

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0515 of 17 June 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

HVU2

Bonded Fastener for use in concrete

Hilti AG Liechtenstein Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Corporation

27 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-16/0515 issued on 14 December 2017

European Technical Assessment ETA-16/0515

Page 2 of 27 | 17 June 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z27246.19 8.06.01-73/19

European Technical Assessment ETA-16/0515

Page 3 of 27 | 17 June 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HVU2 is a bonded anchor consisting of a mortar capsule Hilti HVU2 and a steel element. The steel element consist of

- an anchor rod Hilti HAS-U or Hilti HAS-(E) with washer and hexagon nut of sizes M8 to M30 or
- an internally threaded sleeve HIS-(R)N of sizes M8 to M20.

The mortar capsule is placed in the hole and the steel element is driven by machine as specified in Annex B7.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C1 to C5
Characteristic resistance for static and quasi-static shear load	See Annex C6 to C8
Displacements for static and quasi-static loads	See Annex C9
Characteristic resistance for seismic performance categories C1	See Annex C10
Characteristic resistance and displacements for seismic performance categories C2	See Annex C11
Characteristic resistance for 100 years working life	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z27246.19 8.06.01-73/19

European Technical Assessment ETA-16/0515

Page 4 of 27 | 17 June 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

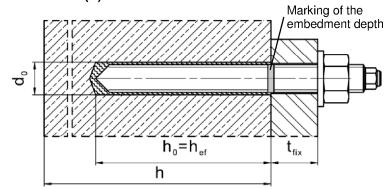
In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

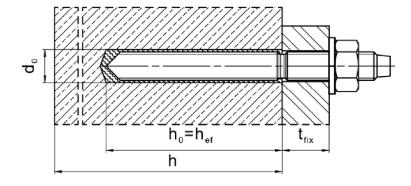
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 17 June 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Lange


Z27246.19 8.06.01-73/19



Installed condition

Figure A1:

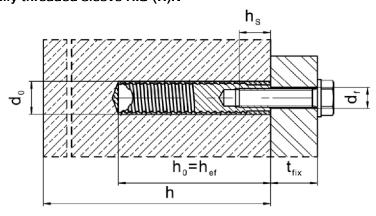
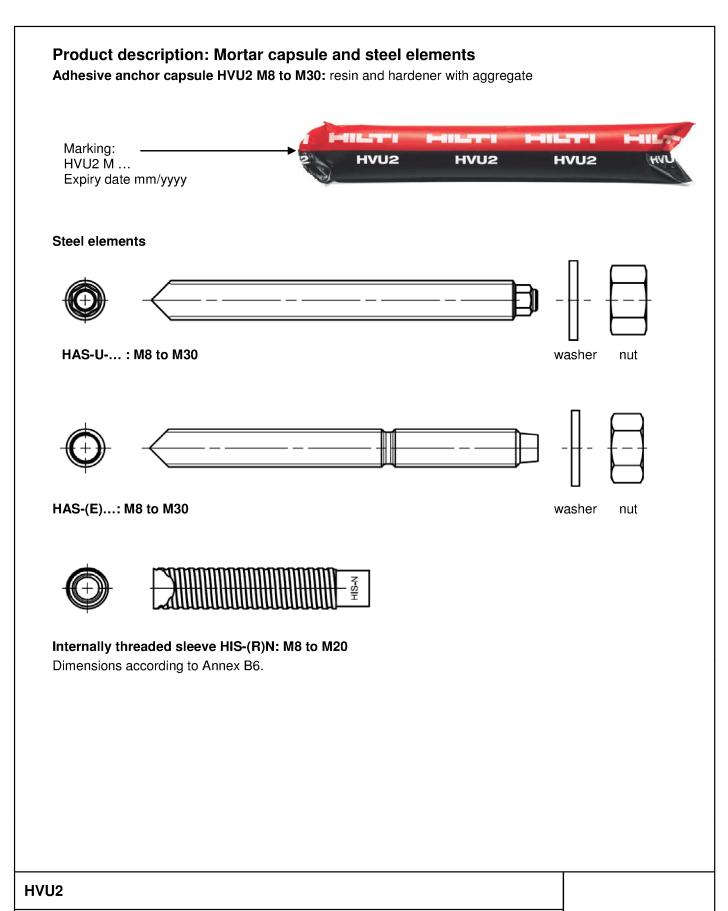

HAS-U-... and HAS-(E)...

