

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0308 of 11 December 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TURBO SMART

Mechanical fasteners for use in concrete

pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE POLEN

manufacturing plant 3

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-16/0308 issued on 23 May 2016

European Technical Assessment ETA-16/0308 English translation prepared by DIBt

Page 2 of 22 | 11 December 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0308 English translation prepared by DIBt

Page 3 of 22 | 11 December 2019

Specific Part

1 Technical description of the product

The TURBO SMART concrete screw is an anchor of size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements (static and quasi-static loading)	See Annex C 7
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

European Technical Assessment ETA-16/0308

Page 4 of 22 | 11 December 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

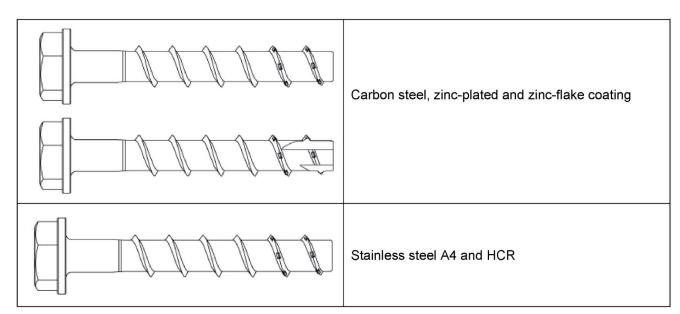
In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

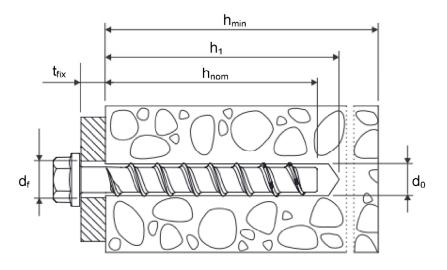
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 11 December 2019 by Deutsches Institut für Bautechnik


Dr.-Ing. Lars Eckfeldt p. p. Head of Department


beglaubigt: Tempel

Product and installed condition

TURBO SMART concrete screw

 $d_0 = nominal drill bit diameter \\ h_{nom} = nominal anchorage depth \\ h_1 = depth of the drill hole$

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

TURBO SMART concrete screw

Product description

Installed condition

Annex A1

Electronic copy of the ETA by DIBt: ETA-16/0308

_			
1		TURBO SMART S-BSZ	Concrete screw version with hexagon head with pressed-on washer
2		TURBO SMART S-BSM	Concrete screw version with hexagon head with pressed-on washer and T-drive
3	(5. s)	TURBO SMART S-BSH	Concrete screw version with hexagon head
4	9. Me.	TURBO SMART S-BSV	Concrete screw with countersunk head
5		TURBO SMART S-BSP	Concrete screw with pan head
6	20, 0	TURBO SMART S-BSF	Concrete screw with large pan head
7		TURBO SMART S-BSE	Concrete screw with countersunk head and connection thread
8		TURBO SMART S-BSB	Concrete screw with hexagonal head and connection thread
9	0	TURBO SMART S-BSS	Concrete screw with hexagon drive and connection thread
10	•	TURBO SMART S-BSA	Concrete screw with connection thread and hexagon socket drive
11	0	TURBO SMART S-BSI	Concrete screw with internal metric thread and hexagon drive
TURBO SMART	concrete sci	rew	
Product descriversions	iption		Annex A2

Table A1: Materials

Part	Name	Туре	Material	f _{yk}	f _{uk}
1			Steel EN 10263-4:2017, zinc-plated		
2		TURBO SMART	acc. to EN ISO 4042:2018 or zinc		
3		TORBO SWART			
4			10683:2018 (≥ 5µm)		
5					
6	Concrete screw	TURBO SMART A4	1.4401, 1.4404, 1.4571, 1.4578	560 N/mm²	700 N/mm²
7		TORBO GW/ II Y Y	1.4401, 1.4404, 1.4071, 1.4070		
8					
9					
10		TURBO SMART HCR	1.4529		
11					

 $f_{yk} = nominal \ characteristic \ steel \ yield \ strength$ $f_{uk} = nominal \ characteristic \ steel \ ultimate \ strength$

