



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



## European Technical Assessment

ETA-17/0128 of 7 June 2019

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Mungo Injection system MIT-Hybrid Plus for concrete

Bonded anchor for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 13 / Plant 13

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-17/0128 issued on 20 February 2017



# European Technical Assessment ETA-17/0128

Page 2 of 31 | 7 June 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



**European Technical Assessment ETA-17/0128** 

Page 3 of 31 | 7 June 2019

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The "Mungo Injection system MIT-Hybrid Plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT-Hybrid, MIT-Hybrid Plus and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter  $\emptyset 8$  to  $\emptyset 32$  mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.


#### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                | Performance        |  |  |  |
|---------------------------------------------------------|--------------------|--|--|--|
| Characteristic resistance to tension load               | See Annex          |  |  |  |
| (static and quasi-static loading)                       | C 1, C 2, C 4, C 6 |  |  |  |
| Characteristic resistance to shear load                 | See Annex          |  |  |  |
| (static and quasi-static loading)                       | C 1, C 3, C 5, C 7 |  |  |  |
| Displacements                                           | See Annex          |  |  |  |
| (static and quasi-static loading)                       | C 8 to C 10        |  |  |  |
| Characteristic resistance for seismic performance       | See Annex          |  |  |  |
| category C1                                             | C 11 to C 14       |  |  |  |
| Characteristic resistance and displacements for seismic | See Annex          |  |  |  |
| performance category C2                                 | C 11, C 12, C 15   |  |  |  |

### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |





# **European Technical Assessment ETA-17/0128**

Page 4 of 31 | 7 June 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

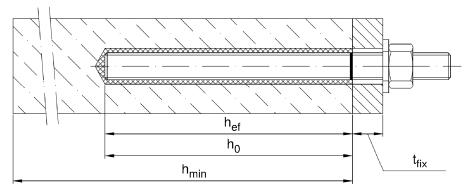
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

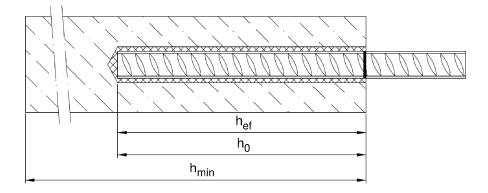
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 7 June 2019 by Deutsches Institut für Bautechnik

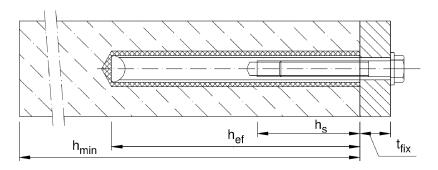
BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider




## Installation threaded rod M8 up to M30

prepositioned installation or


push through installation (annular gap filled with mortar)



## Installation reinforcing bar Ø8 up to Ø32



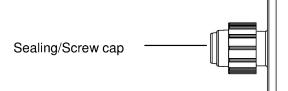
## Installation internal threaded anchor rod IG-M6 up to IG-M20



 $t_{fix}$  = thickness of fixture

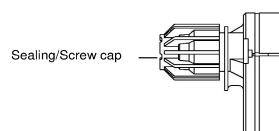
h<sub>ef</sub> = effective anchorage depth

 $h_0 = depth of drill hole$ 


 $h_{min}$  = minimum thickness of member

| Mungo Injection system MIT-Hybrid Plus for concrete |           |
|-----------------------------------------------------|-----------|
| Product description Installed condition             | Annex A 1 |

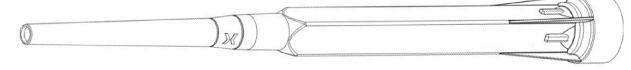



Cartridge: MIT-Hybrid, MIT-Hybrid Plus

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: MIT-Hybrid, MIT-Hybrid Plus, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale


235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")



Imprint: MIT-Hybrid, MIT-Hybrid Plus, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