Figure A2:

Internally threaded sleeve HIS-(R)N



HVU2	
Product description Installed condition	Annex A1

Product description

Adhesive anchor capsule / Steel elements

Annex A2

Table A1: Materials

Designation	Material							
Metal parts made of zinc coated steel								
HAS-(E)	M8 to M16: Strength class 5.8, $f_{uk} = 570 \text{ N/mm}^2$, $f_{yk} = 456 \text{ N/mm}^2$. M20 and M24: Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Rupture elongation ($I_0 = 5d$) > 8% ductile. M8 to M30: Strength class 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$. Rupture elongation ($I_0 = 5d$) > 12% ductile. Electroplated zinc coated ≥ 5 μm, (F) hot dip galvanized ≥ 45 μm.							
HAS-U	M8 to M24: Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Rupture elongation ($I_0 = 5d$) > 8% ductile. M8 to M30: Strength class 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$. Rupture elongation ($I_0 = 5d$) > 12% ductile. Electroplated zinc coated $\geq 5 \text{ μm}$, (F) hot dip galvanized $\geq 45 \text{ μm}$.							
Internally threaded sleeve HIS-N	Electroplated zinc coated ≥ 5 μm.							
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m.							
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 45 μ m.							
Metal parts made of	stainless steel							
HAS-(E)R	M8 to M16: Strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 500 \text{ N/mm}^2$. M20 and M24: Strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$. M27 and M30: Strength class 70, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$. Rupture elongation ($I_0 = 5d$) > 8% ductile. Stainless steel A4 according to EN 10088-1:2014.							
HAS-U-R	M8 to M24: Strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$. M27 and M30: Strength class 70, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 210 \text{ N/mm}^2$. Rupture elongation ($I_0 = 5d$) > 8% ductile. Stainless steel A4 according to EN 10088-1:2014.							
Internally threaded sleeve HIS-RN	Stainless steel A4 according to EN 10088-1:2014.							
Washer	Stainless steel A4 according to EN 10088-1:2014.							
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel A4 according to EN 10088-1:2014.							
Metal parts made of	high corrosion resistant steel							
HAS-(E)HCR HAS-U-HCR								
Washer	High corrosion resistant steel according to EN 10088-1:2014.							
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel according to EN 10088-1:2014.							

HVU2	
Product description Materials	Annex A3

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- · Static and quasi static loading.
- Seismic performance category C1. HAS-U-... and HAS-(E)... size M10 to M30.
- Seismic performance category C2. HAS-U-... and HAS-(E)... size M16 and M20.

Base material:

- · Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.

Temperature in the base material:

- At installation
 - -10 °C to +40 °C

For the standard variation of temperature and rapid variation of temperature after installation.

· In-service

electronic copy of the eta by dibt: eta-16/0515

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

Table B1: Specifications of intended use

		Foil capsule HVU2 with				
Elements		HAS-U, HAS-(E)	HIS-(R)N			
Hammer drilling with hollow drill bit TE-CD or TE-YD		M12 to M30	M8 to M20			
Hammer drilling		M8 to M30	M8 to M20			
Diamond coring	€ ⊕ →	M10 to M30	M8 to M20			

HVU2

Intended Use Specifications

Annex B1

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055.

Anchorages under seismic actions shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastening in stand-off installation or with a grout layer under seismic action are not covered in this European technical assessment (ETA).

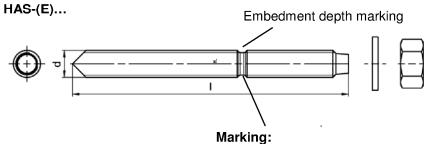
Installation:

- · Concrete condition I1:
 - Installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- Drilling technique: hammer drilling, diamond coring (e.g. Hilti DD 30-W or other Hilti DD machines), hammer drilling with hollow drill bit TE-CD, TE-YD.
- Installation direction:
 - D2: downward and horizontal installation for HVU2 M8 to M30.
 - D3: downward and horizontal and upward (e.g. overhead) installation for HVU2 M8 to M24.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

HVU2	
Intended Use Specifications	Annex B2

Table B2: Installation parameters of HAS-U-... and HAS-(E)...

HAS-U and HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Foil capsule HVU2 M			8x80	10x90	12x110	16x125	20x170	24x210	27x240	30x270
Diameter of fastener	$d=d_{nom} \\$	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	80	90	110	125	170	210	240	270
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	30	33
Minimum thickness of concrete member	h _{min}	[mm]	110	120	140	160	220	270	300	340
Maximum torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	S _{min}	[mm]	40	50	60	75	90	115	120	140
Minimum edge distance	C _{min}	[mm]	40	45	45	50	55	60	75	80


HAS-U-...

electronic copy of the eta by dibt: eta-16/0515

Marking:

Steel grade number and length identification letter: e.g. 8L

identifying mark - H, embossing "1" HAS-(E) identifying mark - H, embossing "=" HAS-(E)R identifying mark - H, embossing "CR" HAS-(E)HCR

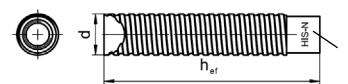

HVU2	
Intended Use Installation parameters	Annex B3

Table B3: Installation parameters of internally threaded sleeve HIS-(R)N

Internally threaded sleeve HIS-	М8	M10	M12	M16	M20		
Foil capsule HVU2 M			10x90	12x110	16x125	20x170	24x210
Outer diameter of sleeve	$d = d_{nom}$	[mm]	12,5	16,5	20,5	25,4	27,8
Nominal diameter of drill bit	d ₀	[mm]	14	18	22	28	32
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	90	110	125	170	205
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	150	170	230	270
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150
Thread engagement length min-max	h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	S _{min}	[mm]	60	75	90	115	130
Minimum edge distance	C _{min}	[mm]	40	45	55	65	90

Internally threaded sleeve HIS-(R)N...