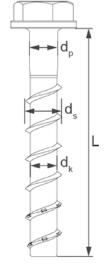
Table A2: Dimensions

Anchor size				3	8			10			12			14		
h _{nom}		h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal embedment	aeptn	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d_k	[mm]	5,1 7,1				9,1			11,1			13,1			
Thread outer diameter	d _s	[mm]	7	,5	10,6				12,6		14,6		5	16,6		
Shaft diameter	d _p	[mm]	5	,7	7,9			9,9			11,7			13,7		

Marking:

TURBO SMART (Zinc plated and Zinc flake)

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100


TURBO SMART A4

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: A4

TURBO SMART HCR

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: HCR

TURBO SMART concrete screw

Product description

Materials, dimensions and markings

Annex A3

Intended use

Table B1: Anchorages subject to

TURBO SMART concrete screw		6			8		10		12		14				
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
·	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loads			All sizes and all embedment depths												
Fire exposure						MI SIZE	s and all embedment depths								
C1 category - seismic perforr	nance														
C2 category – seismic (A4 and HCR not suitable)		,	()	x		>	(ok)	(ok)	(ok

Base materials:

- Reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exist screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exist: screw types made of stainless steel with marking HCR.

Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

TURBO SMART concrete screw	
Intended use Specification	Annex B1
Specification	

Intended use

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
 The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table B2.

Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar SMART S-IRV, S-IRW or S-IRE.
- · Adjustability according to Annex B6 for sizes 8-14, all embedment depths, but not for seismic loading
- Cleaning of borehole is not necessary, if using a hollow drill bit.

TURBO SMART concrete screw

Intended use
Specification

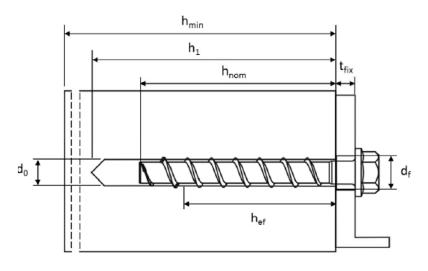

Annex B2

Table B2: Installation parameters

TURBO SMART concrete screw	(6		8		10				
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Hommar embeament depart		[mm]	40	55	45	55	65	55	75	85
Nominal drill hole diameter	d ₀	[mm]	(6	8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,	40	8,45			10,45		
Drill hole depth	h₁≥	[mm]	45	60	55	65	75	65	85	95
Clearance hole diameter	d _f ≤	[mm]	æ	3	12			14		
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0	20			40		
Torque impact screw driver		[Nm]		Max. to	rque acco	ording to r	manufactu	urer's inst	ructions	
Torque impues solew univer		[]	16	30		300		400		

TURBO SMART concrete screv		12		14						
Nominal embedment depth			h _{nom1} h _{nom2} h _{nom3}			h _{nom1}	h _{nom2}	h _{nom3}		
Troning on Souncing dopar	[mm]	65	85	100	75	100	115			
Nominal drill hole diameter	d₀	[mm]		12			14			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12,50		14,50				
Drill hole depth	h₁≥	[mm]	75	95	110	85	110	125		
Clearance hole diameter	d _f ≤	[mm]		16		18				
Installation torque (version with connection thread)	T _{inst}	[Nm]		60		80				
Tanana inanasta anno dei an		[NIma]	Max. torque according to manufacturer's instructions							
Torque impact screw driver		[Nm]		650		650				

TURBO SMART concrete screw

Intended use

Installation parameters

Annex B3

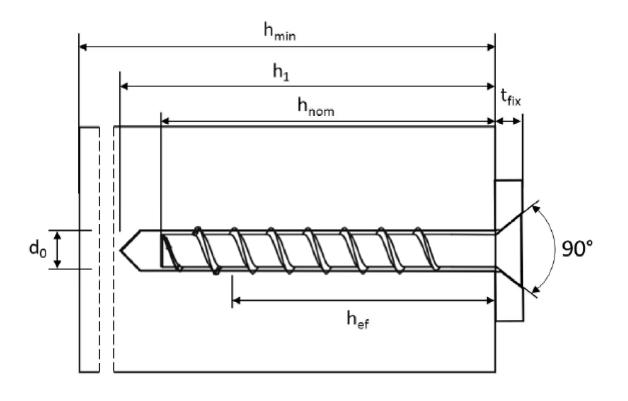
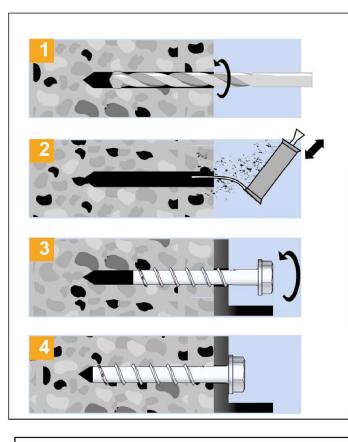

