexes A 4.5 – A 4.7

Multi-wall sheet in accordance with Annex	Radius	System	Section as per Annex	Characteristics values o structural resistance [kN/m ²]			
(double configuration)	R [m]				ward ad	uplift	load
				R _k	C _k	R _k	C _k
	1,50 ≤ R ≤ 1,90	1 0000	A 2.1.10	5,70	5,62	4,06	3,82
	1,50 ≤ R ≤ 2,62	1-span	A 2.1.10	2,94	2,42	3,58	3,00
A 4.5 Akyver Sun Type	1,50 ≤ R ≤ 2,62	2	A 2.1.10	5,29	4,91	3,16	3,09
10/4W-7	1,50 ≤ R ≤ 5,27	2-span	A 2.1.10	3,39	3,32	1,55	1,55
	1,50 ≤ R ≤ 2,62	3-span	A 2.1.10	11,0	9,59	6,22	6,14
	1,50 ≤ R ≤ 3,85		A 2.1.10	7,53	6,62	2,53	2,53
	1,50 ≤ R ≤ 1,90	1	A 2.1.10	5,42	5,33	4,17	3,93
	1,50 ≤ R ≤ 2,62	1-span	A 2.1.10	2,94	2,42	3,58	3,00
A 4.6 Macrolux LL	1,50 ≤ R ≤ 2,62	2	A 2.1.10	5,05	4,50	3,25	3,18
4W10	1,50 ≤ R ≤ 5,27	2-span	A 2.1.10	3,24	3,18	1,60	1,58
	1,50 ≤ R ≤ 2,62	2	A 2.1.10	10,5	9,18	6,40	6,32
	1,50 ≤ R ≤ 3,85	3-span	A 2.1.10	7,09	7,09	2,95	2,95
	1,50 ≤ R ≤ 1,90	1	A 2.1.10	5,43	5,36	4,13	3,90
	1,50 ≤ R ≤ 2,62	1-span	A 2.1.10	2,94	2,42	3,58	3,00
A 4.7	1,50 ≤ R ≤ 2,62	2 anar	A 2.1.10	5,04	4,68	3,22	3,15
Makrolon Multi UV 4/10-6	1,50 ≤ R ≤ 5,27	2-span	A 2.1.10	3,23	3,16	1,58	1,56
	1,50 ≤ R ≤ 2,62	2	A 2.1.10	10,4	9,14	6,34	6,26
	1,50 ≤ R ≤ 3,85	3-span	A 2.1.10	9,12	7,38	2,58	2,58

B 3.2 Characteristic structural resistances of the impost

The following characteristic structural resistances $\mathsf{F}_{Z,\mathsf{R},k}$ shall be adhered to as a function of the impost type:

Impost 'JET-VARIO-THERM'	with base profile 30°	with base profile 18°
Impost JET-VARIO-THERM	F _{Z,R,k} [kN]	F _{Z,R,k} [kN]
with covering shell 10	7,73	6,24
with covering shell 16	7,73	6,24
with covering shell 20	7,25	5,89
with covering shell 22	7,03	5,73
with covering shell 32	5,85	4,87

JET-Vario-Therm

Annex C

Thermal resistance

If requirements as to the thermal resistance of the roof kit are imposed, the thermal transmittance U_{CW} shall be determined in accordance with EN ISO 10077-1¹ as the resultant of the thermal transmittance coefficients of the covering, weighted on the basis of the area as well as the length-weighted values of linear thermal transmittance coefficients ψ of the connecting profiles.

The respective area fractions shall be calculated for the translucent roof kit. For the calculation of the design value of the thermal transmittance coefficient U_{CW} of the translucent roof kit, the following equation shall be used:

$$U_{cw} = \frac{\sum (U_{p} \cdot A_{p}) + \sum (\Psi_{f} \cdot I_{f})}{A_{ges}}$$
 in W/(m²·K)

If the substructure (frame) is to be taken into account, the following formula shall be used:

$$U_{cw} = \frac{\sum (U_{p} \cdot A_{p}) + \sum (U_{z} \cdot A_{z}) + \sum (\Psi_{f} \cdot I_{f})}{A_{ges}}$$
 in W/(m²·K)

where:

 $U_{\rm P}$: = thermal transmittance coefficient of the PC multi-wall sheets in W/(m²K)

 A_{P} : = area of the PC multi-wall sheets in m²

- U_{z} : = thermal transmittance coefficient of the frame in W/(m²K)
- A_{Z} : = area of the frame in m²
- $\psi_f:=$ linear thermal transmittance coefficient at the level of the connecting profiles in W/(m K)
- I_f : = connecting profile length in m
- A_{ges} : = total area of the roof kit in m²

The values of thermal transmittance U_P of the coverings and ψ_f of the connections shall be taken from Annex C.

