

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0882 of 2 August 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-RE 100

Bonded anchor for use in concrete

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

27 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

ETA-15/0882 issued on 11 December 2017

European Technical Assessment ETA-15/0882

Page 2 of 27 | 2 August 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0882

Page 3 of 27 | 2 August 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System Hilti HIT-RE 100 is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-RE 100 and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1, C2, C4, C5, C7, C8
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2, C5, C8
Displacements (static and quasi-static loading)	See Annex C3, C6, C9
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B2

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-15/0882

Page 4 of 27 | 2 August 2019

English translation prepared by DIBt

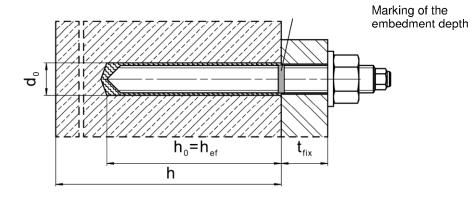
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

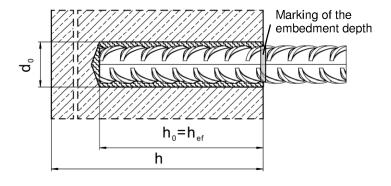
Issued in Berlin on 2 August 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

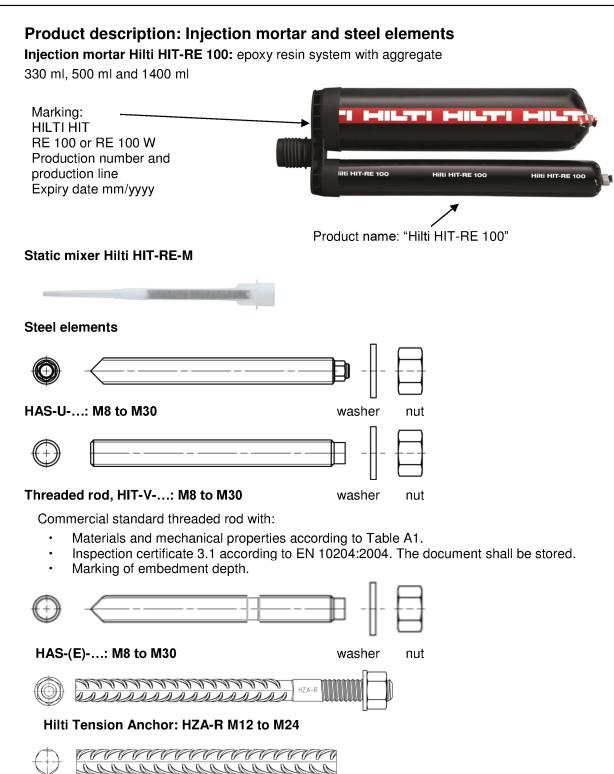
beglaubigt:


Lange

Installed condition


Figure A1:

Threaded rod, HAS-U-..., HIT-V-... and HAS-(E)...


Figure A2:

Reinforcing bar (rebar)

Injection system Hilti HIT-RE 100	
Product description Installed condition	Annex A1

Reinforcing bar (rebar): φ 8 to φ 32

electronic copy of the eta by dibt: eta-15/0882

- Materials and mechanical properties according to Table A1.
- Dimensions according to Table B4.

Injection system Hilti HIT-RE 100	
Product description Injection mortar / Static mixer / Steel elements	Annex A2