Marking:

Identifying mark - HILTI and embossing "HIS-N" (for zinc coated steel) embossing "HIS-RN" (for stainless steel)

Table B4: Minimum curing time

Temperature in the base material T	Minimum curing time t _{cure}
-10 °C to -6 °C	5 hours
-5 °C to -1 °C	3 hours
0 °C to 4 °C	40 min
5°C to 9°C	20 min
10 °C to 19 °C	10 min
20 °C to 40 °C	5 min

HVU2	
Intended Use Installation parameters and minimum curing time	Annex B4

Table B5: Parameters of drilling and cleaning tools

Elem	ents	Drill and clean							
HAS-U	LIACII		ner drilling						
HAS-(E)	HIS-(R)N		Hollow drill bit TE-CD, TE-YD	Diamond coring	Brush				
Size	Name	d ₀ [mm]	d ₀ [mm]	d ₀ [mm]	HIT-RB				
M8	-	10	-	-	-				
M10	-	12	-	12	12				
M12	M8	14	14	14	14				
M16	M10	18	18	18	18				
M20	M12	22	22	22	22				
M24	M16	28	28	28	28				
M27	-	30	-	30	30				
-	M20	32	32	32	32				
M30	-	35	35	35	35				

Cleaning alternatives

Manual Cleaning (MC):

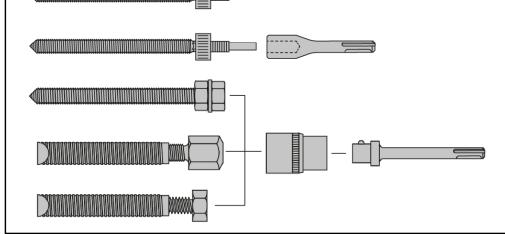
Hilti hand pump for blowing out drill holes with diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10$ d.

Compressed Air Cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):

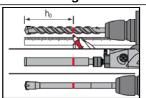
Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.



HVU2	
Intended Use Cleaning tools	Annex B5

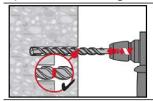
Table B6: Parameters of setting tools HAS-U-..., HAS-(E)... and HIS-(R)N

HAS	HIS-N	TE(A)	SID 4-A22	SIW 22T-A	П	SF(H)	RPM
	THE	₹T	₹T	IT		T _{or}	
M8		17	+	+		2, 6, 8, 10, 14, 22	4501300
M10	M8	17	+	+		6, 8, 10, 14, 22	4501300
M12	M10	140	+	+	Ш	6, 8, 10, 14, 22	4501300
M16	M12	140	+	-	H	6, 8, 10, 14, 22	4501300
M20	-	5060	-	-		-	-
-	M16	4080	-	-			-
M24	-	5080	-	-		-	-
-	M20	4080	-	-		-	-
M27	-	6080	-	-	H	-	-
M30	-	6080	-	-		-	-

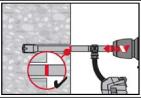

Setting	Settingtool		TE (A)	TE 5080	SF (H)	SID 4-A22	HIS-S
Cetting	1001	Article number	140	12 3000	01 (11)	OID + AZZ	
-		-	-	-	+	-	-
TE-C HVU2		# 2181356	+	-	-	-	-
TE-Y HVU2		# 22301625	-	+	ı	-	ı
TE-C ½"		# 32220	+	-	-	-	+
TE-Y 3/4"		# 32221	-	+	-	-	+
SI-SA 1/4"- 1/2"		# 2077174	-	-	+	+	+
SI-SA 7/16"		# 2134075	-	-	+	-	+

HVU2	
Intended Use Setting tools	Annex B6

Installation instruction

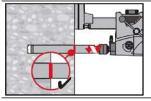

Hole drilling

Mark required drilling depth h₀ on drill bit or core bit

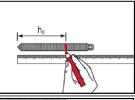

a) Hammer drilling:

For dry or wet concrete.

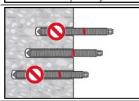
Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


b) Hammer drilling with Hilti hollow drill bit: For dry or wet concrete.

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit attached to Hilti vacuum cleaner. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "setting the element" step in the installation instruction.


c) Diamond coring:

For dry or wet concrete.

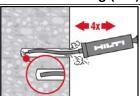


Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

Check setting depth

Mark required setting depth on fastener (see table B3).

Check the setting depth with the marked element.


The element has to fit in the hole until the required embedment depth, not deeper. If it is not possible to insert the element to the required embedment depth, drill deeper.