In case the substructure is taken into account, the thermal transmittance U_Z shall be determined in accordance with the applicable European specifications e.g. EN ISO 6946².

¹ DIN EN ISO 10077-1:2016-10
² DIN EN ISO 6946:2008-04
² DIN EN ISO 6946:2008-04
³ DIN EN ISO 6946:2008-04
⁴ Thermal performance of windows, doors and shutters - Calculation of thermaltransmittance - Part 1: General (ISO/FDIS 10077-1:2016); German and English version FprEN ISO 10077-1:2016
⁵ DIN EN ISO 6946:2008-04
⁶ Building components and building elements - Thermal resistance and thermal transmittance - Calculation method (ISO 6946:2007); German version EN ISO 6946:2007

C 1 Thermal transmittance coefficients of the coverings

Ι	able	С	1

Covering	Multi-wall sheet(s) as described in Annex	Vertical installation U _P [W/(m²·K)]	Horizontal installation U _P [W/(m²·K)]
PC 10	A 4.1; A 4.3	3.023	3.324
	A 4.2; A 4.4	3.050	3.357
	A 4.5	2.574	2.789
	A 4.6	2.520	2.727
	A 4.7	2.519	2.725
	A 4.8	1.833	1.940
PC 16	A 4.9	1.817	1.921
	A 4.10	1.840	1.948
PC 20	A 4.11	1.612	1.694
	A 4.12	1.602	1.682
PC 3+16	A 4.9	1.582	1.661
PC 10+10	A 4.5 – A 4.7	1.498	1.569
PC 10+10 + GF-UP	A 4.5 – A 4.7	1.540	1.616
PC 10+10 DI	A 4.5 – A 4.7	1,313	1,375
PC 10+GF-UP+10 DI	A 4.5 – A 4.7	1,197	1,241
PC 10+4+10 DI	A 4.5 – A 4.7	1,159	1,201

The thermal transmittance coefficients U_P depend on the selected covering as well as in part on the multi-wall sheet used and the installation position. Differentiation is made between vertical installations (horizontal heat flow) and horizontal installations (upwards heat flow).

For the purposes of comparing the coverings in terms of EN 673 the $U_{\rm P}$ value for vertical installations shall be used.

C 2 Linear thermal transmittance coefficients at the level of the bearing profiles

The sections correspond to those given in Annexes A .1 and A 2.

Table C 2: Linear thermal transmittance coefficients at the level of the bearing profiles

Covering	Multi-wall sheet(s) as described in Annex	Ψ _{Β-Β} [W/(m·K)]	Ψ _{c-c} [W/(m·K)]
PC 10	A 4.1; A 4.3	- 0.050	- 0.022
	A 4.2; A 4.4	- 0.053	-0.023
	A 4.5	- 0.007	0.000
	A 4.6; A 4.7	- 0.013	- 0.005
PC 16	A 4.8	0.000	- 0.007
	A 4.9	0.002	- 0.006
	A 4.10	0.001	- 0.006
PC 20	A 4.11; A 4.12	- 0.006	- 0.010
PC 3+16	A 4.9	- 0.011	- 0.012
PC 10+10	A 4.5 – A 4.7	- 0.009	- 0.011
PC 10+10 + GF-UP	A 4.5 – A 4.7	- 0.013	- 0.013
PC 10+10 DI	A 4.5 – A 4.7	0,011	- 0,002
PC 10+GF-UP+10 DI	A 4.5 – A 4.7	0,021	0,004
PC 10+4+10 DI	A 4.5 – A 4.7	0,024	0,005

The thermal transmittance coefficients ψ_f at the level of the bearing profiles depend on the selected covering as well as in part on the multi-wall sheet used.

For section B–B (sheet butt joint) and section C–C (bearing profile in middle of sheet) the thermal transmittance coefficients shall be taken from Table C 2. The thermal effect of the fasteners may be neglected. For execution of the gable-side end arch A-A with use of the bearing profiles as described in Annexes A 2.1.1 to A 2.1.10 to be on the safe side the ψ values for section C-C can be used. For deviating executions additional verifications are required.