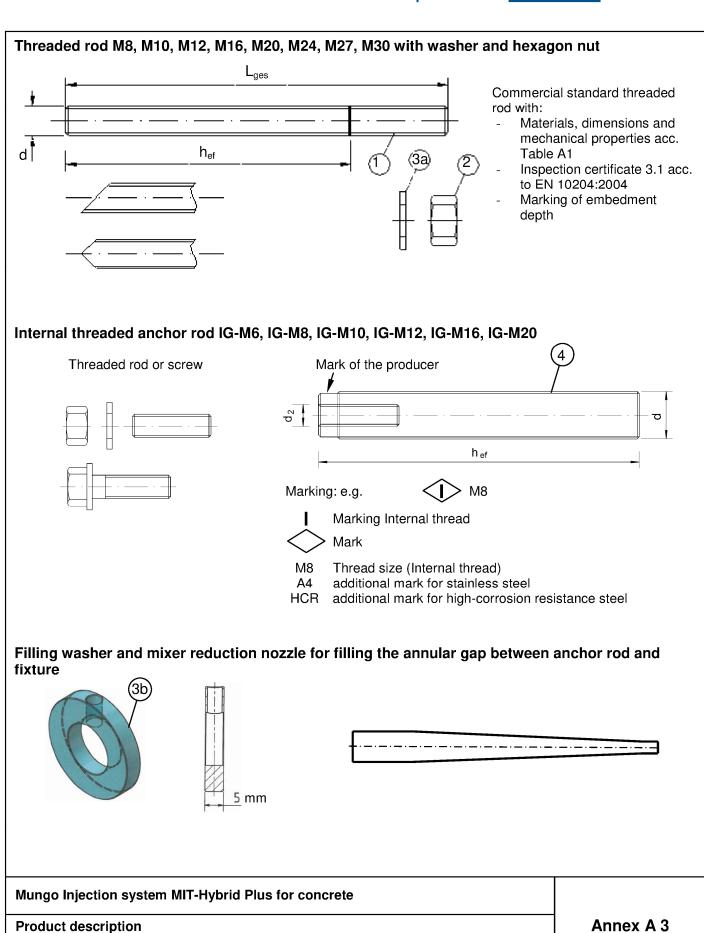
**Static Mixer** 

electronic copy of the eta by dibt: eta-17/0128



Piston plug and mixer extension




Mungo Injection system MIT-Hybrid Plus for concrete

**Product description** 

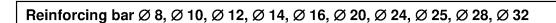
Injection system

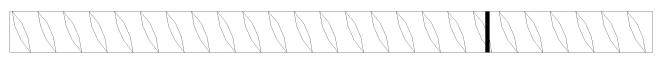
Annex A 2

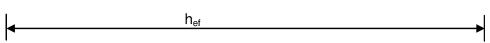




Threaded rod, internal threaded rod and filling washer





| Та                                                                                                                                                                                                                                                                                                                    | ble A1: Materials                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|--|--|--|
| Part                                                                                                                                                                                                                                                                                                                  | Designation                                                                                 | Material                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                    |  |  |  |
| Steel, zinc plated (Steel acc. to EN 10087:1998 or EN 10263:2001)         - zinc plated       ≥ 5 μm       acc. to EN ISO 4042:1999 or         - hot-dip galvanised       ≥ 40 μm       acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or         - sherardized       ≥ 45 μm       acc. to EN ISO 17668:2016 |                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | Property class                                        | Property class Characteristic Characteristic Elocation Elocation Characteristic Elocation fractions of the control of the cont |                                         |                                         |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                                       | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 400 N/mm <sup>2</sup> | f <sub>yk</sub> = 240 N/mm <sup>2</sup> | A <sub>5</sub> > 8%                |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                     | Threaded rod                                                                                |                                                       | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 400 N/mm <sup>2</sup> | f <sub>yk</sub> = 320 N/mm <sup>2</sup> | A <sub>5</sub> > 8%                |  |  |  |
| ·                                                                                                                                                                                                                                                                                                                     |                                                                                             | acc. to<br>EN ISO 898-1:2013                          | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | f <sub>yk</sub> = 300 N/mm <sup>2</sup> | A <sub>5</sub> > 8%                |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | LIV 100 090-1.2010                                    | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | f <sub>yk</sub> = 400 N/mm <sup>2</sup> | A <sub>5</sub> > 8%                |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                                       | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 800 N/mm <sup>2</sup> | f <sub>yk</sub> = 640 N/mm <sup>2</sup> | $A_5 \ge 12\%^{3}$                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | acc. to                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for threaded rod c                      |                                         |                                    |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                     | Hexagon nut                                                                                 | EN ISO 898-2:2012                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for threaded rod c                      |                                         |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | Ctool sine plated but di                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for threaded rod c                      |                                         |                                    |  |  |  |
| 3a                                                                                                                                                                                                                                                                                                                    | Washer                                                                                      | Steel, zinc plated, hot-di<br>(e.g.: EN ISO 887:2006, | EN IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O 7089:2000, EN IS                      | SO 7093:2000 or E                       | N ISO 7094:2000)                   |  |  |  |