HVU2	
Intended Use Installation instructions	Annex B7

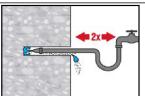
Drill hole cleaning:

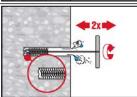
Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

Manual Cleaning (MC): For drill hole diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10$ d.

The Hilti hand pump may be used for blowing out drill holes.

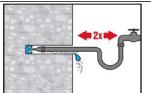
Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.


Compressed Air Cleaning (CAC): For all drill hole diameters d₀ and all drill hole depths h₀.


Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

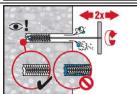
Cleaning of hammer drilled flooded holes and diamond cored holes:

For all drill hole diameters do and all drill hole depths ho.



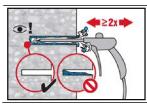
Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Brush 2 times with the specified brush (see table B5) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.


The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not, the brush is too small and must be replaced with the proper brush diameter.

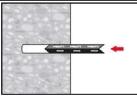
Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.

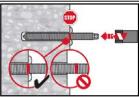

Brush 2 times with the specified brush (see Table B5) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not, the brush is too small and must be replaced with the proper brush diameter.

HVU2	
Intended Use Installation instructions	Annex B8

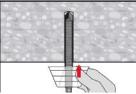

Z36486.19 8.06.01-73/19

electronic copy of the eta by dibt: eta-16/0515

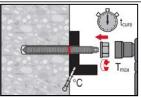


Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.

Setting the element



Insert the foil capsule with the peak ahead to the back of the hole.


Drive the anchor rod with the plugged tool into the hole, applying moderate pressure. Rotary hammer tool in rotation hammer mode (450 RPM to maximum 1300 RPM). Setting tool see Annexes B6.

After reaching the embedment depth switch off setting machine immediately.

Overhead installation for HVU2 M8 to M24.

For overhead installation use the overhead dripping cup HIT-OHC.

electronic copy of the eta by dibt: eta-16/0515

Loading the anchor: After required curing time t_{cure} (see Table B4) the anchor can be loaded.

The applied installation torque shall not exceed the values T_{max} given in Table B2 and Table B3.

HVU2

Intended Use
Installation instructions

Annex B9

Table C1: Essential characteristics for HAS-U-... and HAS-(E) under tension load in concrete

HAS-U and HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Installation safety factor						•		•	•	
Hammer drilling and drilling with hollow drill bit TE-CD or TE-YD	γinst	[-]				1	,0			
Diamond coring	γinst	[-]				1	,0			
Steel failure HAS-(E)										
HAS-(E) 5.8	$N_{Rk,s}$	[kN]	18,9	30,1	43,4	82,2	112,2	160,2	-	-
Partial factor	$\gamma_{Ms,N}^{ 1)}$	[-]			1,	50				-
HAS-(E) 8.8	$N_{Rk,s}$	[kN]	26,5	42,2	61,0	115,4	179,5	256,4	347	421,5
Partial factor	$\gamma_{\text{Ms,N}}^{ 1)}$	[-]				1,	50			
HAS-R	N _{Rk,s}	[kN]	23,2	37,0	53,3	100,9	157,0	224,3	216,9	263,4
Partial factor	γ _{Ms,N} 1)	[-]		1,0	68		1,	87	2,	86
HAS-HCR	$N_{Rk,s}$	[kN]	26,5	42,2	61,0	115,4	179,5	224,3		-
Partial factor	γ _{Ms,N} 1)	[-]			1,5	•		2,1	-	-
Steel failure HAS-U									ı	
HAS-U	$N_{Rk,s}$	[kN]				As	· f _{uk}			
Partial factor grade 5.8	γ _{Ms,N} 1)	[-]			1	,5				-
Partial factor grade 8.8	γ _{Ms,N} 1)	[-]				1	,5			
Partial factor HAS-U-R	γ _{Ms,N} 1)	[-]			1,	87			2,	86
Partial factor HAS-U-HCR	$\gamma_{Ms,N}^{\qquad 1)}$	[-]			1,5			2,1		-
Combined pullout and concre	te cone	failure								
Effective embedment depth	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Uncracked concrete C20/25 in h	ammer	drilled hole	es	1						
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,ucr}$	[N/mm ²]	12,0				16,0			
Temperature range II: 50 °C / 80 °C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	9,5				13,0			
Temperature range III: 72 °C / 120 °C	$\tau_{Rk,ucr}$	[N/mm²]	6,0	6,0 7,5						
Uncracked concrete C20/25 in h	ammer	drilled hole	es with	hollov	v drill l	bit TE-6	CD or 1	E-YD		
Temperature range I: 24 °C / 40 °C	$ au_{Rk,ucr}$	[N/mm ²]		- 16,0						
Temperature range II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]		-			13	3,0		
Temperature range III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]		-			7	,5		

HVU2	
Performances Essential characteristics under tension loads in concrete	Annex C1