Table A1: Materials

Danismatian Matarial						
Designation	Material					
Reinforcing bars (rebars)						
Rebar: EN 1992-1-1: 2004 and AC:2010, Annex C	Bars and de-coiled rods class B or C II with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013. $f_{uk} = f_{tk} = k \cdot f_{yk}$					
Metal parts made of zir	nc coated steel					
HAS-U-5.8(F), HIT-V-5.8(F), HAS-(E), Threaded rod	Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$, Elongation at fracture ($I_0 = 5d$) > 8% ductile. Electroplated zinc coated $\geq 5 \mu m$, (F) hot dip galvanized $\geq 45 \mu m$.					
HAS-U-8.8(F), HIT-V-8.8(F), Threaded rod	Strength class 8.8, $f_{uk}=800\ N/mm^2$, $f_{yk}=640\ N/mm^2$, Elongation at fracture ($l_0=5d$) > 12% ductile. Electroplated zinc coated $\geq 5\ \mu m$, (F) hot dip galvanized $\geq 45\ \mu m$.					
Washer	Electroplated zinc coated \geq 5 μ m, (F) hot dip galvanized \geq 45 μ m.					
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \geq 5 μm , hot dip galvanized \geq 45 μm .					
Metal parts made of sta corrosion resistance cl	ainless steel lasses III according EN 1993-1-4:2006+A1:2015-06					
HAS-U-R, HIT-V-R, HAS-(E)R	For \leq M24: strength class 70, $f_{uk} = 700$ N/mm², $f_{yk} = 450$ N/mm². For $>$ M24: strength class 50, $f_{uk} = 500$ N/mm², $f_{yk} = 210$ N/mm². Elongation at fracture ($I_0 = 5d$) $> 8\%$ ductile.					
Threaded rod	For \leq M24: strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$. For $>$ M24: strength class 50, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) $> 8\%$ ductile. Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014.					
Hilti tension anchor HZA-R	Round steel with threaded part: Stainless steel A4 according to EN 10088-1:2014. Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA:2013.					
Washer	Stainless steel A4 according to EN 10088-1:2014.					
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel A4 according to EN 10088-1:2014.					

Injection system Hilti HIT-RE 100	
Product description Materials	Annex A3

Table A1: continued

Designation	Material			
Metal parts made of high corrosion resistant steel corrosion resistance classes V according EN 1993-1-4:2006+A1:2015-06				
HAS-U-HCR, HIT-V-HCR, HAS-(E)HCR	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) $> 8\%$ ductile.			
Threaded rod	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Elongation at fracture ($l_0 = 5d$) $> 8\%$ ductile. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014.			
Washer	High corrosion resistant steel according to EN 10088-1:2014.			
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel according to EN 10088-1:2014.			

Injection system Hilti HIT-RE 100	
Product description Materials	Annex A4

Specifications of intended use

Anchorages subject to:

Static and quasi static loading.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and uncracked concrete.

Temperature in the base material:

· at installation

+5 °C to +40 °C

· in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +58 °C

(max. long term temperature +35 °C and max. short term temperature +58 °C)

Temperature range III: -40 °C to +70 °C

(max. long term temperature +43 °C and max. short term temperature +70 °C)

Table B1: Specifications of intended use

		HIT-RE 100 with						
Elements		Threaded rod, HAS-U, HIT-V, HAS-(E)						
Hammer drilling with hollow drill bit TE-CD or TE-YD		✓	√	✓				
Hammer drilling		✓	✓	✓				
Use	Dry or wet concrete	✓	✓	✓				
category	Flooded hole (no sea water)	✓	✓	✓				
Static and quasi static loading in uncracked concrete		M8 to M30	M12 to M24	φ 8 to φ 32				
Static and quasi static loading in cracked concrete		M10 to M30	M12 to M24	φ 10 to φ 32				

Injection system Hilti HIT-RE 100	
Intended Use Specifications	Annex B1

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- In compliance with the corrosion resistance classes according to EN 1993-1-4:2015 Table A.3. (stainless steels)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055

Installation:

- Use category: dry or wet concrete or in flooded holes
- · Drilling technique:
 - Hammer drilling,
 - Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD
- Installation direction D3: downward and horizontal and upward (e.g. overhead) installation admissible for all elements.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-RE 100	
Intended Use Specifications	Annex B2

Z50414.19 8.06.01-72/19

electronic copy of the eta by dibt: eta-15/0882

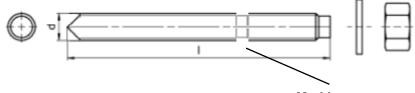
Table B2: Installation parameters of threaded rod, HAS-U-..., HIT-V-... and HAS-(E)...

Threaded rod, HAS-U, HIT-V and HAS-(E)			М8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d ₀	[mm]	10	12	14	18	22	28	30	35
Threaded rod, HAS-U, HIT-V: Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	60 to 160	60 to 200	70 to 240	80 to 320	90 to 400	96 to 480	108 to 540	120 to 600
HAS-(E): Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	80	90	110	125	170	210	240	270
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22	26	30	33
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm		h _{ef} + 2⋅d ₀					
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	Smin	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	Cmin	[mm]	40	45	45	50	55	60	75	80

Marking:

Steel grade number and length identification letter: e.g. 8L

HIT-V-...



