

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0957 of 22 November 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Friulsider Injection system KEM HYBRID for concrete
Product family to which the construction product belongs	Bonded anchor for use in concrete
Manufacturer	Friulsider S.p.A. Via Trieste 1 33048 SAN. GIOVANNI AL NATISONE ITALIEN
Manufacturing plant	Friulsider S.p.A. Plant 1 Germany
This European Technical Assessment contains	32 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601
This version replaces	ETA-16/0957 issued on 11 April 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0957 English translation prepared by DIBt

Page 2 of 32 | 22 November 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 32 | 22 November 2019

Specific Part

1 Technical description of the product

The "Friulsider Injection system KEM HYBRID for concrete" is a bonded anchor consisting of a cartridge with injection mortar KEM HYBRID and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load	See Annex		
(static and quasi-static loading)	C 1, C 2, C 3, C 5, C 7		
Characteristic resistance to shear load	See Annex		
(static and quasi-static loading)	C 1, C 4, C 6, C 8		
Displacements	See Annex		
(static and quasi-static loading)	C 9 to C 11		
Characteristic resistance and displacements for seismic	See Annex		
performance category C1 and C2	C 12 to C 17		
Durability	See Annex		
	B 1		

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 32 | 22 November 2019

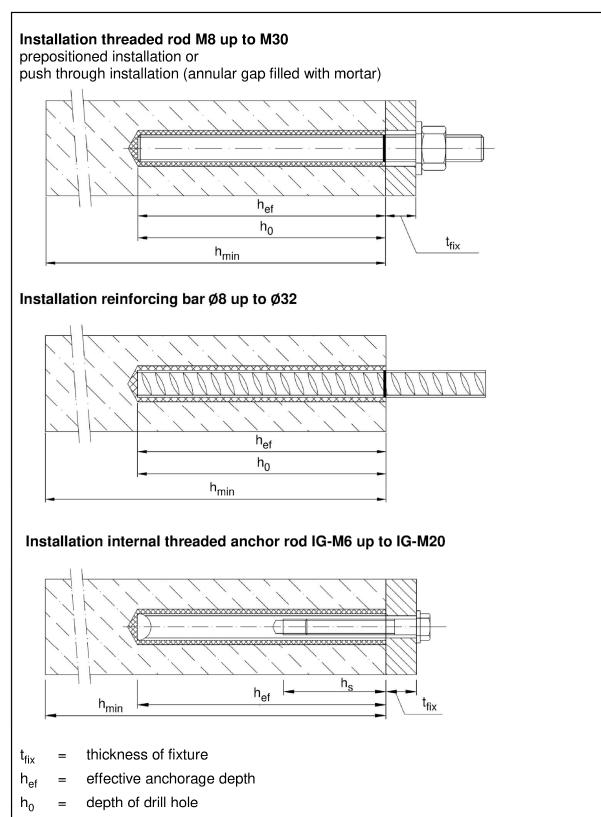
European Technical Assessment ETA-16/0957

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

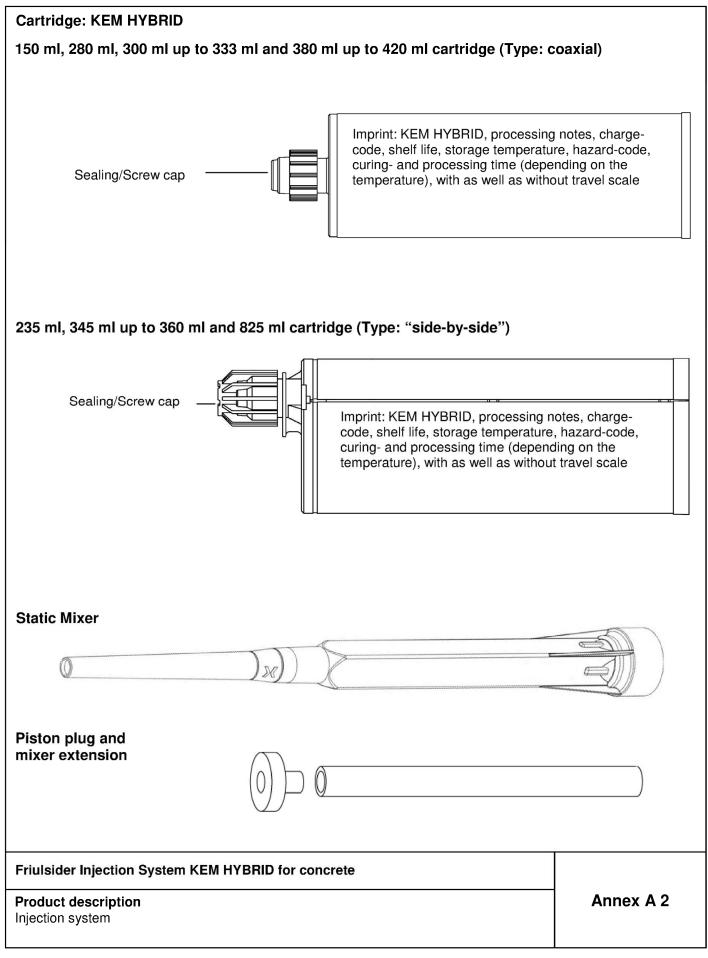
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

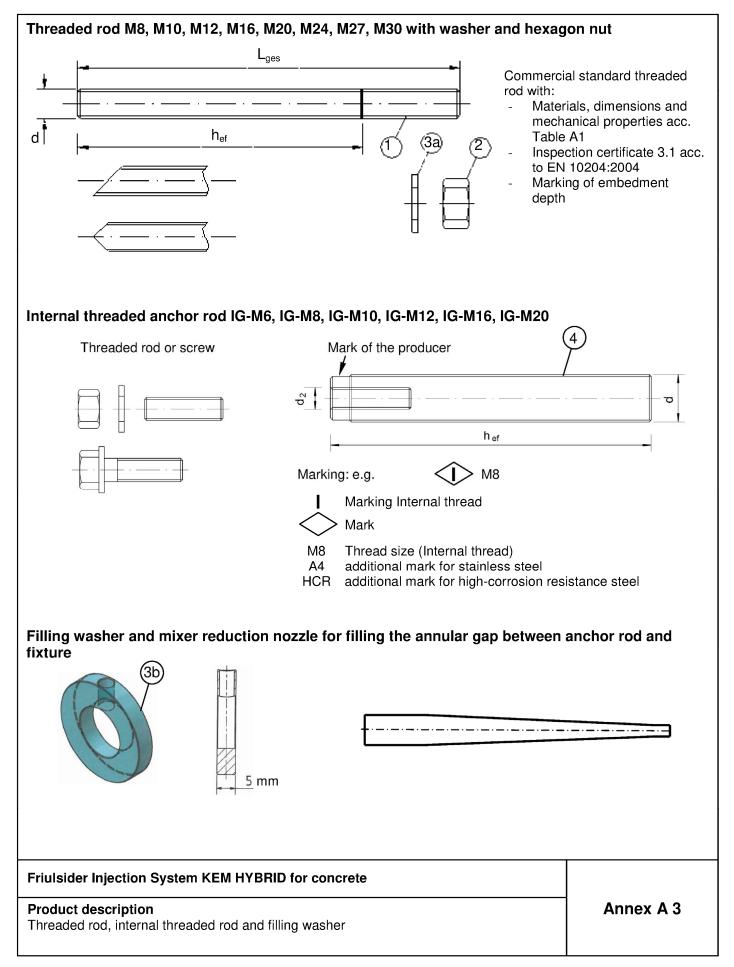
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 22 November 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider


 h_{min} = minimum thickness of member

Friulsider Injection System KEM HYBRID for concrete


Product description Installed condition

Annex A 1

	Designation	Material				
		acc. to EN 10087:1998				
		5 µm acc. to EN ISO		1999 or 2009 and EN ISO 10684:2	004 . AC:2000 or	
		45 μm acc. to EN ISO			004+AC.2009 01	
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
			46	$f_{uk} = 400 \text{ N/mm}^2$	$f_{vk} = 240 \text{ N/mm}^2$	A ₅ > 8%
				$f_{uk} = 400 \text{ N/mm}^2$	$f_{vk} = 320 \text{ N/mm}^2$	A ₅ > 8%
1	Threaded rod	acc. to		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%
		EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$	$f_{vk} = 400 \text{ N/mm}^2$	A ₅ > 8%
				$f_{\rm uk} = 800 \text{ N/mm}^2$	$f_{vk} = 640 \text{ N/mm}^2$	$A_5 \ge 12\%^{-3}$
			4	for threaded rod class 4.6	, ,	115 - 1270
2	Hexagon nut	acc. to	5	for threaded rod class 5.6		
		EN ISO 898-2:2012	8	for threaded rod class 8.8		
3a	Washer			alvanised or sherardized		
				ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 7	094:2000)
3b	Filling washer	Steel, zinc plated, hot-	dip ga	alvanised or sherardized		
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
4	Internal threaded anchor rod	acc. to	5.8	$f_{\rm uk} = 500 \text{ N/mm}^2$	$f_{vk} = 400 \text{ N/mm}^2$	A ₅ > 8%
		EN ISO 898-1:2013		$f_{\rm uk} = 800 \text{ N/mm}^2$	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ > 8%
Stai	niese steel A2 (Mat			/ 1.4567 or 1.4541, acc. to	,	1.5 2 0 /0
Stai	nless steel A4 (Mate	erial 1.4401 / 1.4404 / 1.	4571	/ 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-	EN 10088-1:2014)	
				Characteristic steel		
		Property class		ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
1	Threaded rod ¹⁾⁴⁾		50	ultimate tensile strength f _{uk} = 500 N/mm ²		
1	Threaded rod ¹⁾⁴⁾	acc. to	50 70	ultimate tensile strength	yield strength	fracture
1	Threaded rod ¹⁾⁴⁾			ultimate tensile strength f _{uk} = 500 N/mm ²	yield strength f _{yk} = 210 N/mm²	A ₅ ≥ 8%
1		acc. to EN ISO 3506-1:2009	70	ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$
1	Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾	acc. to EN ISO 3506-1:2009 acc. to	70 80 50 70	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$
		acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	70 80 50 70 80	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$	fracture $A_5 ≥ 8\%$ $A_5 ≥ 12\%^{-3}$ $A_5 ≥ 12\%^{-3}$
2	Hexagon nut ¹⁾⁴⁾	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1	70 80 50 70 80 .4307 .4404	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 4 / 1.4571 / 1.4362 or 1.457	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 78, acc. to EN 10088-1	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$:2014
2		acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529	70 80 50 70 80 .4307 .4404 or 1.4	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 4 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1:2	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 78, acc. to EN 10088-1 2014	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$:2014 :2014
2 3a	Hexagon nut ¹⁾⁴⁾ Washer	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2006	70 80 50 70 80 .4307 .4404 or 1.4 6, EN	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 4 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 78, acc. to EN 10088-1 2014	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$:2014 :2014
2 3a	Hexagon nut ¹⁾⁴⁾	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2000) Stainless steel A4, Hig	70 80 50 70 80 .4307 .4404 or 1.4 6, EN	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 4 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 78, acc. to EN 10088-1 2014	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$:2014 :2014 :2014 :2014 :2014
2 3a	Hexagon nut ¹⁾⁴⁾ Washer	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4301 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2006	70 80 50 70 80 .4307 .4404 or 1.4 6, EN h corr	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 V 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1:2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 2014 093:2000 or EN ISO 7 Characteristic steel yield strength	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$:2014 :2014 :2014 094:2000) Elongation at fracture
2 3a 3b	Hexagon nut ¹⁾⁴⁾ Washer Filling washer	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4301 / 1 HCR: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2000) Stainless steel A4, Hig Property class acc. to	70 80 50 70 80 .4307 .4404 or 1.4 6, EN h corr	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 4 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 78, acc. to EN 10088-1 2014 093:2000 or EN ISO 7 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-33}$ $A_5 \ge 12\%^{-33}$:2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2015 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2015 :2016 :2017 :2018 :2014 :2014 :2015 :2016 :2017 :2018 :2019
2 3a	Hexagon nut ¹⁾⁴⁾ Washer Filling washer	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4301 / 1 HCR: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2006) Stainless steel A4, Hig Property class	70 80 50 70 80 .4307 .4404 or 1.4 6, EN h corr	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 V 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1:2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 2014 093:2000 or EN ISO 7 Characteristic steel yield strength	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$:2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014
2 3a 3b 4	Hexagon nut ¹⁾⁴⁾ Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 8 for IG-M20 only prope	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2000 Stainless steel A4, Hig Property class acc. to EN ISO 3506-1:2009 80 for threaded rods up to erty class 50	70 80 50 70 80 .4307 .4404 or 1.4 6, EN h corr 50 70 M24	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 7 / 1.4311 / 1.4567 or 1.454 7 / 1.4311 / 1.4567 or 1.454 7 / 1.4571 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ and Internal threaded anchometers	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ for rods up to IG-M16,	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-33}$ $A_5 \ge 12\%^{-33}$:2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2015 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2015 :2016 :2017 :2018 :2014 :2014 :2015 :2016 :2017 :2018 :2019
2 3a 3b 4 1) 2) 3)	Hexagon nut ¹⁾⁴⁾ Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 8 for IG-M20 only property $A_5 > 8\%$ fracture elon	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2000 Stainless steel A4, Hig Property class acc. to EN ISO 3506-1:2009 80 for threaded rods up to erty class 50 gation if <u>no</u> requirement for	70 80 50 70 80 .4307 .4404 or 1.4 6, EN h corr 50 70 M24	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 7 / 1.4311 / 1.4567 or 1.454 7 / 1.4311 / 1.4567 or 1.457 565, acc. to EN 10088-1:2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 2014 093:2000 or EN 1SO 7 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ or rods up to IG-M16,	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-33}$ $A_5 \ge 12\%^{-33}$:2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2015 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2015 :2016 :2017 :2018 :2014 :2014 :2015 :2016 :2017 :2018 :2019
2 3a 3b 4 1) 2) 3) 4)	Hexagon nut ¹⁾⁴⁾ Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 8 for IG-M20 only property A ₅ > 8% fracture elon Property class 80 onl	acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 HCR: Material 1.4529 ((e.g.: EN ISO 887:2000 Stainless steel A4, Hig Property class acc. to EN ISO 3506-1:2009 80 for threaded rods up to erty class 50 gation if <u>no</u> requirement for	70 80 50 70 80 .4307 .4404 or 1.4 6, EN h corr 50 70 M24 or perf d high	ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod class 50 for threaded rod class 70 for threaded rod class 80 7 / 1.4311 / 1.4567 or 1.454 1.4311 / 1.4567 or 1.454 1.4371 / 1.4362 or 1.457 565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7 rosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ and Internal threaded anchor formance category C2 exists a corrosion resistance steel	yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 11, acc. to EN 10088-1 2014 093:2000 or EN 1SO 7 Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ or rods up to IG-M16,	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$:2014 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2015 :2014 :2014 :2014 :2014 :2014 :2015 :2016 :2017 :2018 :2019 :2010 :2010