| 3b                                                                                                                                                                                                                                                                                                                    | Filling washer                                                                              | Steel, zinc plated, hot-di                            | p galva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                         | le                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                       | Internal threaded                                                                           | Property class                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Characteristic tensile strength         | Characteristic yield strength           | Elongation at fracture             |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                     | anchor rod                                                                                  | acc. to                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $f_{uk} = 500 \text{ N/mm}^2$           | $f_{yk} = 400 \text{ N/mm}^2$           | A <sub>5</sub> > 8%                |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | EN ISO 898-1:2013                                     | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 800 N/mm <sup>2</sup> | $f_{yk} = 640 \text{ N/mm}^2$           | A <sub>5</sub> > 8%                |  |  |  |
| Stai                                                                                                                                                                                                                                                                                                                  | nless steel A2 (Material 1.4<br>nless steel A4 (Material 1.4<br>n corrosion resistance stee | 401 / 1.4404 / 1.4571 / 1.43                          | 62 or 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .4578, acc. to EN                       | 10088-1:2014)                           |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | Property class                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Characteristic tensile strength         | Characteristic yield strength           | Elongation at fracture             |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                     | Threaded rod <sup>1)4)</sup>                                                                |                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | f <sub>yk</sub> = 210 N/mm <sup>2</sup> | A <sub>5</sub> ≥ 12% <sup>3)</sup> |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | acc. to<br>EN ISO 3506-1:2009                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>uk</sub> = 700 N/mm <sup>2</sup> | f <sub>yk</sub> = 450 N/mm <sup>2</sup> | $A_5 \ge 12\%^{3)}$                |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | EN 130 3300-1.2009                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>uk</sub> = 800 N/mm <sup>2</sup> | f <sub>vk</sub> = 600 N/mm <sup>2</sup> | A <sub>5</sub> ≥ 12% <sup>3)</sup> |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for threaded rod c                      | lass 50                                 | 1                                  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                     | Hexagon nut 1)4)                                                                            | acc. to<br>EN ISO 3506-1:2009                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                         |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for threaded rod c                      |                                         |                                    |  |  |  |
| A2: Material 1.4301 / 1.4303 / 1.4307 / 1.4567 or 1.4541, acc. to EN 10088-1:2014  A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014  HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014  (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)       |                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                    |  |  |  |
| 3b                                                                                                                                                                                                                                                                                                                    | Filling washer                                                                              | Stainless steel A4, High                              | corrosi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                         |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                       |                                                                                             | Property class                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Characteristic tensile strength         | Characteristic yield strength           | Elongation at fracture             |  |  |  |
|                                                                                                                                                                                                                                                                                                                       | Internal threaded                                                                           | acc. to                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | f <sub>uk</sub> = 500 N/mm <sup>2</sup> | f <sub>yk</sub> = 210 N/mm <sup>2</sup> | A <sub>5</sub> > 8%                |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                     | anchor rod <sup>1)2)</sup>                                                                  | EN ISO 3506-1:2009                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $f_{uk} = 700 \text{ N/mm}^2$           | $f_{yk} = 450 \text{ N/mm}^2$           | A <sub>5</sub> > 8%                |  |  |  |
| 1) Property class 70 for threaded rods up to M24 and Internal threaded anchor rods up to IG-M16,                                                                                                                                                                                                                      |                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                    |  |  |  |