Marking:

5.8 - | = HIT-V-5.8 M...x | 5.8F - | = HIT-V-5.8F M...x | 8.8 - | = HIT-V-8.8 M...x | 8.8F - | = HIT-V-8.8F M...x | R - | = HIT-V-R M...x | HCR - | = HIT-V-HCR M...x |

HAS-(E)-...

electronic copy of the eta by dibt: eta-15/0882

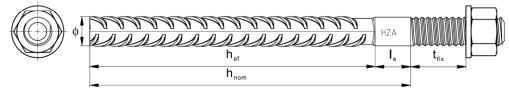
Marking:

identifying mark - H, embossing "1" HAS-(E) identifying mark - H, embossing "=" HAS-(E)R identifying mark - H, embossing "CR" HAS-(E)HCR

Injection system Hilti HIT-RE 100

Intended Use Installation parameters of threaded rod, HAS-U-..., HIT-V-... and HAS-(E)-...

Annex B3


Table B3: Installation parameters of Hilti tension anchor HZA-R

Hilti tension anchor HZA-R			M12	M16	M20	M24	
Rebar diameter	ф	[mm]	12 16 20 2				
Nominal embedment depth and drill hole depth	$h_{nom} = h_0$	[mm]	170 to 240	180 to 320	190 to 400	200 to 500	
Effective embedment depth ($h_{ef} = h_{nom} - I_e$)	h _{ef}	[mm]		h _{nom} -	– 100		
Length of smooth shaft	le	[mm]	100				
Nominal diameter of drill bit	d ₀	[mm]	16	20	24 ¹⁾ / 25	301) / 32	
Maximum diameter of clearance hole in the fixture	df	[mm]	14	18	22	26	
Maximum torque moment	T_{max}	[Nm]	40	80	150	200	
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀				
Minimum spacing	Smin	[mm]	65	80	100	130	
Minimum edge distance	C _{min}	[mm]	45	50	55	60	

¹⁾ Each of the two given values can be used.

Marking:

embossing "HZA-R" M .. / tfix

Injection system Hilti HIT-RE 100

Intended Use
Installation parameters of Hilti tension anchor HZA-R

Annex B4

Table B4: Installation parameters of reinforcing bar (rebar)

Reinforcing bar (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diameter	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Effective embedment depth and drill hole depth	h _{ef} = h ₀	[mm]	60 to 160	60 to 200	t	0 0 40	75 to 280	80 to 320	90 to 400	100 to 500	104 to 520	112 to 560	120 to 600	128 to 640
Nominal diameter of drill bit	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	141)	16 ¹⁾	18	20	25 / 24 ¹⁾	32 / 30 ¹⁾	32	35	37	40
Minimum thickness of concrete member	h _{min}	[mm]		_{ef} + 30		h _{ef} + 2·d ₀								
Minimum spacing	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimum edge distance	Cmin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160

¹⁾ Each of the two given values can be used.

Reinforcing bar (rebar)

For Rebar bolt

- Minimum value of related rib area f_R according to EN 1992-1-1:2004+AC:2010.
- Rib height of the bar h_{rib} shall be in the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Injection system Hilti HIT-RE 100	
Intended Use Installation parameters of reinforcing bar (rebar)	Annex B5

Table B5: Maximum working time and minimum curing time 1)

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
5 °C to 9 °C	2 hours	72 hours
10 °C to 14 °C	1,5 hours	48 hours
15 °C to 19 °C	30 min	24 hours
20 °C to 29 °C	20 min	12 hours
30 °C to 39 °C	12 min	8 hours
40 °C	12 min	4 hours

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B6: Parameters of cleaning and setting tools

	Elements		С	Orill and clean		Installation
Threaded rod, HAS-U, HIT-V, HAS-(E)	HZA-R	Rebar	Hammer drilling	Hollow drill bit TE-CD, TE-YD	Brush	Piston plug
		44444444444				
size	size	size	d₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ
M8	-	φ8	10	-	10	-
M10	-	φ 8, φ 10	12	12	12	12
M12	-	φ 10, φ 12	14	14	14	14
-	M12	φ 12	16	16	16	16
M16	-	φ14	18	18	18	18
-	M16	φ 16	20	20	20	20
M20	-	-	22	22	22	22
-	M20 ¹⁾	φ 20 ¹⁾	241)	241)	24	24
-	M20	φ 20	25	25	25	25
M24	-	-	28	28	28	28
M27	-	φ 25 ¹⁾	301)	-	30 ¹⁾	30 ¹⁾
-	M24	φ 25, φ 26	32	32	32	32
M30	-	φ 28	35	-	35	35
-	-	φ 30	37	-	37	37
-	-	φ 32	40	-	40	40

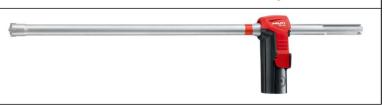
¹⁾ Each of the two given values can be used.