Table C1: continued

HAS-U and HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete C20/25	in diamond	cored hole	es		•	•		•			
Temperature range I: 24 °C / 40 °C	$ au_{Rk,ucr}$	[N/mm²]	-	14,0							
Temperature range II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]	-	12,0							
Temperature range III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]	-	6,5							
Combined pullout and concrete cone failure											
Cracked concrete C20/25 in	hammer dr	illed holes									
Temperature range I: 24 °C / 40 °C	$ au_{Rk,cr}$	[N/mm²]	5,0	8,5							
Temperature range II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm²]	4,0				6,5				
Temperature range III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]	2,5				4,0				
Cracked concrete C20/25 in	hammer dr	illed holes	with h	ollow	drill bit	TE-CE	or TE	-YD			
Temperature range I: 24 °C / 40 °C	$ au_{Rk,cr}$	[N/mm²]	-	-			8	,5			
Temperature range II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm²]		-	6,5						
Temperature range III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]		-	4,0						
Cracked concrete C20/25 in	diamond co	ored holes									
Temperature range I: 24 °C / 40 °C	$ au_{Rk,cr}$	[N/mm²]	-	7,0		7,0					
Temperature range II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm²]	-	6,0							
Temperature range III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]	-				3,5				

HVU2	
Performances Essential characteristics under tension loads in concrete	Annex C2

Table C1: continued

Table 01: continued										
HAS-U and HAS-(E)			М8	M10	M12	M16	M20	M24	M27	M30
Influence factors ψ on bond resis	tance 1	Rk								
Hammer drilled holes and hamme	er drille	d holes with ho	llow o	drill bit	t TE-C	D or	TE-YD			
		C30/37	1,08							
Uncracked concrete: Factor for concrete strength	Ψc	C40/50				1,	15			
. actor for controlle differential		C50/60				1,	20			
		C30/37				1,	04			
Cracked concrete: Factor for concrete strength	ψ_{c}	C40/50				1,	07			
Tactor for contrate strength		C50/60				1,	10			
		24 °C / 40 °C				1,	00			
Cracked and uncracked concrete: Sustained load factor	$\psi^0_{\text{ sus}}$	50 °C / 80 °C				0,	73			
Castamos reas raster		72 °C / 120 °C				0,	73			
Diamond cored holes										
I lo ava alva di a a a avata v	Ψο	C30/37		1,08						
Uncracked concrete: Factor for concrete strength		C40/50		1,15						
		C50/60		1,20						
Cracked concrete: Factor for concrete strength	Ψc	C50/60				1,	00			
		24 °C / 40 °C	0,78							
Cracked and uncracked concrete: Sustained load factor	$\psi^0_{\text{ sus}}$	50 °C / 80 °C	0,71							
Cactamed lead lactor		72 °C / 120 °C				0,	78			
Concrete cone failure										
Factor for uncracked concrete	$k_{\text{ucr},N}$	[-]				1	1,0			
Factor for cracked concrete	$\mathbf{k}_{\mathrm{cr},\mathrm{N}}$	[-]				7	7,7		_	
Edge distance	$\mathbf{C}_{\mathrm{cr},N}$	[mm]				1,5	\cdot h _{ef}			
Spacing	$\mathbf{S}_{\text{cr},N}$	[mm]				3,0	\cdot h _{ef}			
Splitting failure										
	r	ı / h _{ef} ≥ 2,0	-	1,0 · h _{ef}	<u> </u>	h/h _{ef} 4	<u>_</u>		1	
Edge distance $c_{\text{cr,sp}}[\text{mm}]$ for	$\frac{2.0 > h / h_{ef} > 1.3}{h / h_{ef} \le 1.3}$		4,6	h _{ef} - 1,	8 h	1,3			\	
			2	2,26 h _e	f	L	1,0	n _{ef} 2,2	26 h _{ef}	C _{cr,sp}
Spacing	S _{cr,sp}	[mm]				2.0	cr,sp			

¹⁾ In absence of national regulations.

HVU2	
Performances Essential characteristics under tension loads in concrete	Annex C3

Table C2: Essential characteristics for internally threaded sleeve HIS-(R)N under tension load in concrete