Beir	Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32									
	h _{ef}									
◀	Tet	▶								
	• Minimum value of related rip area f _{R,min} ac									
	 Rib height of the bar shall be in the range (d: Nominal diameter of the bar; h: Rip hei 									
Tab	le A2: Materials									
		N								
Part		Material								
Reinf	orcing bars	1								
1	Rebar	Bars and de-coiled rods class B or C f _{yk} and k according to NDP or NCL of EN	J 1992-1-1/NA							
	EN 1992-1-1:2004+AC:2010, Annex C	$f_{uk} = f_{tk} = k \cdot f_{yk}$								
		1								
			F							
Friu	sider Injection System KEM HYBRID for co	oncrete								
	luct description		Annex A 5							
	rials reinforcing bar									

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- · Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Friulsider Injection System KEM HYBRID for concrete

Intended Use Specifications

Table B1: Installation parameters for threaded rod												
Anchor size			M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of element	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30	
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35	
Effective embedmer	at dopth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	
Effective embedmer	it depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	
Diameter of	Prepositioned i		[mm]	9	12	14	18	22	26	30	33	
the fixture ¹⁾	Push through i	Push through installation d _f		12	14	16	20	24	30	33	40	
Maximum torque mo	oment	T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300	
Minimum thickness	nimum thickness of member h_{min} [mm] $h_{ef} + 30 \text{ mm}$ $\geq 100 \text{ mm}$ $h_{ef} + 2d_0$											
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140	
Minimum edge dista	ince	c _{min}	[mm]	35	40	45	50	60	65	75	80	
clearance hole in the fixture ¹⁾ Maximum torque mo Minimum thickness Minimum spacing	Push through i oment of member	nstallation d _f nstallation d _f T _{inst} ≤ h _{min} S _{min}	[mm] [mm] [Nm] [mm] [mm]	12 10 h _e ≥ 40	14 20 _f + 30 m : 100 mr 50	16 40 ²⁾ m m 60	20 60 75	24 100 95	30 170 n _{ef} + 2d ₀ 115	33 250 125		

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.
 ²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

d =						Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm				h _{ef}	+ 2d ₀			
s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85
	d ₀ h _{ef,min} h _{ef,max} h _{min} S _{min} C _{min}	d0[mm]hef,min[mm]hef,max[mm]hmin[mm]Smin[mm]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

¹⁾ both nominal drill hole diameter can be used

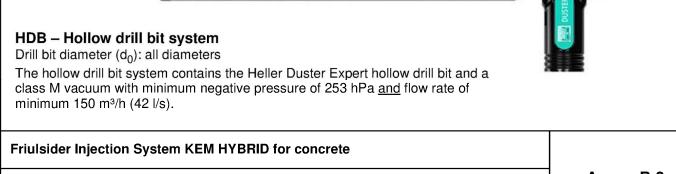
Table B3: Installation parameters for Internal threaded rod

Anchor size					IG-M12	IG-M16	IG-M20
d ₂	[mm]	6	8	10	12	16	20
$d = d_{nom}$	[mm]	10	12	16	20	24	30
d ₀	[mm]	12	14	18	22	28	35
h _{ef,min}	[mm]	60	70	80	90	96	120
		200	240	320	400	480	600
d _f	[mm]	7	9	12	14	18	22
T _{inst} ≤	[Nm]	10	10	20	40	60	100
l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
h _{min}	[mm]				h _{ef} +	- 2d ₀	
s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance C _{min} [mm]				50	60	65	80
	$d = d_{nom}$ d_0 $h_{ef,min}$ $h_{ef,max}$ d_f $T_{inst} \leq$ I_{IG} h_{min}	$d = d_{nom} [mm]$ $d_0 [mm]$ $h_{ef,min} [mm]$ $h_{ef,max} [mm]$ $d_f [mm]$ $T_{inst} \leq [Nm]$ $I_{IG} [mm]$ $h_{min} [mm]$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Friulsider Injection System KEM HYBRID for concrete

Intended Use

Installation parameters


Table B4: Parameter cleaning and setting tools													
	6666668886668886		8		19999999999 ⁹⁹								
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CD		h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and u of piston plug					
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		Ļ		1			
M8	8		10	SC10	11,5	10,5		•					
M10	8 / 10	IG-M6	12	SC12	13,5	12,5		No olug	roquirod				
M12	10 / 12	IG-M8	14	SC14	15,5	14,5		No plug	required				
	12		16	SC16	17,5	16,5		_					
M16	14	IG-M10	18	SC18	20,0	18,5	VS18						
	16		20	SC20	22,0	20,5	VS20						
M20		IG-M12	22	SC22	24,0	22,5	VS22						
	20		25	SC25	27,0	25,5	VS25	h _{ef} >	h _{ef} >				
M24		IG-M16	28	SC28	30,0	28,5	VS28			all			
M27			30	SC30	31,8	30,5	VS30	250 mm	250 mm				
	24 / 25		32	SC32	34,0	32,5	VS32						
M30	28	IG-M20	35	SC35	37,0	35,5	VS35						
	32		40	SC40	43,5	40,5	VS40						

MAC - Hand pump (volume 750 ml) Drill bit diameter (d_0) : 10 mm to 20 mm Drill hole depth (h_0) : < 10 d_s Only in non-cracked concrete

CAC - Rec. compressed air tool (min 6 bar) Drill bit diameter (d_0) : all diameters