C 3 Linear thermal transmittance at the level of the impost

The thermal transmittance coefficients ψ_f for section D-D depend on the selected covering and can be taken from the tables below. Details of section E-E in accordance with Annex A 2.3 have no effect on the heat flows and can hence be neglected. For execution of the gable-side connection with use of the impost profiles as described in Annex A 3.5.1 or A 3.5.2 the ψ values for section D-D can be used on the safe side. For deviating executions additional verifications are required. At the level of the eaves-side connection three different variants can be calculated:

Table C 3.1: Linear thermal transmittance coefficients *including* substructure and *including* roof sheeting connection

Covering	Multi-wall sheet(s) as described in Annex	Ψ _{D-D} [W/(m·K)]
PC 10	A 4.1 – A 4.7	0.222
PC 16	A 4.8 – A 4.10	0.238
PC 20	A 4.11 – A 4.12	0.241
PC 3+16	A 4.9	0.242
PC 10+10 and -DI all variants	A 4.5 – A 4.7	0.243

Table C 3.2: Linear thermal transmittance coefficients *including* substructure but *excluding* roof sheeting connection

Covering	Multi-wall sheet(s) as described in Annex	Ψ _{D-D} [W/(m·K)]
PC 10	A 4.1 – A 4.7	0.462
PC 16	A 4.8 – A 4.10	0.477
PC 20	A 4.11 – A 4.12	0.479
PC 3+16	A 4.9	0.479
PC 10+10 and -DI all variants	A 4.5 – A 4.7	0.480

Table C 3.3: Linear thermal transmittance coefficients excluding substructure

Covering	Multi-wall sheet(s) as described in Annex	Ψ _{D-D} [W/(m·K)]
PC 10	A 4.1 – A 4.7	0.136
PC 16	A 4.8 – A 4.10	0.150
PC 20	A 4.11 – A 4.12	0.153
PC 3+16	A 4.9	0.155
PC 10+10 and -DI all variants	A 4.5 – A 4.7	0.155

JET-Vario-Therm

Annex D

Provisions for installation, packaging, transport, storage, use, maintenance and repair

D1 Installation

The fixing of the roof kit on the substructure is not the subject of this ETA. The stability shall be verified for the respective substructure in accordance with the valid European specifications.

Before the roof kit is installed, the dimensional stability of the substructure shall be checked. Particular care shall be taken to ensure that the substructure exhibits a rectangular footprint. The compliance of the existing substructure with the substructure applied during the planning and verification of its load-bearing capacity shall be checked visually.

The installation of the roof kit may only be performed by specialists who are specially trained for this purpose. The installation guidelines of the manufacturer shall be respected. The manufacturer of the roof kit shall inform the specialists that they may only carry out assembly and installation of the roof kit in accordance with his instructions and the provisions of the ETA. The hollow chambers of the multi-wall sheets may not be filled.

If the translucent roof kit can systematically come into contact with chemical substances, the resistance to these substances of the multi-wall sheets in particular shall be checked.

The impost profiles are placed on the frame and fixed by means of the load converters and the provided threaded connections. If required, the supporting profiles are placed in between the bearing profiles. During installation, the multi-wall sheets are placed on the pre-installed bearing profiles and pushed into the impost profiles. At the butt joints between sheets as well as for the intermediate support arches, the covering profiles which act as tension straps are placed above the bearing profiles if applicable including sealing profiles and fixed to the impost profile, if necessary, with the help of the tension locks. A tensioning distance of 5 mm shall be adhered to. The bearing width as described in Annex A 2.1.9 shall be adhered to at the longitudinal butt joints between the multi-wall sheets. At the impost profiles, the multi-wall sheets shall be kept adjustable in accordance with the specifications given in Annex A 2.2. Connection of the translucent roof kit to the substructure shall be carried out in accordance with the structural analysis. The translucent roof kit shall be installed and connected to the adjacent structure in a manner ensuring that no moisture can penetrate into it and avoiding thermal bridges. These details shall be evaluated on a case-by-case basis.

D 2 Packaging, transport and storage

The components of the roof kit shall be stored and transported in accordance with the manufacturer's specifications such that the components cannot be damaged. In particular, for multi-wall sheets made from polycarbonate it shall be ensured that only those surfaces with UV protective coatings are exposed to UV radiation. The packaging shall protect the material from moisture and weather effects whilst avoiding heat build-up inside the packaging. It is the responsibility of the manufacturer to ensure that this information is passed on to the people in charge.

D 3 Use, maintenance, repair

The roof kit in installed condition is not a walk-on system. For installation purposes, the roof kit may be walked on by a single person using boards laid across the substructure (at least two bearing profiles) for support; the boards shall run perpendicular to the tensioning direction of the bearing profiles.

Within the scope of maintenance, the installed roof kit shall be visually inspected by a qualified expert once a year. The manufacturer shall be consulted if the PC multi-wall sheets exhibit surface cracks or damage or if they are strongly discoloured. The aluminium components of the roof kit shall be examined for pronounced corrosion within the scope of a visual inspection. Repair shall be arranged where necessary.

Only the components listed in the ETA may be used for replacement of components. Cleaning agents shall be free of solvents and abrasives. Chemical and biological cleaning additives may only be used if they have been proven to be compatible with polycarbonate; otherwise only water and a soft cloth shall be used to clean the multi-wall sheets.