HIS-(R)N			M8	M10	M12	M16	M20
Installation safety factor							
Hammer drilling and drilling with hollow drill bit TE-CD or TE-YD	γ_{inst}	[-]			1,0		
Diamond coring	γ_{inst}	[-]			1,0		
Steel failure							
HIS-N with screw or threaded rod grade 8.8	$N_{Rk,s}$	[kN]	25	46	67	125	116
Partial factor	$\gamma_{\text{Ms,N}}^{ 1)}$	[-]			1,5		
HIS-RN with with screw or threaded rod grade 70	$N_{\text{Rk,s}}$	[kN]	26	41	59	110	166
Partial factor	$\gamma_{\text{Ms,N}}$ 1)	[-]		1,	87		2,4
Combined pullout and concrete cone	failure						
Effective embedment depth	h _{ef}	[mm]	90	110	125	170	205
Effective diameter of fastener	d	[mm]	12,5	16,5	20,5	25,4	27,6
Uncracked concrete C20/25 in hammer drilled holes and hammer dr	illed hole	es with holl	ow drill I	oit TE-CD	or TE-Y)	
Temperature range I: 24 °C / 40 °C	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]			11,0		
Temperature range II: 50 °C / 80 °C	$\tau_{Rk,ucr}$	[N/mm²]			9,0		
Temperature range III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]			5,5		
Uncracked concrete C20/25 in diamond	l cored h	noles					
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,ucr}$	[N/mm²]			11,0		
Temperature range II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]			9,0		
Temperature range III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]			5,5		
Cracked concrete C20/25 in hammer drilled holes and hammer dr	illed hole	es with holl	ow drill l	oit TE-CD	or TE-Y)	
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,cr}$	[N/mm²]			6,5		
Temperature range II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]			5,0		
Temperature range III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]			3,0		
Cracked concrete C20/25 in diamond c	ored hol	es					
Temperature range I: 24 °C / 40 °C	$ au_{Rk,cr}$	[N/mm²]			4,5		
Temperature range II: 50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm ²]			3,5		
Temperature range III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]			2,5		

HVU2	
Performances	Annex C4
Essential characteristics under tension loads in concrete	

Table C2: Continued

HIS-(R)N			М8	M10	M12	M16	M20
Influence factors ψ on bond resist	ance τ _{Rk}				<u> </u>		
Hammer drilled holes and hammer	r drilled ho	les with hollow	drill bit	TE-CD o	r TE-YD		
Factor for concrete compressive stre	ngth						
Uncracked concrete: Factor for concrete strength	Ψс	C50/60			1,00		
		C30/37			1,08		
Cracked concrete: Factor for concrete strength	Ψc	C40/50			1,15		
Tactor for concrete strength		C50/60			1,20		
	_	24 °C / 40 °C			1,00		
Cracked and uncracked concrete: Sustained load factor	$\psi^0_{{}_{\sf SUS}}$	50 °C / 80 °C			0,73		
Castamos load laster		72 °C / 120 °C					
Diamond cored holes							
Uncracked concrete: Factor for concrete strength	ψс	ψ _c C50/60		1,00			
Cracked concrete: Factor for concrete strength	Ψс	C50/60			1,0		
		24 °C / 40 °C	0,78				
Cracked and uncracked concrete: Sustained load factor	$\psi^0_{{}_{\sf sus}}$.	50 °C / 80 °C			0,71		
Castamed read ractor		72 °C / 120 °C			0,78		
Concrete cone failure							
Factor for uncracked concrete	$\mathbf{k}_{ucr,N}$	[-]			11		
Factor for cracked concrete	$k_{cr,N}$	[-]			7,7		
Edge distance	$\mathbf{c}_{cr,N}$	[mm]			$1,\!5\cdot h_{\text{ef}}$		
Spacing	S _{cr,N}	[mm]			$3,0 \cdot h_{\text{ef}}$		
Splitting failure							
	h /	h _{ef} ≥ 2,0	1,0 · l	h _{ef} h/h			
Edge distance c _{cr,sp} [mm] for	2,0 >	h / h _{ef} > 1,3	4,6 h _{ef} -			7	
	h /	h _{ef} ≤ 1,3	2,26	h _{ef}	1,0	n _{ef} 2,26 h,	c _{cr,sp}
Spacing	S _{cr,sp}	[mm]			2·c _{cr,sp}		

¹⁾ In absence of national regulations.

HVU2	
Performances Essential characteristics under tension loads in concrete	Annex C5

Table C3: Essential characteristics for HAS-U-... and HAS-(E) under shear load in concrete

HAS-U and HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever a	rm			•	•	•	•			
HAS-(E)										
HAS-(E) 5.8	$V_{Rk,s}$	[kN]	9,5	15,1	21,7	41,1	56,1	80,1	-	-
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]			1,	25		•	-	-
HAS-(E) 8.8	$V_{Rk,s}$	[kN]	13,3	21,1	30,5	57,7	89,7	128,2	173,5	210,7
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]				1,	25			
HAS-R	$V_{Rk,s}$	[kN]	11,6	18,5	26,7	50,5	78,5	112,2	108,4	131,7
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]		1	,4		1,	56	2,	38
HAS-HCR	$V_{Rk,s}$	[kN]	13,3	21,1	30,5	57,7	89,7	112,2	-	1
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]	1,25 1,75						-	-
Ductility factor	k ₇	[-]				1	,0			
HAS-U	$V_{Rk,s}$	[kN]	$0.5 \cdot A_s \cdot f_{uk}$							
Partial factor grade 5.8	γ _{Ms,V} ¹⁾	[-]			1,	25			-	-
Partial factor grade 8.8	γMs,v ¹⁾	[-]				1,	25			
Partial factor HIT-V-R	γ̃Ms,V	[-]			1,	56			2,38	
Partial factor HIT-V-HCR	$\gamma_{Ms,V}^{1)}$	[-]			1,5			2,1	-	ı
Ductility factor	k_7	[-]				1	,0			
Steel failure with lever arm										
HAS-(E)										
HAS-(E) 5.8	${\sf M}^0_{\sf Rk,s}$	[kN]	18	37	64	167	284	486	-	-
Partial factor	$\gamma_{Ms,V}$ 1)	[-]			1,	25			-	-
HAS-(E) 8.8	${\sf M}^{\sf 0}_{\sf Rk,s}$	[kN]	26	53	90	234	455	777	1223	1638
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]				1,	25			
HAS-R	$M^0_{Rk,s}$	[kN]	23 45 79 205 398 680				765	1023		
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]		1	,4		1,	56	2,	38
HAS-HCR	$M^0_{Rk,s}$	[kN]	26	52	90	234	455	680	-	1
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]	1,25 1,75				-	-		
Ductility factor	k ₇	[-]	1,0							