Intended Use Cleaning and setting tools

Drilling of the bore	hole							
	 Ia. Hammer (HD) or compressed air drilling (CD) Drill a hole into the base material to the size and embedment deselected anchor (Table B1, B2, or B3). Proceed with Step 2. In case of aborted drill hole, the drill hole shall be filled with mo 							
	1b. Hollow drill bit system (HDB) (see Annex B 3) Drill a hole into the base material to the size and embedment dep selected anchor (Table B1, B2, or B3). This drilling system remov the bore hole during drilling (all conditions). Proceed with Step 3. In case of aborted drill hole, the drill hole shall be filled with mortal	ves the dust and cleans						
	Attention! Standing water in the bore hole must be removed before	ore cleaning.						
IAC: Cleaning for c incracked concret	Bry and wet bore holes with diameter $d_0 ≤ 20$ mm and bore hole dep e only!)	th h₀ ≤ 10d _{nom}						
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole c (Annex B 3) a minimum of four times. 	lean by a hand pump						
	 Check brush diameter (Table B4). Brush the hole with an appropriate of the second secon							
4x	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four time						
AC: Cleaning for d	ry, wet and water-filled bore holes with all diameter in uncracked a	and cracked concrete						
2x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of two times stream is free of noticeable dust. If the bore hole ground is not reacted extension must be used.	until return air						
	 2b. Check brush diameter (Table B4). Brush the hole with an appropriate of the stress o							
2x	2c. Finally blow the hole clean again with compressed air (min. 6 bar minimum of two times until return air stream is free of noticeable of ground is not reached an extension must be used.							
dispensing the mo	bore hole has to be protected against re-contamination in an appr rtar in the bore hole. If necessary, the cleaning has to be repeated rtar. In-flowing water must not contaminate the bore hole again.							
Friulsider Injection	System KEM HYBRID for concrete							
ntended Use		Annex B 4						

Installation instruc	tions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	-
→ hef →	4. Prior to inserting the anchor rod into the filled bore hole, the positio depth shall be marked on the anchor rods.	n of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a strokes and discard non-uniformly mixed adhesive components un consistent grey colour.	
	6. Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static hole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe to given in Table B5.	mixing nozzle as the anchor hole is not
	 Piston plugs and mixer nozzle extensions shall be used according following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 250mm
	8 Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de The anchor shall be free of dirt, grease, oil or other foreign materia	epth is reached.
	9. After inserting the anchor, the annular gab between anchor rod and push through installation additionally also the fixture, must be complif excess mortar is not visible at the top of the hole, the requirement application has to be renewed. For overhead application the anchor wedges).	blete filled with mortar. It is not fulfilled and the
+20°C	10. Allow the adhesive to cure to the specified time prior to applying ar not move or load the anchor until it is fully cured (attend Table B5).	
Tinst.	After full curing, the add-on part can be installed with up to the max B3) by using a calibrated torque wrench. In case of prepositioned i gab between anchor and fixture can be optional filled with mortar. washer by the filling washer and connect the mixer reduction nozzl The annular gap is filled with mortar, when mortar oozes out of the	nstallation the annular Therefor substitute the e to the tip of the mixer.
Friulsider Injection	System KEM HYBRID for concrete	
Intended Use		Annex B 5

Installation instructions (continuation)

Electronic copy of the ETA by DIBt: ETA-16/0957

Table B5:	Table B5: Maximum working time and minimum curing time									
Concrete temperature			Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete					
- 5 °C	to	- 1 °C	50 min	5 h	10 h					
0 °C	to	+ 4 °C	25 min	3,5 h	7 h					
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h					
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h					
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min					
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min					
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min					
Cartridge	e temp	perature		+5°C to +40°C						

Friulsider Injection System KEM HYBRID for concrete

Intended Use Curing time

Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu	re ¹⁾		•							
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Cł	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γMs,N	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γMs,N	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8				
	ainless steel A4 and HCR, class 80	γMs,N	[-]				1,6	6			
Cł	naracteristic shear resistance, Steel failure			1							. <u> </u>
F	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Without lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
ont l	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
/itho	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	-	-
<	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
ith lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Vit	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
Cł	haracteristic shear resistance, Partial facto	or ²⁾	1	•	1		I		I		
	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3	_		

²⁾ in absence of national regulation

Friulsider Injection System KEM HYBRID for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Table C2: Characteristic values for Concrete cone failure and Splitting with all kind of action

Anchor size				All Anchor types and sizes
Concrete cone fa	ailure			
Non-cracked con	crete	k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		·	·	
	h/h _{ef} ≥2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

Friulsider Injection System KEM HYBRID for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

		d			M8	M10	M12	M16	M20	M24	M27	M30
	eristic tension resi	stance	N _{Rk,s}	[kN]			Α _s ・f _ι	_{Jk} (or s	ee Tab	ole C1)		
Partial fa	actor		γ _{Ms,N}	[-]				see Ta	able C1			
	ed pull-out and c											
Characte	eristic bond resista	ance in non-crac	ked concrete (C20/25						1		
ature e	l: 80°C/50°C	Dry, wet	τ _{Rk,ucr}	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range	II: 120°C/72°C	concrete and flooded bore	^τ Rk,ucr	[N/mm ²]	15	14	14	13	12	12	11	11
•	III: 160°C/100°C	hole	τ _{Rk,ucr}	[N/mm ²]	12	11	11	10	9,5	9,0	9,0	9,0
Characte	eristic bond resista	ance in cracked o	concrete C20/2	25			1			1	1	
ature e	I: 80°C/50°C	Dry, wet	τ _{Rk,cr}	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	II: 120°C/72°C	concrete and flooded bore	τ _{Rk,cr}	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Ter	III: 160°C/100°C	hole	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
	on factor ψ^0_{sus} in	cracked and nor	n-cracked con	crete C20/25								
	I: 80°C/50°C	Dry, wet						0,	79			
nperati range	II: 120°C/72°C	concrete and flooded bore	ψ^0_{sus}	[-]				0,	75			
Ter	III: 160°C/100°C	hole							66			
			C25/30						02			
Inoroacii	na factors for cons	roto	C30/37					,	04			
Ψ _C	ng factors for cond		C35/45 C40/50					,	07 08			
τC			C45/55						09			
			C50/60						10			
Concret	te cone failure							,	_			
	R	elevant paramet	er					see Ta	able C2)		
Splitting												
		elevant paramet	er					see Ta	able C2			
Installat	tion factor	1										
for dry a	and wet concrete	MAC CAC		1 1			1,2	1	,0	1	NPA	
		HDB	γinst	[-]				1	,2			
for flood	ed bore hole	CAC						1	,4			

Table C4: Characteristic va	lues of	shea	r loads	s unde	er stat	ic and	quas	i-statio	c action	
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • [•]	W _{el} ∙ f _{uk}	(or see	Table C	21)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	_f	[mm]		rr	nin(h _{ef} ; 1	2 • d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Performances