<sup>1)</sup> Property class 70 for threaded rods up to M24 and Internal threaded anchor rods up to IG-M16,

| Mungo Injection system MIT-Hybrid Plus for concrete                  |           |
|----------------------------------------------------------------------|-----------|
| Product description Materials threaded rod and internal threaded rod | Annex A 4 |

<sup>&</sup>lt;sup>2)</sup> for IG-M20 only property class 50  $^{3)}$  A<sub>5</sub> > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists  $^{4)}$  Property class 80 only for stainless steel A4







- Minimum value of related rip area f<sub>R.min</sub> according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d (d: Nominal diameter of the bar; h: Rip height of the bar)

### Table A2: Materials

| Part  | Designation                          | Material                                                                                                                         |
|-------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Reinf | orcing bars                          |                                                                                                                                  |
| 1     | FN  1447-1-1"2007-140" 2010 ANNOV (: | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |

| Mungo Injection system MIT-Hybrid Plus for concrete |           |
|-----------------------------------------------------|-----------|
| Product description Materials reinforcing bar       | Annex A 5 |



#### Specifications of intended use

#### **Anchorages subject to:**

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

#### Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

#### **Temperature Range:**

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

#### **Use conditions (Environmental conditions):**

- Structures subject to dry internal conditions
   (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
  - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055

#### Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

| Mungo Injection system MIT-Hybrid Plus for concrete |           |
|-----------------------------------------------------|-----------|
| Intended Use<br>Specifications                      | Annex B 1 |



| Table B1: Installation parameters for threaded rod |                                          |                            |      |                                     |      |                  |                 |      |      |     |     |
|----------------------------------------------------|------------------------------------------|----------------------------|------|-------------------------------------|------|------------------|-----------------|------|------|-----|-----|
| Anchor size                                        |                                          | M 8                        | M 10 | M 12                                | M 16 | M 20             | M 24            | M 27 | M 30 |     |     |
| Diameter of element                                |                                          | $d = d_{nom}$              | [mm] | 8                                   | 10   | 12               | 16              | 20   | 24   | 27  | 30  |
| Nominal drill hole dia                             | ameter                                   | d <sub>0</sub>             | [mm] | 10                                  | 12   | 14               | 18              | 22   | 28   | 30  | 35  |
|                                                    |                                          | h <sub>ef,min</sub>        | [mm] | 60                                  | 60   | 70               | 80              | 90   | 96   | 108 | 120 |
| Effective embedmer                                 | h <sub>ef,max</sub>                      | [mm]                       | 160  | 200                                 | 240  | 320              | 400             | 480  | 540  | 600 |     |
| Diameter of                                        | Prepositioned i                          | nstallation d <sub>f</sub> | [mm] | 9                                   | 12   | 14               | 18              | 22   | 26   | 30  | 33  |
| clearance hole in<br>the fixture <sup>1)</sup>     | Push through installation d <sub>f</sub> |                            | [mm] | 12                                  | 14   | 16               | 20              | 24   | 30   | 33  | 40  |
| Maximum torque mo                                  | ment                                     | T <sub>inst</sub> ≤        | [Nm] | 10                                  | 20   | 40 <sup>2)</sup> | 60              | 100  | 170  | 250 | 300 |
| Minimum thickness of member                        |                                          | h <sub>min</sub>           | [mm] | h <sub>ef</sub> + 30 mm<br>≥ 100 mm |      |                  | $h_{ef} + 2d_0$ |      |      |     |     |
| Minimum spacing S <sub>min</sub>                   |                                          |                            | [mm] | 40                                  | 50   | 60               | 75              | 95   | 115  | 125 | 140 |
| Minimum edge dista                                 | nce                                      | c <sub>min</sub>           | [mm] | 35                                  | 40   | 45               | 50              | 60   | 65   | 75  | 80  |