HVU2	
Performances Essential characteristics under shear loads in concrete	Annex C6

Table C3: Continued

HAS-U and HAS-(E)			М8	M10	M12	M16	M20	M24	M27	M30
HAS-U										
Bending moment	$M^0_{Rk,s}$	[Nm]	$1,2\cdot W_{el}\cdot f_{uk}$							
Ductility factor	k ₇	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of fastener	l _f	[mm]	80	90	110	125	170	210	240	270
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20	24	27	30

¹⁾ In absence of national regulations.

HVU2	
Performances Essential characteristics under shear loads in concrete	Annex C7

Table C4: Essential characteristics for internally threaded sleeve HIS-(R)N under shear loads in concrete

HIS-(R)N			М8	M10	M12	M16	M20
Steel failure without lever arm		•				•	
HIS-N with screw or threaded rod grade 8.8	$V_{Rk,s}$	[kN]	13	23	34	63	58
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]			1,25		
HIS-RN with screw or threaded rod grade 70	$V_{Rk,s}$	[kN]	13	20	30	55	83
Partial factor	$\gamma_{\text{Ms,V}}^{ 1)}$	[-]		1,	56		2,0
Ductility factor	k ₇	[-]			1,0		
Steel failure with lever arm							
HIS-N with screw or threaded rod grade 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519
Partial factor	γ _{Ms,V} 1)	[-]			1,25		
HIS-RN with screw or threaded rod grade 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454
Partial factor	$\gamma_{\text{Ms,V}}^{-1)}$	[-]			1,56		
Ductility factor	k ₇	[-]			1,0		
Concrete pry-out failure		•					
Pry-out factor	k ₈	[-]			2,0		
Concrete edge failure		•					
Effective length of fastener	l _f	[mm]	90	110	125	170	205
Diameter of fastener	d _{nom}	[mm]	12,5	16,5	20,5	25,4	27,6

¹⁾ In absence of national regulations.

HVU2	
Performances Essential characteristics under shear loads in concrete	Annex C8

Displacements for HAS-U-... and HAS-(E) under tension load¹⁾ Table C5:

HAS-U and HAS-(E)			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete temperature range I to III										
Dioplesement	δ_{No} -factor	[mm/(N/mm²)]	[mm/(N/mm²)] 0,06				0,	15		
Displacement	$\overline{\delta_{N_{\infty}}}$ -factor	[mm/(N/mm²)]	0,10					0,30		
Cracked concret	e temperature ra	inge I to III								
Diaplacement	δ_{N0} -factor [mm/(N/mm ²)]		0,10					0,15		
Displacement	$\overline{\delta_{N_{\infty}}}$ -factor	[mm/(N/mm²)]	0,14					0,	30	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$ (τ : bond stress due to applied tension force).

Table C6: Displacements for HAS-U-... and HAS-(E) under shear load¹⁾

HAS-U and H	IAS-(E)		M8	M10	M12	M16	M20	M24	M27	M30
Disalessant	δ_{Vo} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04		0,03	
Displacement	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06		0,05	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V\infty} = \delta_{V\infty}$ -factor · V

(V: applied shear force).

Table C7: Displacements for internally threaded sleeves HIS-(R)N under tension load¹⁾

HIS-(R)N			М8	M10	M12	M16	M20	
Uncracked concrete temperature range I to III								
Diaplacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,05			0,15		
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,10				0,15	
Cracked concrete	temperature ra	nge I to III						
Diaplacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,13		0,13			0,20
Displacement	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,15				0,20	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \cdot \tau$

 (τ) : bond stress due to applied tension force).

Table C8: Displacements for internally threaded sleeves HIS-(R)N under shear load¹⁾

HIS-(R)N			M8	M10	M12	M16	M20
Dianlacement	$\delta_{\text{V0}}\text{-factor}$	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Displacement	 δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} \cdot \text{V}; \qquad \delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-factor} \cdot \text{V}$

(V: applied shear force).