Injection system Hilti HIT-RE 100	
Intended Use	Annex B6
Maximum working time and minimum curing time. Parameters of cleaning and setting tools.	

Cleaning alternatives

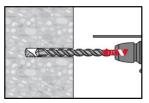
Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$

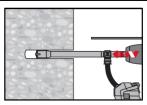

Compressed Air Cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):


Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Installation instruction


Hole drilling

a) Hammer drilling

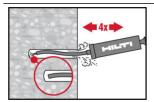
Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

b) Hammer drilling with Hilti hollow drill bit: For dry and wet concrete only.

electronic copy of the eta by dibt: eta-15/0882

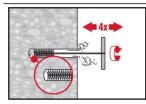
Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

Injection system Hilti HIT-RE 100 Intended Use Cleaning and setting tools Installation instructions Annex B7

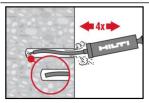

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

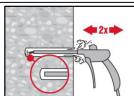
Manual Cleaning (MC)


uncracked concrete only

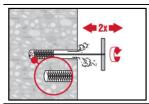
for drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$


The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.


Brush 4 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.


Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

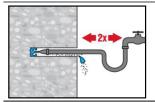
Compressed Air Cleaning (CAC) for all drill hole diameters do and all drill hole depths ho

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

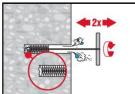
For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m³/h.

Brush 2 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

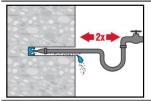

electronic copy of the eta by dibt: eta-15/0882

Blow again with compressed air 2 times until return air stream is free of noticeable dust.


Injection system Hilti HIT-RE 100	
Intended Use Installation instructions	Annex B8

Cleaning of waterfilled drill holes

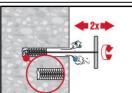
for all drill hole diameters do and all drill hole depths ho



Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.



Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.

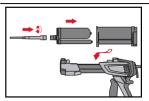
For drill hole diameters \geq 32 mm the compressor must supply a minimum air flow of 140 m³/h.

Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it

The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.

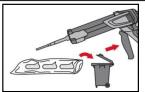
electronic copy of the eta by dibt: eta-15/0882

Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.


Injection system Hilti HIT-RE 100

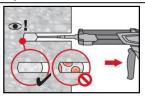
Intended Use
Installation instructions

Annex B9

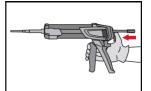

Injection preparation

Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle.

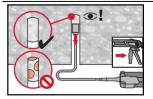
Observe the instruction for use of the dispenser.


Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.

Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are


2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack, 65 ml for 1400 ml foil pack.

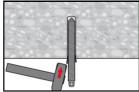
Inject adhesive from the back of the drill hole without forming air voids.



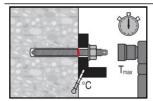
Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.



Overhead installation and/or installation with embedment depth $h_{\text{ef}} > 250 \text{mm}$. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B6). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.


Setting the element

Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth before working time twork has elapsed. The working time twork is given in Table B5.

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).

Loading the anchor: After required curing time t_{cure} (see Table B5) the anchor can be loaded.

The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B3.

Injection system Hilti HIT-RE 100

Intended Use

Installation instructions

Annex B10

Table C1: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and HAS-(E)... under tension load in concrete