Tor application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d<sub>1</sub> + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.
An aximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

#### Installation parameters for rebar Table B2:

| Rebar size                              |                         |      |     | Ø 10          | Ø 12 | Ø 14 | Ø 16 | Ø 20              | Ø 24              | Ø 25 | Ø 28 | Ø 32 |
|-----------------------------------------|-------------------------|------|-----|---------------|------|------|------|-------------------|-------------------|------|------|------|
| Diameter of element                     | d =<br>d <sub>nom</sub> | [mm] | 8   | 10            | 12   | 14   | 16   | 20                | 24                | 25   | 28   | 32   |
| Nominal drill hole diameter             | d <sub>0</sub>          | [mm] | 12  | 14            | 16   | 18   | 20   | 25                | 32                | 32   | 35   | 40   |
| [ [ [ ] ] ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] | h <sub>ef,min</sub>     | [mm] | 60  | 60            | 70   | 75   | 80   | 90                | 96                | 100  | 112  | 128  |
| Effective embedment depth               | h <sub>ef,max</sub>     |      | 160 | 200           | 240  | 280  | 320  | 400               | 480               | 500  | 560  | 640  |
| Minimum thickness of member             | h <sub>min</sub>        | [mm] |     | 30 mm<br>0 mm |      |      |      | h <sub>ef</sub> + | - 2d <sub>0</sub> |      |      |      |
| Minimum spacing                         | s <sub>min</sub>        | [mm] | 40  | 50            | 60   | 70   | 75   | 95                | 120               | 120  | 130  | 150  |
| Minimum edge distance                   | c <sub>min</sub>        | [mm] | 35  | 40            | 45   | 50   | 50   | 60                | 70                | 70   | 75   | 85   |

#### Table B3: Installation parameters for Internal threaded rod

| Anchor size                               |                     |      | IG-M 6 | IG-M 16       | IG-M 20 |                   |                   |       |
|-------------------------------------------|---------------------|------|--------|---------------|---------|-------------------|-------------------|-------|
| Internal diameter of sleeve               | d <sub>2</sub>      | [mm] | 6      | 8             | 10      | 12                | 16                | 20    |
| Outer diameter of sleeve <sup>1)</sup>    | $d = d_{nom}$       | [mm] | 10     | 12            | 16      | 20                | 24                | 30    |
| Nominal drill hole diameter               | $d_0$               | [mm] | 12     | 14            | 18      | 22                | 28                | 35    |
| Effective embedment depth                 | h <sub>ef,min</sub> | [mm] | 60     | 70            | 80      | 90                | 96                | 120   |
| Enective embedment depth                  | h <sub>ef,max</sub> | [mm] | 200    | 240           | 320     | 400               | 480               | 600   |
| Diameter of clearance hole in the fixture | d <sub>f</sub>      | [mm] | 7      | 9             | 12      | 14                | 18                | 22    |
| Maximum torque moment                     | T <sub>inst</sub> ≤ | [Nm] | 10     | 10            | 20      | 40                | 60                | 100   |
| Thread engagement length min/max          | l <sub>IG</sub>     | [mm] | 8/20   | 8/20          | 10/25   | 12/30             | 16/32             | 20/40 |
| Minimum thickness of member               | h <sub>min</sub>    | [mm] | •      | 30 mm<br>O mm |         | h <sub>ef</sub> + | - 2d <sub>0</sub> |       |
| Minimum spacing                           | s <sub>min</sub>    | [mm] | 50     | 60            | 75      | 95                | 115               | 140   |
| Minimum edge distance                     | c <sub>min</sub>    | [mm] | 40     | 45            | 50      | 60                | 65                | 80    |