Characteristic values of shear loads under static and quasi-static action

Anchor	r size internal thre	eaded anch	or rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel fa	ailure ¹⁾										
Charact	teristic tension resi	stance,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, s	trength class		8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial f	factor, strength cla	ss 5.8 and 8	.8	γ _{Ms,N}	[-]		•	. 1	,5		•
	teristic tension resi			N _{Rk,s}	[kN]	14	26	41	59	110	124
	4 and HCR, Streng	th class 70	2)	"Rk,s		14	20		- 59	110	
Partial f				γMs,N	[-]			1,87			2,86
	ned pull-out and o				0.00/05						
	teristic bond resista	ance in non- T	cracked	concrete	e C20/25			1			1
:ure	I: 80°C/50°C			^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13
Temperature range	II: 120°C/72°C	Dry, wet co and flooded bo		τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11
•	III: 160°C/100°C			^τ Rk,ucr	[N/mm ²]	11	11	10	9,5	9,0	9,0
Charact	teristic bond resista	ance in crac	ked cond	crete C20)/25		1				
ature e	I: 80°C/50°C	Dry, wet co	oncrete	τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0
Temperature range	II: 120°C/72°C	and flooded bo		^τ Rk,cr	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0
-	III: 160°C/100°C			^τ Rk,cr	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5
Redukti	ion factor ψ ⁰ sus in	cracked an	d non-cra	acked co	ncrete C20)/25					
	l: 80°C/50°C							0,	79		
Temperature range	II: 120°C/72°C	Dry, wet co and		Ψ^0_{sus}	[-]			0,	75		
Tem	III: 160°C/100°C	flooded bo	re noie					0,	66		
					25/30				02		
					30/37				04		
	ing factors for cond	crete			35/45				07		
Ψc					40/50 45/55				08 09		
					50/60			,	10		
Concre	ete cone failure			00	0,00			,	10		
Relevar	nt parameter							see Ta	able C2		
Splittin	ig failure										
Relevar	nt parameter							see Ta	able C2		
Installa	ation factor	1		1							
		MAC		_			1,2			NPA	
for dry a	and wet concrete	CAC		γ _{inst}	[-]				,0		
for floor	dad bara bala	HDB		-					<u>,2</u>		
¹⁾ Faste The c	ded bore hole enings (incl. nut and characteristic tensio G-M20 strength clas	n resistance	for steel					erty class of			d rod.
	ider Injection Sy	stem KEM	HYBRII	D for co	ncrete					Annex (C 5

Anchor size for internal threade	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹⁾	I						•		
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]		•	1	1,25	•	1
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γMs,V	[-]		•	1,56	•	•	2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾		•	•						
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]		•		1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Partial factor		γMs,V	[-]		•	1,56		•	2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
nstallation factor		γinst	[-]				1,0		
Concrete edge failure		1	1						
Effective length of fastener		۱ _f	[mm]		min	(h _{ef} ; 12 • c	h _{nom})		min(h _{ef} ; 300mr
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
nstallation factor		γinst	[-]			1	1,0	I	1
 ¹⁾ Fastenings (incl. nut and washe The characteristic tension resist ²⁾ For IG-M20 strength class 50 is 	ance for	comply wit	h the ap re is vali	propriate d for the i	naterial ar	nd property eaded rod	class of th	ne internal stening ele	threaded rod. ement.
Friulsider Injection System H	KEW H	BRID fo	r conci	rete					
Performances								Ar	nnex C 6

Performances

Characteristic values of shear loads under static and quasi-static action

Tabl	e C7: Charac	teristic va	lues of te	ension le	oads	und	er sta	atic a	nd q	uasi	-stati	ic act	tion	
Ancho	or size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel f	ailure													
Charao	cteristic tension resi	istance	N _{Rk,s}	[kN]				•	A _s ·	f _{uk} ¹⁾				
Cross	section area		A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial	factor		γMs,N	[-]					1,	4 ²⁾				
	ined pull-out and o													
	cteristic bond resist		racked conc T				1			1	1			
Temperature range	I: 80°C/50°C	Dry, wet concrete	^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
mpera	II: 120°C/72°C	and flooded	^τ Rk,ucr	[N/mm ²]	13	12	12	12	12	11	11	11	11	11
Te	III: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm ²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Charao	cteristic bond resist	ance in crack	ed concrete	C20/25						-				
ature	I: 80°C/50°C	Dry, wet concrete	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	II: 120°C/72°C	and flooded	^τ Rk,cr	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
-	III: 160°C/100°C	bore hole	^τ Rk,cr	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Reduk	tion factor ψ^0_{sus} in	cracked and	non-cracked	d concrete	C20/2	5								
ature e	I: 80°C/50°C	Dry, wet concrete							0,	79				
Temperature range	II: 120°C/72°C	and flooded	Ψ^0_{sus}	[-]					0,	75				
Ter	III: 160°C/100°C	bore hole							0,	66				
			C25,							02				
Inoroo	aing factors for con	arata	C30,							04				
ψ _c	sing factors for cond	crete	C35,							07 08				
			C45,							09				
			C50,							10				
Concr	ete cone failure				1									
	ant parameter								see Ta	able C	2			
Splitti					1									
	ant parameter								see la	able C2	2			
Install	ation factor	MAC					1,2					NPA		
for dry	and wet concrete	CAC	-				۲,۲		1	.0				
		HDB	γinst	[-]						, <u>e</u> ,2				
for floc	ded bore hole	CAC								,4				
¹⁾ f _{uk} s ²⁾ in a	hall be taken from th bsence of national re	ne specification egulation	ns of reinforci	ing bars										
Perfo	sider Injection Sy rmances acteristic values of te					on					Δ	nne	к С 7	

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm									1			
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,50	• A _s •	f _{uk} ¹⁾			
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm			·									
Characteristic bending moment	M ⁰ Rk,s	[Nm]					1.2 •	w _{el} •	$f_{uk}^{(1)}$			
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	ŶMs,V	[-]						1,5 ²⁾				
Concrete pry-out failure	·	·										
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure	·											
Effective length of fastener	۱ _f	[mm]		1	nin(h _e	_{ef} ; 12 •	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]						1,0	-			
 ¹⁾ f_{uk} shall be taken from the specifica ²⁾ in absence of national regulation 	ations of reinfo	rcing bars										