8.06.01-5/17

Table B3: Minimum thickness of member, minimum edge distance and minimum spacing

TURBO SMART concrete screw size			(6		8		10			
None in all analyses and algorith	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	10	100		100		100	00 130		
Minimum edge distance	C _{min}	[mm]	40		40	40 50		50			
Minimum spacing	S _{min}	[mm]	4	0	40 50)		50		


TURBO SMART concrete	ize		12		14				
Neminal embedment death	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth		[mm]	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	5	50	70	50	70		

TURBO SMART concrete screw	
Installation instructions	Annex B4

Installation instructions

1. Drilling:

Create hammer drilled or hollow drilled borehole.

- Cleaning of the drill hole: Remove drill dust by vacuuming or blowing.
- 3. **Installation:**Install the anchor by impact screwdriver or torque wrench.
- Complete: verify that the head is pressed to the fixture.

Remark: cleaning of borehole is not necessary when using an hollow drill bit

TURBO SMART concrete screw

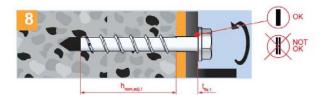
Intended use

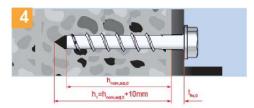
Installation instructions

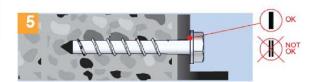
Annex B5

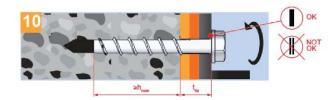
Electronic copy of the ETA by DIBt: ETA-16/0308

Installation instructions for adjustability







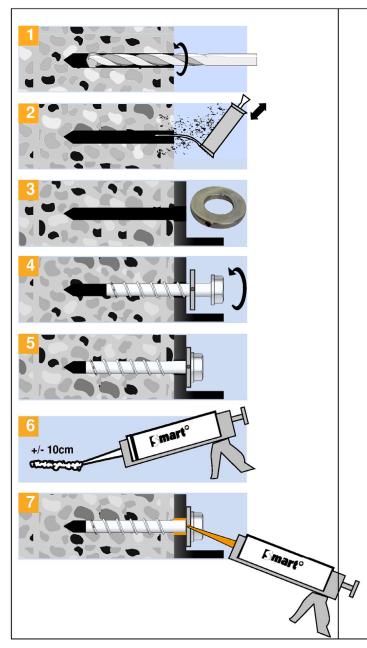


Installation instructions

TURBO SMART anchor may be adjusted maximum two times while the anchor may turn back at most 10 mm. The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be equal or larger than h_{nom}.

TURBO SMART concrete screw


Intended use

Installation instructions for adjustability

Annex B6

Installation instructions - filling annular gap

1. Drilling:

Create hammer drilled or hollow drilled borehole.

2. Cleaning of the drill hole:

Remove drill dust by vacuuming or blowing.

3. Filling washer:

After preparing the borehole (Annex B5, figure 1+2), position first the fixture and then the filling washer.

4. Installation:

Install the anchor by impact screwdriver or torque wrench.

- Installed condition without injected mortar in the filling washer
- Follow the instructions displayed on the chemical anchor cartridge and discard the mortar until the colour is constant.

7. Filling the annular gap:

Fill the annular gap with the injection mortar (minimum compression strength of 20 N/mm², e.g. SMART S-IRV, S-IRW or S-IRE)

Notes:

- For seismic loading the installation with filled and without filled annular gap is approved. Difference in performance can be found in Annex C3 C5.
- No consideration of curing time is necessary.