HVU2	
Performances Displacements	Annex C9

Table C9: Essential characteristics for HAS-U-... and HAS-(E) under tension loads for seismic performance category C1

HAS-U and HAS-(E)			M10	M12	M16	M20	M24	M27	M30
Steel failure					1.				
HAS-U-5.8(F), HAS-(E) 5.8	$N_{Rk,s,seis}$	[kN]	29	42	79	123	177		-
HAS-U-8.8(F), HAS-(E) 8.8	$N_{Rk,s,seis}$	[kN]	46	67	126	196	282	367	449
HAS-U-R, HAS-R	$N_{Rk,s,seis}$	[kN]	41	59	110	172	247	230	281
HAS-U-HCR, HAS-HCR	$N_{Rk,s,seis}$	[kN]	46	67	126	196	247	-	
Combined pullout and concrete co	ne failure in	cracked o	concret	e C20/2	25				
Hammer drilled holes									
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,seis}$	[N/mm ²]	8,5	8,5	8,3	6,9	8,1	6,5	7,6
Temperature range II: 50 °C / 80 °C	$ au_{Rk,seis}$	[N/mm ²]	6,5	6,5	6,4	5,3	6,2	5,0	5,8
Temperature range III: 72 °C / 120 °C	C τ _{Rk,seis}	[N/mm ²]	4,0	4,0	3,9	3,3	3,8	3,1	3,6
Hammer drilled holes with hollow of	Irill bit TE-C	D or TE-	YD				•		
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,seis}$	[N/mm ²]	-	8,5	8,3	6,9	8,1	6,5	7,6
Temperature range II: 50 °C / 80 °C	$ au_{Rk,seis}$	[N/mm ²]	-	6,5	6,4	5,3	6,2	5,0	5,8
Temperature range III: 72 °C / 120 °C	C τ _{Rk,seis}	[N/mm ²]	-	4,0	3,9	3,3	3,8	3,1	3,6
Diamond cored holes									
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,seis}$	[N/mm ²]	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Temperature range II: 50 °C / 80 °C	$\tau_{Rk,seis}$	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Temperature range III: 72 °C / 120 °C	C τ _{Rk,seis}	[N/mm ²]	4,0	4,0	4,0	4,0	4,0	4,0	4,0

Table C10: Essential characteristics for HAS-U-... and HAS-(E) under shear loads for seismic performance category C1

HAS-U and HAS-(E)			M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm									
HAS-U-5.8(F), HAS-(E) 5.8	$V_{Rk,s,seis}$	[kN]	11	15	27	43	62	-	-
HAS-U-8.8(F), HAS-(E) 8.8	$V_{Rk,s,seis}$	[kN]	16	24	44	69	99	129	157
HAS-U-R, HAS-R	$V_{Rk,s,seis}$	[kN]	14	21	39	60	87	81	98
HAS-U-HCR, HAS-HCR	$V_{Rk,s,seis}$	[kN]	16	24	44	69	87	-	-

Annex C10

Table C11: Essential characteristics for HAS-U-... and HAS-(E) under tension loads for seismic performance category C2

HAS-U and HAS-(E)			M16	M20			
Steel failure							
HAS-U (-F) 8.8, HAS-(E)-(F) 8.8	N _{Rk,s,seis}	[kN]	126	196			
Combined pullout and concrete cone failure in cracked concrete C20/25 in hammer drilled holes and with hollow drill bit TE-CD or TE-YD							
Temperature range I: 24 °C / 40 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,9	2,6			
Temperature range II: 50 °C / 80 °C	$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,3	2,1			
Temperature range III: 72 °C / 120 °C	$ au_{Rk,seis}$	[N/mm ²]	1,4	1,3			

Table C12: Essential characteristics for HAS-U-... and HAS-(E) under shear loads for seismic performance category C2

HAS-U and HAS-(E)			M16	M20
Steel failure without lever arm				
HAS-U 8.8, HAS-(E) 8.8	$V_{Rk,s,seis}$	[kN]	40	71
HAS-U-F 8.8, HAS-F 8.8	$V_{Rk,s,seis}$	[kN]	30	46

Table C13: Displacements under tension load for seismic performance category C2

HAS-U and HAS-(E)			M16	M20
Displacement DLS	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]	0,2	0,2
Displacement ULS	$\delta_{\text{N,seis}(\text{ULS})}$	[mm]	0,4	0,5

Table C14: Displacements under shear load for seismic performance category C2

HAS-U and HAS-(E)			M16	M20
Displacement DLS HAS-U 8.8, HAS-(E) 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]	3,2	2,5
Displacement DLS HAS-U-F 8.8, HAS-F 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]	2,3	3,8
Displacement ULS HAS-U 8.8, HAS-(E) 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]	9,2	7,1
Displacement ULS HAS-U-F 8.8, HAS-F 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]	4,3	9,1

HVU2	
Performances Essential characteristics for seismic performance category C2 and displacements.	Annex C11