Friulsider Injection System KEM HYBRID for concrete

Performances

Characteristic values of shear loads under static and quasi-static action

$\begin{array}{l} \delta_{N0} \mbox{-factor} \\ \delta_{N\infty} \mbox{-factor} \\ \delta_{N0} \mbox{-factor} \\ \delta_{N\infty} \mbox{-factor} \\ \delta_{N0} \mbox{-factor} \\ \delta_{N0} \mbox{-factor} \\ \end{array}$	static and quasi [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] ic and quasi-stat [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	0,031 0,040 0,032 0,042 0,121 0,124	0,032 0,042 0,034 0,044 0,126 0,129	0,034 0,044 0,035 0,045 0,131 0,135	0,037 0,047 0,038 0,049 0,142	0,039 0,051 0,041 0,053 0,153	0,042 0,054 0,044 0,056	0,044 0,057 0,046 0,059	0,046 0,060 0,048 0,062
$\begin{split} & \delta_{N\infty}\text{-}\text{factor} \\ & \delta_{N0}\text{-}\text{factor} \\ & \delta_{N0}\text{-}\text{factor} \\ & \delta_{N0}\text{-}\text{factor} \\ & \delta_{N0}\text{-}\text{factor} \\ & 5 \text{ under stat} \\ & \delta_{N0}\text{-}\text{factor} \\ & $	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] ic and quasi-stat [mm/(N/mm ²)] [mm/(N/mm ²)]	0,040 0,032 0,042 0,121 0,124 ic action	0,042 0,034 0,044 0,126 0,129	0,044 0,035 0,045 0,131	0,047 0,038 0,049	0,051 0,041 0,053	0,054 0,044 0,056	0,057 0,046	0,060 0,048
$\begin{array}{l} \delta_{N0} \mbox{-}factor \\ \delta_{N0} \mbox{-}factor \\ \delta_{N0} \mbox{-}factor \\ \hline \delta_{N0} \mbox{-}factor \\ \hline \hline \mbox{-}factor \\ \hline \delta_{N0} \mbox{-}factor \\ \delta_{N0} \mbox{-}factor \\ \delta_{N0} \mbox{-}factor \\ \hline \delta_{N0} \mbox{-}factor \\ \hline \delta_{N0} \mbox{-}factor \\ \hline \delta_{N0} \mbox{-}factor \\ \hline \end{array}$	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] ic and quasi-stat [mm/(N/mm ²)] [mm/(N/mm ²)]	0,032 0,042 0,121 0,124 ic action	0,034 0,044 0,126 0,129	0,035 0,045 0,131	0,038 0,049	0,041 0,053	0,044 0,056	0,046	0,048
$\delta_{N\infty}$ -factor δ_{N0} -factor $\delta_{N\infty}$ -factor 5 under stat δ_{N0} -factor $\delta_{N\infty}$ -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor	[mm/(N/mm ²)] [mm/(N/mm ²)] [mm/(N/mm ²)] ic and quasi-stat [mm/(N/mm ²)] [mm/(N/mm ²)]	0,042 0,121 0,124 ic action	0,044 0,126 0,129	0,045 0,131	0,049	0,053	0,056		
$\begin{array}{l} \delta_{N0} \text{-factor} \\ \delta_{N\infty} \text{-factor} \\ \hline \textbf{5 under stat} \\ \hline \delta_{N0} \text{-factor} \\ \delta_{N\infty} \text{-factor} \\ \hline \delta_{N0} \text{-factor} \\ \hline \delta_{N0} \text{-factor} \\ \hline \delta_{N\infty} \text{-factor} \end{array}$	[mm/(N/mm ²)] [mm/(N/mm ²)] ic and quasi-stat [mm/(N/mm ²)] [mm/(N/mm ²)]	0,121 0,124 ic action	0,126 0,129	0,131				0,059	0.000
$\delta_{N\infty}$ -factor 5 under stat δ_{N0} -factor $\delta_{N\infty}$ -factor δ_{N0} -factor δ_{N0} -factor $\delta_{N\infty}$ -factor	[mm/(N/mm ²)] ic and quasi-stat [mm/(N/mm ²)] [mm/(N/mm ²)]	0,124 ic action	0,129		0,142	0.153			0,064
δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor	ic and quasi-stat [mm/(N/mm ²)] [mm/(N/mm ²)]	ic action		0.135		•,•••	0,163	0,171	0,17
δ_{N0} -factor $\delta_{N\infty}$ -factor δ_{N0} -factor $\delta_{N\infty}$ -factor	[mm/(N/mm ²)] [mm/(N/mm ²)]			-,	0,146	0,157	0,168	0,176	0,184
$\delta_{N\infty}$ -factor δ_{N0} -factor $\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081							
δ_{N0} -factor $\delta_{N\infty}$ -factor	,1		0,083	0,085	0,090	0,095	0,099	0,103	0,10
$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
		0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,11
δ _{No} -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,14
NU Martin	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41
$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
		-			-	MOO	MOA	MOZ	МЗС
	000/05					IVIZU	11/2-4	IVIZ I	INISC
			1	1	1				
									0,03
-factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
	cements d	t: action bond stress for cements under shear l d d concrete C20/25 under sta factor [mm/kN] factor [mm/kN] lacement	τ: action bond stress for tension cements under shear load ²⁾ (d M8 d concrete C20/25 under static and q factor [mm/kN] 0,06 factor [mm/kN] 0,09	τ: action bond stress for tension cements under shear load ²⁾ (thread d M8 M10 d concrete C20/25 under static and quasi-static factor [mm/kN] 0,06 0,06 factor [mm/kN] 0,09 0,08 lacement Image: static stat	τ: action bond stress for tension cements under shear load ²⁾ (threaded rod d M8 M10 M12 d concrete C20/25 under static and quasi-static action factor [mm/kN] 0,06 0,06 0,05 factor [mm/kN] 0,09 0,08 0,08 lacement M8 M10 M12	t: action bond stress for tension cements under shear load ²⁾ (threaded rod) d M8 M10 M12 M16 d concrete C20/25 under static and quasi-static action factor [mm/kN] 0,06 0,06 0,05 0,04 factor [mm/kN] 0,09 0,08 0,08 0,06 lacement	τ: action bond stress for tension cements under shear load ²⁾ (threaded rod) d M8 M10 M12 M16 M20 d concrete C20/25 under static and quasi-static action factor [mm/kN] 0,06 0,06 0,05 0,04 0,04 factor [mm/kN] 0,09 0,08 0,08 0,06 0,06 lacement	τ: action bond stress for tension cements under shear load ²⁾ (threaded rod) d M8 M10 M12 M16 M20 M24 d concrete C20/25 under static and quasi-static action factor [mm/kN] 0,06 0,06 0,05 0,04 0,04 0,03 factor [mm/kN] 0,09 0,08 0,08 0,06 0,06 0,05 lacement	t: action bond stress for tension cements under shear load ²⁾ (threaded rod) d M8 M10 M12 M16 M20 M24 M27 d concrete C20/25 under static and quasi-static action factor [mm/kN] 0,06 0,06 0,05 0,04 0,04 0,03 0,03 factor [mm/kN] 0,09 0,08 0,08 0,06 0,06 0,05 0,05 lacement

Performances

Displacements under static and quasi-static action (threaded rods)