TURBO SMART concrete screw

Intended use

Installation instructions - Filling annular gap

Annex B7

Electronic copy of the ETA by DIBt: ETA-16/0308

Performances

Table C1: Cha	aracteristic val	ues for	static	and qua	asi-stat	ic loadi	ng, size	es 6, 8 a	and 10				
TURBO SMAR	T concrete screw	size		(5		8			10			
Nominal embe	dment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Steel failure for	r tension and she	ar loadin	g										
Characteristic t	tension load	$N_{Rk,s}$	[kN]	14	·,0		27,0			45,0			
Partial factor te	ension load	YMs,N	[-]				1	,5					
Characteristic	shear load	$V_{Rk,s}$	[kN]	7	7,0 13,5 17,0 22,5 34,0								
Partial factor sl	near load	Yms,V	[-]	1,25									
Ductility factor		k ₇	[-]		0,8								
Characteristic I	bending load	$M^0_{Rk,s}$	[Nm]	10),9		26,0			56,0			
Pull-out failure													
Character-	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N	0 Rk,c		
istic tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0		
	C20/25			1,12									
Increasing	C30/37	1					1,	22					
factor for N _{Rk,p}	C40/50	Ψς	[-]				1,	41					
	C50/60						1,	58					
Concrete failur	e: Splitting failure	, concret	te cone t	failure ar	nd pry-ou	ut failure							
Effective embe	dment depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68		
	cracked	$k_1 = k_{cr}$	[-]				7	,7					
k-factor	uncracked	$k_1 = k_{ucr}$	[-]				11	,0					
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}					
cone failure	edge distance	C _{cr,N}	[mm]				1,5	x h _{ef}					
Splitting	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210		
failure	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105		
Factor for pry-c	out failure	k ₈	[-]			1	,0			2	,0		
Installation fact	tor	Yinst	[-]				1	,0					
Concrete edge	failure												
Effective length	n in concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68		
Nominal outer screw	diameter of	d _{nom}	[mm]	(3		8			10			
TURB	O SMART cor	ncrete	screw										

Z84629.19 8.06.01-5/17

Characteristic values for static and quasi-static loading, sizes 6,8,10

Annex C1

TURBO SMAF	RT concrete screw size	Э			12			14		
Naminal amba	admont donth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} :	
Nominal embe	затент аерит		[mm]	65	85	100	75	100	115	
Steel failure fo	or tension and shear lo	ading								
Characteristic	tension load	$N_{Rk,s}$	[kN]		67,0			94,0		
Partial factor t	ension load	Y Ms,N	[-]	1,5						
Characteristic	shear load	$V_{Rk,s}$	[kN]	33,5 42,0 56,0						
Partial factor s	shear load	Y Ms,∨	[-]	1,25						
Ductility factor		k ₇	[-]			0,	,8			
Characteristic	bending load	$M^0_{Rk,s}$	[Nm]	113,0 185,0						
Pull-out failure	;									
Characteristic	cracked	$N_{Rk,p}$	[kN]	12,0	12,0 ≥ N ⁰ _{Rk.c}					
tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	16,0			≥ N° _{Rk,c}			
	C20/25					1,	12			
ncreasing actor for N _{Rk,p}	C30/37		_			1,:	22			
	C40/50	Ψε	[-]			1,4	41			
	C50/60					1,	58			
Concrete failu	re: Splitting failure, co	ncrete cone	failure a	and pry-ou	ut failure					
Effective embe	edment depth	h _{ef}	[mm]	50	67	80	58	79	92	
l. f	cracked	$k_1 = k_{cr}$	[-]			7.	,7			
k-factor	uncracked	$k_1 = k_{ucr}$	[-]			11	,0			
Concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}			
Splitting	spacing	S cr,Sp	[mm]	150	210	240	180	240	280	
failure	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140	
Factor for pry-	out failure	k ₈	[-]	1,0	2	,0	1,0	2	,0	
Installation fac	etor	Yinst	[-]			1,	,0			
Concrete edge	e failure									
Effective lengt	h in concrete	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92	
Nominal outer	lominal outer diameter of screw d _n		[mm]		12			14		

TURBO SMART concrete screw

Performances

Characteristic values for static and quasi-static loading, sizes 12 and 14

Annex C2

TURBO SMART concrete screw size			8	10	12	14		
Name in all and a short state of the		h _{nom}		h _{no}	om3			
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension and shear load								
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	4 5,0	67,0	94,0		
Partial factor tension load	Ϋ́Ms	[-]		1	,5			
Characteristic load	$V_{Rk,s,eq}$	[kN]	8,5	15,3	21,0	22,4		
Partial factor shear load	Ϋ́Ms	[-]	1,25					
With filling of the annular gap 1)	$\alpha_{\sf gap}$	[-]	-] 1,0					
Without filling of the annular gap	$\alpha_{\sf gap}$	[-]		0	,5			
Pull-out failure								
Characteristic tension load in cracked concrete C20/25	$N_{Rk,p,eq}$	[kN]	12,0		≥ N ⁰ _{Rk,c}			
Concrete cone failure								
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}			
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}			
Installation safety factor	Yinst	[-]		1	,0			
Concrete pry-out failure								
Factor for pry-out failure	k ₈	[-]	1,0		2,0			
1 dotor for pry-out failure								
Concrete edge failure Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92		