<sup>1)</sup> With metric threads according to EN 1993-1-8:2005+AC:2009

| Mungo Injection system MIT-Hybrid Plus for concrete |           |
|-----------------------------------------------------|-----------|
| Intended Use Installation parameters                | Annex B 2 |



| Table B4        | : Paran              | neter clea                  | ning and s                                     | etting | g tool            | S                                       |                |                   |                          |     |  |
|-----------------|----------------------|-----------------------------|------------------------------------------------|--------|-------------------|-----------------------------------------|----------------|-------------------|--------------------------|-----|--|
|                 | SCHOOL SCHOOL SERVER |                             | 8                                              |        |                   |                                         |                |                   |                          |     |  |
| Threaded<br>Rod | Rebar                | Internal<br>threaded<br>rod | d <sub>0</sub><br>Drill bit - Ø<br>HD, HDB, CA |        | ь<br><b>h - Ø</b> | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug | Installatio<br>of | n directio<br>piston plu |     |  |
| [mm]            | [mm]                 | [mm]                        | [mm]                                           | МІТ-   | [mm]              | [mm]                                    | МІТ-           | 1                 |                          | 1   |  |
| M8              |                      |                             | 10                                             | BS10   | 11,5              | 10,5                                    |                |                   |                          |     |  |
| M10             | 8                    | IG-M6                       | 12                                             | BS12   | 13,5              | 12,5                                    |                | No plua           | required                 |     |  |
| M12             | 10                   | IG-M8                       | 14                                             | BS14   | 15,5              | 14,5                                    |                | ino piug          | required                 |     |  |
|                 | 12                   |                             | 16                                             | BS16   | 17,5              | 16,5                                    |                |                   |                          |     |  |
| M16             | 14                   | IG-M10                      | 18                                             | BS18   | 20,0              | 18,5                                    | VS18           |                   |                          |     |  |
|                 | 16                   |                             | 20                                             | BS20   | 22,0              | 20,5                                    | VS20           |                   |                          |     |  |
| M20             |                      | IG-M12                      | 22                                             | BS22   | 24,0              | 22,5                                    | VS22           |                   |                          |     |  |
|                 | 20                   |                             | 25                                             | BS25   | 27,0              | 25,5                                    | VS25           | h <sub>ef</sub> > | h <sub>ef</sub> >        |     |  |
| M24             |                      | IG-M16                      | 28                                             | BS28   | 30,0              | 28,5                                    | VS28           | 250 mm            | 250 mm                   | all |  |
| M27             |                      |                             | 30                                             | BS30   | 31,8              | 30,5                                    | VS30           | 230 IIIM          | 250 mm                   |     |  |
|                 | 24 / 25              |                             | 32                                             | BS32   | 34,0              | 32,5                                    | VS32           |                   |                          |     |  |
| M30             | 28                   | IG-M20                      | 35                                             | BS35   | 37,0              | 35,5                                    | VS35           |                   |                          |     |  |
|                 | 32                   |                             | 40                                             | BS40   | 43,5              | 40,5                                    | VS40           |                   |                          |     |  |



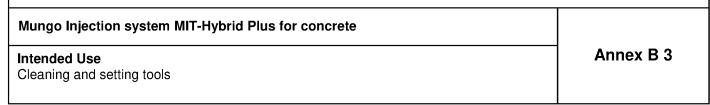


Drill bit diameter ( $d_0$ ): 10 mm to 20 mm Drill hole depth ( $h_0$ ): < 10 d

Drill hole depth  $(h_0)$ : < 10 d<sub>s</sub> Only in non-cracked concrete



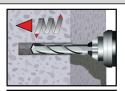
CAC - Rec. compressed air tool (min 6 bar)


Drill bit diameter (d<sub>0</sub>): all diameters



### HDB - Hollow drill bit system

Drill bit diameter (d<sub>0</sub>): all diameters


The hollow drill bit system contains the Mungo MHP-Clean / MHX-Clean hollow drill bit and a class M vacuum with minimum negative pressure of 230 hPa and flow rate of minimum 61 l/s.