Anchor size Inter	nal threaded rod		1	G-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked cond	crete C20/25 und	er static and q	uasi-stat	ic actior	ו				
Temperature ran	ae I: δ _{N0} -factor	[mm/(N/r	nm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	δ _{N∞} -facto		nm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature ran	ge II: δ _{N0} -factor	[mm/(N/r	nm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°C	δ _{N∞} -facto	r [mm/(N/r	nm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature rang	je III: δ _{N0} -factor	[mm/(N/r	nm²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°C	δ _{N∞} -facto	r [mm/(N/r	nm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete			-static ac	tion		1	1	1	
Temperature ran		- `	nm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	δ _{N∞} -facto		mm²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature rang			nm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	δ _{N∞} -facto	۲ [mm/(N/r	nm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature rang			nm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	δ _{N∞} -facto	r [mm/(N/r	mm²)]	0,330	0,340	0,358	0,377	0,396	0,424
$δ_{N0} = \delta_{N0}$ -factol $\delta_{N\infty} = \delta_{N\infty}$ -facto Table C12: Ε			bond stres			readed r	od)		
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12:	r , Displacements			²⁾ (Inte	ernal the		od) IG-M12	IG-M16	IG-M20
$\delta_{N\infty} = \delta_{N\infty}$ -facto Table C12: E Anchor size Intern	r τ; Displacements nal threaded rod	s under she	ear load IG-M6	²⁾ (Inte	ernal thr M8 10	G-M10	-	IG-M16	IG-M20
$\delta_{N\infty} = \delta_{N\infty} \text{-facto}$	r τ; Displacements nal threaded rod	s under she	ear load IG-M6	²⁾ (Inte IG- nd quas	ernal thi -M8 10 i-static ac	G-M10	-	IG-M16 0,04	IG-M20 0,04
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: E Anchor size Intern Non-cracked and All temperature ranges ²⁾ Calculation of t	r $\cdot \tau$; Displacements hal threaded rod cracked concrete δ_{V0} -factor $\delta_{V\infty}$ -factor he displacement	s under she e C20/25 unde [mm/kN] [mm/kN]	ear load IG-M6 r static ar 0,07 0,10	1 ²⁾ (Inte IG- Ind quas	ernal thi -M8 IG i-static ac 06	G-M10	IG-M12		
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: E Anchor size Intern Non-cracked and All temperature ranges	$r arrow \tau;$ Displacements hal threaded rod cracked concrete δ_{V0} -factor $\delta_{V\infty}$ -factor he displacement $r arrow V; ext{V}; ext{V};$	s under she c20/25 unde [mm/kN]	ear load IG-M6 r static ar 0,07 0,10	1 ²⁾ (Inte IG- Ind quas	ernal thi -M8 IG i-static ac 06	G-M10 etion 0,06	IG-M12 0,05	0,04	0,04

Z71622.19

Displacements under static and quasi-static action (Internal threaded anchor rod)

Anchor size rein	forcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked co	ncrete C20/25	under static ar	d quas	i-static	action	1	1	1	1	1	1	
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concret	te C20/25 und	er static and qu	iasi-sta	tic actio	on							
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449
$^{1)}$ Calculation o $\delta_{N0} = \delta_{N0}\text{-fact}$ $\delta_{N\infty} = \delta_{N\infty}\text{-fact}$ Table C14:	for $\cdot \tau$;	ent τ: action bond ts under shear I			n							
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-fact} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-fac} \end{split}$	or τ; tor τ; Displacemen	τ: action bond	oad ²⁾ (r	ebar)		Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-fact}\\ \delta_{N\infty} &= \delta_{N\infty}\text{-fac} \end{split}$ Table C14:	or τ; tor τ; Displacemen forcing bar	τ: action bond ts under shear l	oad ²⁾ (r Ø 8	ebar) Ø 10		Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-fact}\\ \delta_{N\infty} &= \delta_{N\infty}\text{-fac} \end{split}$ Table C14: Anchor size rein For concrete C2	or τ; tor τ; Displacemen forcing bar	τ: action bond ts under shear l atic and quasi-s	oad ²⁾ (r Ø 8	ebar) Ø 10			Ø 16	Ø 20 0,04	Ø 24 0,03	Ø 25 0,03	Ø 28 0,03	Ø 32 0,03
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-fact}\\ \delta_{N\infty} &= \delta_{N\infty}\text{-fac} \end{split}$ Table C14: Anchor size rein For concrete C2 All temperature ranges	or τ ; tor τ ; Displacemen forcing bar 0/25 under sta δ_{V0} -factor $\delta_{V\infty}$ -factor	τ: action bond ts under shear l atic and quasi-s [mm/kN] [mm/kN]	oad ²⁾ (r Ø 8 static ad 0,06	ebar) Ø 10 2tion 0,05	Ø 12	0,04	I					
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-fact}\\ \delta_{N\infty} &= \delta_{N\infty}\text{-fac} \end{split}$ Table C14: Anchor size rein For concrete C2 All temperature	for τ ; tor τ ; bisplacemen forcing bar 0/25 under state δ_{V0} -factor $\delta_{V\infty}$ -factor f the displacem or V;	τ: action bond ts under shear l atic and quasi-s [mm/kN] [mm/kN]	oad ²⁾ (r Ø 8 static ac 0,06 0,09	ebar) Ø 10 2tion 0,05	Ø 12	0,04	0,04	0,04	0,03	0,03	0,03	0,03

Tabl	e C15: Characte (perform	eristic value ance catego			undei	r seis	mic a	ction				
Ancho	r size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure		Г									
Charao (Seism	cteristic tension resist iic C1)	ance	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}			
(Seism Steel, s Stainle	cteristic tension resist lic C2) strength class 8.8 lss Steel A4 and HCF th class ≥70		N _{Rk,s,eq,C2}	[kN]	N	PA		1,0 •	N _{Rk,s}		NI	PA
Partial	factor		γ _{Ms,N}	[-]				see Ta	ble C1			
Comb	ined pull-out and co	oncrete failure			1							
Charac	cteristic bond resistar	nce in cracked a	nd non-cracked	d concrete (C20/25	1						
g	l: 80°C/50°C		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	1. 80 0/30 0	Dry, wet	^τ Rk,eq,C2	[N/mm ²]	N	PA	3,6	3,5	3,3	2,3	N	PA
nre	II: 120°C/72°C	concrete and	^τ Rk,eq,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
erat	II: 120°C/72°C	flooded bore hole	τ _{Rk,eq,C2}	[N/mm ²]	N	PA	3,1	3,0	2,8	2,0	N	PA
emp	III: 160°C/100°C	TIDIE	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
μ μ	III. 100 C/100 C		^τ Rk,eq,C2	[N/mm ²]	N	PA	2,5	2,7	2,5	1,8	N	PA
Reduk	tion factor ψ ⁰ sus in c	racked and non	-cracked concr	ete C20/25								
	I: 80°C/50°C	Dry, wet						0,	79			
Temperature range	II: 120°C/72°C	concrete and flooded bore hole	Ψ^0_{sus}	[-]				0,	75			
Temp	III: 160°C/100°C							0,	66			
Increas	sing factors for concre	ete ψ _C	C25/30 to	C50/60				1	,0			
	ete cone failure											
	int parameter							see Ta	ble C2			
Splitti Beleva	Int parameter							see Ta	ble C2			
	ation factor							000 10				
for dry	and wet concrete	CAC HDB	γinst	[-]					,0 ,2			
for floo	ded bore hole	CAC						1	,4			
Perfo	sider Injection Syst									Anne	x C 12	2
Perfo					e categ	ory C1⊦	-C2)			Anne	x C 12	2