Threaded rod, HAS-U, HIT-V an	d HAS-(E)		M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor γ_{inst} [-]						1	,4		•	
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]				As	· f uk			
Partial factor grade 5.8	γ _{Ms,N} 1)	[-]				1	,5			
Partial factor grade 8.8	γMs,N ¹⁾	[-]				1	,5			
Partial factor HAS-U-R, HIT-V-R	γMs,N ¹⁾	[-]			1,8	36			2,8	36
Partial factor HAS-U-HCR, HIT-V-HCR	γMs,N ¹⁾	[-]			1,5				2,1	
Combined pullout and concrete cone	failure						•			
Characteristic bond resistance in uncra	cked concr	ete C20/25								
Temperature range I: 40 °C/24 °C	$ au_{Rk,ucr}$	[N/mm²]		15		1	4	12		
Temperature range II: 58 °C/35 °C	$ au_{Rk,ucr}$	[N/mm²]	10			9		8,5		
Temperature range III: 70 °C/43 °C	$ au_{Rk,ucr}$	[N/mm²]		6		5	,5	5 5		
Characteristic bond resistance in crack	ed concrete	C20/25								
Temperature range I: 40 °C/24 °C	$ au_{Rk,cr}$	[N/mm²]	-	7	7	6,5	(6	5	,5
Temperature range II: 58 °C/35 °C	$ au_{Rk,cr}$	[N/mm²]	-		4,5	•	4 3,5		,5	
Temperature range III: 70 °C/43 °C	$ au_{Rk,cr}$	[N/mm²]	-		2,5			2		
Influence factors ψ on bond resistan	ce τ _{Rk}									
		C30/37				1,	00			
Cracked and uncracked concrete: Factor for concrete strength	ψс	C40/50				1,	00			
Table 161 deficite different		C50/60	1,00							
Concrete cone failure		<u>'</u>								
Factor for uncracked concrete	k _{ucr,N}	[-]	_			11	١,0			
Factor for cracked concrete	k _{cr,N}	[-]	7,7							
Edge distance	Ccr,N	[mm]		1,5 · h _{ef}						
Spacing	S _{cr,N}	[mm]		3,0 ⋅ h _{ef}						

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension load in concrete	Annex C1

Table C1: continued

Splitting failure							
	h / h _{el}	≥ 2,0	1,0 · h _{ef}	h/h _{ef}			
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} > 1,3	4,6 h _{ef} - 1,8 h	1,3			
	h / h _{ei}	: ≤ 1,3	2,26 h _{ef}		1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Spacing	S _{cr,sp}	[mm]		2·c _c	r,sp		

¹⁾ In absence of national regulations.

Table C2: Essential characteristics for threaded rod, HAS-U-..., HIT-V-... and HAS-(E)... under shear load in concrete

Threaded rod, HAS-U, HIT-V an	d HAS-(E)	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		•		•	•	•		•	'	•
Characteristic resistance V _{Rk,s} [kN] 0,5 · A _s · f _{uk}										
Partial factor grade 5.8	γMs,v ¹⁾	[-]				1,:	25			
Partial factor grade 8.8	γMs,V ¹⁾	[-]				1,:	25			
Partial factor HAS-U-R, HIT-V-R	γMs,V ¹⁾	[-]			1,	56			2,	,38
Partial factor HAS-U-HCR, HIT-V-HCR	γMs,V ¹⁾	[-]	-] 1,25 1,75							
Ductility factor	k ₇	[-]				1	,0	•		
Steel failure with lever arm										
Bending moment	M ⁰ Rk,s	[Nm]				1,2 · V	V _{el} · f _{uk}	(
Ductility factor	k ₇	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of fastener	l _f	[mm]	min (h _{ef} ; 12·d _{nom}) min (h _{ef} ; 300							
Outside diameter of fastener	d _{nom}	[mm]	1] 8 10 12 16 20 24 27				27	30		

In absence of national regulations.

	Γ
Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension and shear load in concrete	Annex C2

Table C3: Displacements under tension load

Threaded rod, HA	\S-U, HI	T-V and HAS-(E)	М8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	e temperatu	re range I : 40°C / 24°C				•	•			
Diaplacement	δηο	[mm/(N/mm²)]	0,02		0,03	0,04	0,05	0,	06	0,07
Displacement $\frac{\delta_{N\infty}}{\delta_{N\infty}} = \frac{\delta_{N\infty}}{[mm/(N/mm^2)]}$		[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,11	0,13	0,15	0,17
Uncracked concrete	e temperatu	re range II : 58°C / 35°C								
Diaplacement	δνο	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,09	0,11	0,13	0,14
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,10	0,14	0,18	0,22	0,25	0,28
Uncracked concrete	e temperatu	re range III : 70°C / 43°C								
δ _{N0}	[mm/(N/mm²)]	0,07	0,09	0,10	0,14	0,18	0,22	0,25	0,28	
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,09	0,12	0,15	0,20	0,26	0,31	0,35	0,40
Cracked concrete to	emperature	range I : 40°C / 24°C								
Displacement	δνο	[mm/(N/mm²)]	-	0,04	0,05		0,06	0,07	0,	80
Displacement	δ _{N∞}	[mm/(N/mm²)]	-				0,23			
Cracked concrete to	emperature	range II : 58°C / 35°C								
Displacement	δηο	[mm/(N/mm²)]	-	0,08	0,09	0,11	0,13	0,14	0,15	0,17
Displacement	Displacement $\frac{\delta_{N\infty}}{\delta_{N\infty}} \qquad \qquad [mm/(N/mm^2)]$		-				0,38			
Cracked concrete t	emperature	range III : 70°C / 43°C								
Displacement	δνο	[mm/(N/mm²)]	-	0,16	0,18	0,22	0,25	0,28	0,31	0,33
Displacement	δ _{N∞}	[mm/(N/mm²)]	-				0,54			