1) Filling of the annular gap according to annex B7, figure 7

TURBO SMART concrete screw

Performances

Seismic category C1 – Characteristic load values

Annex C3

TURBO SMART concrete screw size			8	10	12	14				
		h _{nom}		h _{nom3}						
Nominal embedment depth		[mm]	65	85	100	115				
Steel failure for tension										
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0	67,0	94,0				
Partial factor tension load	YMs	[-]		1	,5					
With filling of the annular gap	α_{gap}		1	,0						
Pull-out failure										
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5				
Steel failure for shear load										
Characteristic load	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7				
Partial factor shear load	YMs	[-]		1,	25					
With filling of the annular gap	α_{gap}	[-]		1	,0					
Concrete cone failure										
Effective embedment depth	h _{ef}	[mm]	52	68	80	92				
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}					
Spacing	S _{cr,N}	[mm]		3 x	(h _{ef}					
Installation safety factor	Yinst	[-]		1	,0					
Concrete pry-out failure										
Factor for pry-out failure	k ₈	[-]		2	,0					
Concrete edge failure										
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92				
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14				

1) A4 and HCR not su	ıtak	Ì١	e
----------------------	------	----	---

TURBO SMART concrete screw

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

TURBO SMART concrete screw size	;		8	10	12	14
		h _{nom}		h _{no}	om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension (hexagon he	ad type)					
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0	67,0	94,0
Partial factor tension load	Ϋ́Ms	[-]		1,	,5	
Pull-out failure (hexagon head type)						
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load (hexagor	head type)					
Characteristic load	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3
Partial factor shear load	YMs	[-]	-	•	25	•
Without filling of the annular gap	α_{gap}	[-]		0,	,5	
Steel failure for tension (countersun	k head type	e)				
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0		
Partial factor tension load	YMs	[-]	1,5			-
Pull-out failure (countersunk head ty	•	[[]		,5		
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4		-
Steel failure for shear load (counters	s unk head t	vpe)				
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7		
Partial factor shear load	YMs	[-]	-	25		_
Without filling of the annular gap	α _{gap}	[-]		,5		
Concrete cone failure	1 3-4					
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5		1
Spacing	S _{cr,N}	[mm]			h _{ef}	
Installation safety factor	Yinst	[-]			,0	
Concrete pry-out failure						
Factor for pry-out failure	k ₈	[-]		2	,0	
Concrete edge failure						
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92
Encouve length in controlete	1	F				

1) A4 and HCR not suitable

TURBO SMART concrete screw

Performances

Seismic category C2 – Characteristic load values without filled annular gap

Annex C5

TURBO S	SMART co	oncrete screv	v size	6	6		8			10			12			14	
			h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal e	embedme	nt depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11:
Steel failu	re for ten	sion and she				-							-	14.		100	
01001 12	R30	F _{Rk,s,fi30}	[kN]	T	,9	(K,S,II	2,4			4,4		7,3			10,3		
	R60	F _{Rk,s,fi60}	[kN]		,8		1,7			3,3			5,8			8,2	
	R90	F _{Rk,s,fi90}	[kN]		,6		1,1			2,3			4,2			5,9	
Charac- teristic	R120	F _{Rk,s,fi120}	[kN]	0	,4		0,7			1,7			3,4			4,8	
resis-	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0	,7		2,4			5,9			12,3	3		20,4	
tance	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0.	,6		1,8			4,5			9,7			15,9	
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0.	,5		1,2			3,0			7,0			11,6	
	R120 M ⁰ _{Rk,s,fi120} [Nm]		[Nm]	0.	,3		0,9			2,3		5,7		9,4			
Pull-out fa	ailure																
Charac- teristic	R30- R90	$N_{Rk,p,fi}$	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
resis- tance	R120	$N_{Rk,p,fi}$	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete	cone failu	ıre															
Charac- teristic	R30- R90	$N^0_{Rk,c,fi}$	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
resis- tance	R120	$N^0_{Rk,c,fi}$	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Edge dist	ance																
R30 bis R	₹120	C _{cr,fi}	[mm]							2	2 x h _{ef}						
In case of	f fire attac	k from more	than one	side	, the	minir	num	edge	dista	ınce s	shall	be ≥3	300m	ım.			
Spacing																	
R30 bis R	₹120	S _{cr,fi}	[mm]							4	x h _{ef}						
Pry-out fa	ullure																
	R120	k ₈	[-]	1		4	,0			١ ،	,0	1,0	١ ،	2,0	1,0	1 2	,0