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	М30
Steel failure without lever arm		I			1					
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]				0,70)∙V ⁰ Rk	,S		
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	N	PA		0,70 •	V ⁰ Rk,s		N	PA
Partial factor	γ _{Ms,V}	[-]				see	Table C	21		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm		1 1								
	M ⁰ _{Rk,s,eq,C1}	[Nm]			No Pe	rforman	ce Asse	ssed (N	IPA)	
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[Nm]			No Pe	rforman	ce Asse	essed (N	IPA)	
Concrete pry-out failure	1									
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	l _f	[mm]		m	hin(h _{ef} ; f	2 • d _{noi}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			
Factor for annular gap	α_{qap}	[-]				0,	5 (1,0) ¹⁾			

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Friulsider Injection System KEM HYBRID for concrete

Performances

Characteristic values of shear loads under seismic action (performance category C1+C2)

Table	e C17: Charac (perfori	teristic va mance ca			bads	und	er se	ismi	c act	ion				
	r size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa									10.)			
	teristic tension resi	stance	N _{Rk,s,eq}	[kN]					1	s • f _{uk}		1		
	section area		A _s	[mm ²]	50	79	113	154	201		452	491	616	804
Partial			γMs,N	[-]					1,	4 ²⁾				
	ned pull-out and on the second			arackad as	poroto	<u></u>	25							
Charac	aeristic borid resista	ance in crack			ncrete		25							
ature e	I: 80°C/50°C	Dry, wet concrete	^τ Rk,eq	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	II: 120°C/72°C	and flooded	^τ Rk,eq	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Те	III: 160°C/100°C	bore hole	^τ Rk,eq	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Redukt	ion factor $\psi^0{}_{sus}$ in	cracked and	non-crackee	d concrete	C20/2	5			1	1				
nre	I: 80°C/50°C	Dry, wet							0,	79				
Temperature range	II: 120°C/72°C	concrete and flooded	Ψ^0_{sus}	[-]					0,	75				
Ter	III: 160°C/100°C	bore hole							0,	66				
Increas	ing factors for cond	crete ψ_{C}	C25/30 to	o C50/60					1	,0				
Concre	ete cone failure													
	nt parameter								see Ta	able C2	2			
Splittin														
	nt parameter								see Ta	able C2	2			
Installa	ation factor			1										
for dry	and wet concrete	CAC								<u>,0</u>				
for floor	ded bore hole	HDB CAC	^Y inst	[-]						,2 ,4				
¹⁾ f _{uk} sł	hall be taken from th osence of national re	e specificatio	ns of reinforc	ing bars						,				
	ider Injection Sy	stem KEM I	HYBRID for	concrete							•		0 1	
	mances cteristic values of te	nsion loads u	nder seismic	action (perf	orman	ce cate	egory C	C1)			A	nnex	C 14	ŀ

Table C18: Characteristic v (performance ca			bads	und	er se	eismi	ic ac	tion				
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35	• A _s •	$f_{uk}^{(1)}$			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms} ,v	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	_											
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No	o Perf	orman	ice As	sesse	d (NPA)		
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure												
Effective length of fastener	۱ _f	[mm]		I	min(h _e	_{ef} ; 12 ∙	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]						1,0				
Factor for annular gap	α_{gap}	[-]					0,	5 (1,0) ³⁾			

 ¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
 ²⁾ in absence of national regulation
 ³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Friulsider Injection System KEM HYBRID for concrete

Performances

Characteristic values of shear loads under seismic action (performance category C1)

acements	under tensio	n load ¹	⁾ (threa	aded r	od)				
d		M8	M10	M12	M16	M20	M24	M27	M30
5 under seis	mic C1 action	·							
δ _{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
$\delta_{N^{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
$\delta_{N^{\infty}}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
δ _{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
$\delta_{N^{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
	δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor δ_{N0} -factor	$\begin{array}{l} & & \\ \hline \textbf{5 under seismic C1 action} \\ \hline \delta_{N0}\text{-factor} & [mm/(N/mm^2)] \\ \hline \delta_{N\infty}\text{-factor} & [mm/(N/mm^2)] \\ \hline \delta_{N0}\text{-factor} & [mm/(N/mm^2)] \\ \hline \delta_{N0}\text{-factor} & [mm/(N/mm^2)] \\ \hline \delta_{N0}\text{-factor} & [mm/(N/mm^2)] \\ \end{array}$	$\begin{tabular}{ c c c c } \hline M8 \\ \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	$\begin{tabular}{ c c c c c } \hline M8 & M10 \\ \hline S \ under \ seismic \ C1 \ action \\ \hline S \ under \ seismic \ C1 \ action \\ \hline \delta_{N0}\ \ factor & [mm/(N/mm^2)] & 0,081 & 0,083 \\ \hline \delta_{N0}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table C20: Displacements under tension load¹⁾ (rebar)

Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Cracked concrete	C20/25 und	er seismic C1 a	ction									
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
range I: 80°C/50°C	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range II: 120°C/72°C	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \cdot \tau; \ (\tau \text{: action bond stress for tension})$

Table C21: Displacements under shear load²⁾ (threaded rod)

Anchor size threa	ded rod		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked and	cracked concrete	e C20/25 under se	ismic C1	action						
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Table C22: Displacement under shear load¹⁾ (rebar)

Anchor size rein	forcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Anonor Size rein	noreing bai				212	214	210	020	24	025	20	2 32
For concrete C2	0/25 under s	eismic C1 action	on									
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0.09	0.08	0.08	0.06	0.06	0.05	0.05	0.05	0.04	0.04

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

 $\delta_{V\infty} = \delta_{V\infty} \text{-factor} \ \cdot \ V; \ (V\text{: action shear load})$

Friulsider Injection System KEM HYBRID for concrete

Performances

Displacements under seismic C1 action (threaded rods and rebar)

	ded rod		M8	M10	M12	M16	M20	M24	M27	M30
Cracked concrete		ismic C2 action								
All temperature	$\delta_{N,eq(DLS)}$	[mm]			0,24	0,27	0,29	0,27		
ranges	δ _{N,eq(ULS)}	[mm]	- N	PA	0,55	0,51	0,50	0,58		PA
Table C24: D	Displacements	s under shear	load (th	nreade	d rod)					
Anchor size thread	ded rod		M8	M10	M12	M16	M20	M24	M27	M30
Cracked concrete	C20/25 under sei	ismic C2 action								
All temperature	$\delta_{V,eq(DLS)}$	[mm]	N	PA	3,6	3,0	3,1	3,5		PA
ranges	$\delta_{V,ep(ULS)}$	[mm]			7,0	6,6	7,0	9,3		~