Table C4: Displacements under shear load

Threaded rod, HAS-U, HIT-V and HAS-(E)		M8 M10 I		M12 M16		M20	M24	M27	M30
Displacement $\frac{\delta_{\text{N0}}}{\delta_{\text{N}\infty}}$	[mm/(kN)]	0,06		0,05	0,04		0,03		
	δ _{N∞}	[mm/(kN)]	0,09	0,0	08	0,	06		0,05

Injection system Hilti HIT-RE 100	
Performances Displacements with threaded rod, HAS-U, HIT-V and HAS-(E)	Annex C3

Table C5: Essential characteristics for Hilti tension anchor HZA-R under tension load in concrete

Hilti tension anchor HZA-R			M12	M16	M20	M24	
Installation safety factor	γinst	[-]		1	,4	•	
Steel failure		<u>.</u>					
Characteristic resistance HZA-R	N _{Rk,s}	[kN]	62	111	173	248	
Partial safety factor	γMs ¹⁾	[-]		1	,4		
Combined pull-out and concrete con	e failure						
Diameter of rebar	d	[mm]	12	16	20	25	
Characteristic bond resistance in uncr	acked con	crete C20/25		•		•	
Temperature range I: 40 °C/24 °C	τ _{Rk,ucr}	[N/mm²]	14	1	2	11	
Temperature range II: 58 °C/35 °C	τ _{Rk,ucr}	[N/mm²]	9		8	7	
Temperature range III: 70 °C/43 °C	τ _{Rk,ucr}	[N/mm ²]	5	5,5 5			
Characteristic bond resistance in crac	ked concre	ete C20/25			1		
Temperature range I: 40 °C/24 °C	τ _{Rk,cr}	[N/mm²]	7	6,5		6	
Temperature range II: 58 °C/35 °C	τRk,cr	[N/mm²]	4,5		4		
Temperature range III: 70 °C/43 °C	τ _{Rk,cr}	[N/mm ²]	2	2,5		2	
Influence factors ψ on bond resista	nce τ _{Rk}						
		C30/37		1	,00		
Cracked and uncracked concrete: Factor for concrete strength	ψc	C40/50		1	1,00		
Tactor for concrete energy.		C50/60		1	,00		
Concrete cone failure							
Effective embedment depth	h_{ef}	[mm]		h	nom		
Factor for uncracked concrete	kucr	[-]	11,0				
Factor for cracked concrete	kcr	[-]		7	7,7		
Edge distance	Ccr,N	[mm]		1,5	5 ⋅ h _{ef}		
Spacing	Scr,N	[mm]		3,0) ∙ h _{ef}		

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension loads in concrete	Annex C4

Table C5: continued

Splitting failure relevant for	Uncracked concrete		
	h / h _{ef} ≥ 2,0	1,0⋅h _{ef}	h/h _{ef}
Edge distance c _{cr,sp} [mm] for	2,0 > h / h _{ef} > 1,3	4,6·h _{ef} - 1,8·h	2,0
c _{cr,sp} [mm] for	h / h _{ef} ≤ 1,3	2,26⋅h _{ef}	-1,3
		_,	1,0 h _{ef} 2,26 h _{ef} c _{cr,sp}
Spacing	S _{cr,sp} [mm]		2·c _{cr,sp}

¹⁾ In absence of national regulations.

Table C6: Essential characteristics for Hilti tension anchor HZA-R under shear load in concrete

Hilti tension anchor HZA-R			M12	M16	M20	M24
Steel failure without lever arm		·				
Characteristic resistance HZA-R	$V_{Rk,s}$	[kN]	31	55	86	124
Partial factor	γ _{Ms} 1)	[-]		1	,5	
Ductility factor	k ₇	[-]		1	,0	
Steel failure with lever arm		•				
Characteristic resistance HZA-R	M ⁰ Rk,s	[Nm]	97	234	457	790
Ductility factor	k ₇	[-]		1	,0	
Concrete pry-out failure						
Pry-out factor	k ₈	[-]		2	,0	
Concrete edge failure						
Effective length of fastener	lf	[mm]		min (h _{nom}	; 12 · d _{nom})	
Outside diameter of fastener	d _{nom}	[mm]	12	16	20	24

¹⁾ In absence of national regulations.