TURBO SMART concrete screw

Performances

Fire exposure – characteristic values of resistance

Annex C6

T	DT /			•			_					
TURBO SMA	RT concrete scre	w size		6			8			10		
Nominal emb	edment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal emb	edifient deptif		[mm]	40	55	45	55	65	55	75	85	
Overeleed	tension load	Ν	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Cracked concrete	displacement	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
COTICICIE	concrete displacement		[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
Uncracked displacement	δ_{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0		
Concrete	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
TURBO SMA	RT concrete scre	w size						14				
Naminal amb			h _{nom}	h _{nom1}	h _{nom2}	h _{nc}	om3	h _{nom1}	h _{nom2}		h _{nom3}	
Nominal emb	edment depth		[mm]	65	85	10	00	75	100		115	
Onnalisad	tension load	N	[kN]	5,7	9,4	12	2,3	7,6	12,0		15,1	
Cracked concrete	displacement	δ_{N0}	[mm]	0,9	0,5	1,	0	0,5	0,8		0,7	
	displacement	δ _{N∞}	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0	
	tension load	N	[kN]	7,6	13,2	17	,2	10,6	16,9		21,2	
Uncracked	dianlacament	δ_{N0}	[mm]	1,0	1,1	1,	2	0,9	1,2		0,8	
concrete di	displacement				1,2	1,		0,9	1,2		1,0	

Table C8: Displacements under static and quasi-static shear load

TURBO SMA	TURBO SMART concrete screw size						8		10			
Naminal amb	Nominal embedment depth				h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal emb	· ·			40	55	45	55	65	55	75	85	
Cracked	shear load	٧	[kN]	3,3		8,6				16,2		
and		$\delta_{\lor 0}$	[mm]	1,	55	2,7			2,7			
uncracked concrete	displacement	δ_{\vee^∞}	[mm]	3,	1	4,1			4,3			

TURBO SMA	TURBO SMART concrete screw size						14			
Naminal amb	Nominal embedment depth				h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal emb	Nominal embedment depth			65	65 85 100			75 100 115		
Cracked	shear load	V	[kN]		20,0		30,5			
and					4,0		3,1			
					6,0			4,7	_	

TURBO SMART concrete screw Performances Displacements under static and quasi-static loads Annex C7

TURBO SMART concrete screw si	ze	8	10	12	14					
Name in all another due and all mile		h _{nom}	h _{nom3}							
Nominal embedment depth		[mm]	65	85	100	115				
Displacements under tension loads (hexagon head type)										
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16				
Displacement ULS	Displacement ULS $\delta_{N,eq(ULS)}$		1,74	1,36	2,36	4,39				
Displacements under shear loads (hexagon head type with hole clearance)										
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42				
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27				

Table C10: Seismic category C2 ¹⁾ – Displacements without filled annular gap according to annex B7, figure 5

TURBO SMART concrete screw size			8	10	12	14				
Naminal ambadmant donth		h _{nom}		h _n .	om3					
Nominal embedment depth		[mm]	65	85	100	115				
Displacements under tension loads (h	n exagon hea	d type)								
Displacement DLS	$\delta_{N,\text{eq}(\text{DLS})}$	[mm]	0,66	0,32	0,57	1,16				
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	4,39				
Displacements under tension loads (ountersunk	head ty	rpe)							
Displacement DLS	$\delta_{N,\text{eq}(\text{DLS})}$	[mm]	0,66	0,32						
Displacement ULS	$\delta_{N,\text{eq}(\text{ULS})}$	[mm]	1,74	1,36						
Displacements under shear loads (he	xagon head	type wit	th hole clearar	nce)						
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	4,21	4,71	4,42	5,60				
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	7,13	8,83	6,95	12,63				
Displacements under shear loads (countersunk head type with hole clearance)										
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	2,51	2,98						
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	7,76	6,25		-				

¹⁾ A4 and HCR not suitable

TURBO SMART concrete screw	
Performances Displacements under seismic loads	Annex C8