Injection system Hilti HIT-RE 100	
Performances	Annex C5
Essential characteristics under tension and shear load in concrete	

Table C7: Displacements under tension load

Hilti tension ancho	r HZA-R		M12	M16	M20	M24	
Uncracked concrete t	emperature ran	ge I : 40°C / 24°C					
Diaplacement	δνο	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	
Displacement —	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,08	0,11	0,14	
Uncracked concrete t	emperature ran	ge II : 58°C / 35°C					
Diaplacement	δ_{N0}	[mm/(N/mm²)]	0,05	0,07	0,09	0,12	
Displacement —	$\delta_{N\infty}$	[mm/(N/mm²)]	0,10	0,14	0,18	0,23	
Uncracked concrete t	emperature ran	ge III : 70°C / 43°C					
Displacement —	δηο	[mm/(N/mm²)]	0,10	0,14	0,18	0,23	
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,15	0,20	0,26	0,33	
Cracked concrete ten	nperature range	I: 40°C / 24°C					
Displacement —	δηο	[mm/(N/mm²)]	0,	05	0,06	0,07	
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]		0,2	23		
Cracked concrete ten	nperature range	II:58°C/35°C					
Displacement —	δηο	[mm/(N/mm²)]	0,09	0,11	0,13	0,15	
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]		0,3	38		
Cracked concrete ten	nperature range	III : 70°C / 43°C					
Displacement —	δηο	[mm/(N/mm²)]	0,18	0,22	0,25	0,29	
Бізріасептепт —	δν∞	[mm/(N/mm²)]	m²)] 0,05 0,06 m²)] 0,23 m²)] 0,09 0,11 0,13 m²)] 0,38 m²)] 0,18 0,22 0,25		54		

Table C8: Displacements under shear load

Hilti tension and	hor HZA-R		M12	M16	M20	M24
Diaplacement	δνο	[mm/kN]	[mm/kN] 0,05 0,04	0,03		
Displacement -	δν∞	[mm/kN]	0,08	0,0	0,05	

Injection system Hilti HIT-RE 100	
Performances Displacements with Hilti tension anchor HZA-R	Annex C6

Table C9: Essential characteristics for reinforcing bars (rebars) under tension load in concrete

Reinforcing bar (rebar)			ф8	ф 10	ф 12	ф 14	d 16	ф 20	ф 25	ф 26	d 28	ф 30	ф 32	
Installation safety factor	γinst	[-]	Т -	T	1	Т	T	1,4	T	T	T	T	T	
Steel failure	,													
Characteristic resistance Rebar B500B acc. to DIN 488:2009-08	N _{Rk,s}	[kN]	28	43	62	85	111	173	270	292	339	388	442	
Partial factor	γMs,N ¹	[-]						1,4						
Combined pull-out and Concr	ete con	e failure												
Diameter of rebar	d	[mm]	8	10	12	14	16	20	25	26	28	30	32	
Characteristic bond resistance	in uncra	acked cond	rete (20/25	5				•					
Temperature range I: 40°C/24°C	τ _{Rk,ucr}	[N/mm²]		14			12				11			
Temperature range II: 58°C/35°C	τ _{Rk,ucr}	[N/mm²]		9 8								7		
Temperature range III: 70°C/43°C	τ _{Rk,ucr}	[N/mm²]		5,5			5			4,5				
Characteristic bond resistance	in crack	ed concre	te C20	0/25										
Temperature range I: 40°C/24°C	TRk,cr	[N/mm²]	-	-	7	6	,5	6			5,5			
Temperature range II: 58°C/35°C	TRk,cr	[N/mm²]	-		4,5			4			3,5			
Temperature range III: 70°C/43°C	τ _{Rk,cr}	[N/mm²]	-		2	,5		2,0						
Influence factors ψ on bond	resistar	ice τ _{Rk}												
Influence of concrete strength														
Cracked and uncracked		C30/37						1,00						
concrete:	Ψc	C40/45						1,00						
Factor for concrete strength		C50/60					1,00							
Concrete cone failure			1											
Factor for uncracked concrete	k _{ucr,N}	[-]						11,0						
Factor for cracked concrete	k _{cr,N}	[-]						7,7						
Edge distance	C _{cr,N}	[mm]					1		ef					
				1,5 ⋅ h _{ef}										

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension load in concrete	Annex C7

electronic copy of the eta by dibt: eta-15/0882

Table C9: continued

Splitting failure relevant fo	r Uncracked concrete)	
	h / h _{ef} ≥ 2,0	1,0·h _{ef}	h/h _{of}
Edge distance c _{cr,sp} [mm] for	2,0 > h / h _{ef} > 1,3	4,6·h _{ef} - 1,8·h	1,3
	h / h _{ef} ≤ 1,3	2,26·h _{ef}	1,0·h _{ef} 2,26·h _{ef} c _{cr,sp}
Spacing	s _{cr,sp} [mm]		2 C _{cr,sp}

¹⁾ In absence of national regulations.

Table C10: Essential characteristics for reinforcing bars (rebars) under shear load in concrete

Reinforcing bar (rebar)			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm							•						
Characteristic resistance Rebar B500B acc. to DIN 488:2009-08	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	146	169	194	221
Partial factor	γMs,V ¹⁾	[-]	1,5										
Ductility factor	k ₇	[-]	1,0										
Steel failure with lever arm													
Rebar B500B acc. to DIN 488:2009-08	M ^o Rk,s	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Ductility factor	k ₇	[-]	1,0										
Concrete pry-out failure		•											
Pry-out factor	k ₈	[-]	2,0										
Concrete edge failure													
Effective length of fastener	lf	[mm]	min (h _{ef} ; 12 · d _{nom}) min (h _{nom} ; 300)										
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ In absence of national regulations.

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension and shear load in concrete	Annex C8

Table C11: Displacements under tension load

Reinforcing bar (reb	ar)		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Uncracked concrete to	empera	ature range I : 40	°C / 2	4°C			•						
Distance	δνο	[mm/(N/mm²)]	0,02		0,03		0,04	0,05	0,06 0,		,07 0,		80
Displacement -	δN∞	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,11	0,	0,14		0,17	0,18
Uncracked concrete te	empera	ature range II : 58	3°C / 3	5°C									
Displacement -	δ_{N0}	$[mm/(N/mm^2)]$	0,03	0,04	0,05	0,06	0,07	0,09	0,12		0,13	0,14	0,15
Displacement	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	0,07	0,09	0,10	0,12	0,14	0,18	0,23	0,24	0,26	0,28	0,30
Uncracked concrete to	empera	ature range III : 7	′0°C /	43°C									
Displacement —	δνο	$[mm/(N/mm^2)]$	0,07	0,09	0,10	0,12	0,14	0,18	0,23	0,24	0,26	0,28	0,30
	δn∞	[mm/(N/mm²)]	0,09	0,12	0,15	0,17	0,20	0,26	0,33	0,34	0,37	0,40	0,43
Cracked concrete tem	peratu	ire range I : 40°C	; / 24°(3									
 Displacement -	δηο	[mm/(N/mm²)]	-	0,04	0,04 0,05			0,06		0,07 0,0		0,09	
Displacement	δn∞	$[mm/(N/mm^2)]$	-	0,23									
Cracked concrete tem	peratu	re range II : 58°(C / 35°	С									
Displacement -	δ_{N0}	$[mm/(N/mm^2)]$	-	0,08 0,09 0,10 0,11 0,13 0,15 0,16				0,	17				
Displacement	δ _{N∞}	$[mm/(N/mm^2)]$	-	0,38									
Cracked concrete tem	peratu	ire range III : 70°	C / 43	°C									
Displacement -	δνο	$[mm/(N/mm^2)]$	-	0,16	0,18	0,20	0,22	0,25	0,29	0,30	0,32	0,34	0,35
$\frac{1}{\delta_{N\infty}} \left[\frac{\text{mm}}{(\text{N/mm}^2)} \right] - \frac{0.54}{\delta_{N\infty}}$													

Table C12: Displacements under shear load

Reinforcing bar (rel	bar)		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Displacement	δ_{V0}	[mm/kN]	0,06	0,0)5	0,04		0,03					
Displacement -	$\delta_{V_{\infty}}$ [mm/kN] 0,09 0,08 0,07		0,0	06	0,05				0,04				

Annex C9