#### Installation instructions

### Drilling of the bore hole

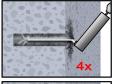


1a. Hammer (HD) or compressed air drilling (CD) Drill a hole into the base material to the size and embedment depth required by the

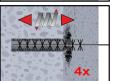
In case of aborted drill hole, the drill hole shall be filled with mortar.

selected anchor (Table B1, B2, or B3). Proceed with Step 2.



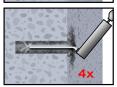

1b. Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

# MAC: Cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

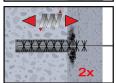



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.



2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.




2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

### CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete



2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.



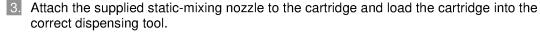
Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B4) a minimum of two times in a twisting motion.
 If the bore hole ground is not reached with the brush, a brush extension must be used.



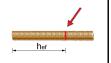
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


Mungo Injection system MIT-Hybrid Plus for concrete


Intended Use
Installation instructions

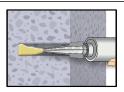
Annex B 4



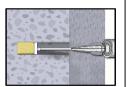

#### Installation instructions (continuation)





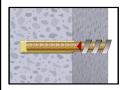

For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.



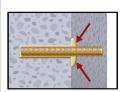

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



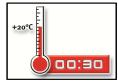
5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.



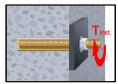

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.




Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:


- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm and embedment depth  $h_{ef}$  > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm




8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.



9. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complety filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).



10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).



11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optioned filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

## Mungo Injection system MIT-Hybrid Plus for concrete

#### **Intended Use**

Installation instructions (continuation)

Annex B 5



| Table B5: | Ма   | aximum we | orking time and minim   | um curing time                      |                                     |  |  |  |  |
|-----------|------|-----------|-------------------------|-------------------------------------|-------------------------------------|--|--|--|--|
| Concrete  | temp | erature   | Gelling<br>working time | Minimum curing time in dry concrete | Minimum curing time in wet concrete |  |  |  |  |
| - 5 °C    | to   | - 1 °C    | 50 min                  | 5 h                                 | 10 h                                |  |  |  |  |
| 0 °C      | to   | + 4 °C    | 25 min                  | 3,5 h                               | 7 h                                 |  |  |  |  |
| + 5 °C    | to   | + 9 °C    | 15 min                  | 2 h                                 | 4 h                                 |  |  |  |  |
| + 10 °C   | to   | + 14 °C   | 10 min                  | 1 h                                 | 2 h                                 |  |  |  |  |
| + 15 °C   | to   | + 19 °C   | 6 min                   | 40 min                              | 80 min                              |  |  |  |  |
| + 20 °C   | to   | + 29 °C   | 3 min                   | 30 min                              | 60 min                              |  |  |  |  |
| + 30 °C   | to   | + 40 °C   | 2 min                   | 30 min                              | 60 min                              |  |  |  |  |
| Cartridge | temp | erature   | +5°C to +40°C           |                                     |                                     |  |  |  |  |

| Mungo Injection system MIT-Hybrid Plus for concrete |           |
|-----------------------------------------------------|-----------|
| Intended Use                                        | Annex B 6 |
| Curing time                                         |           |
|                                                     |           |



| Т                                                         | Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods |                                |       |         |         |      |      |      |     |      |      |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|-------|---------|---------|------|------|------|-----|------|------|
| Si                                                        | ze                                                                                                       |                                |       | М 8     | M 10    | M 12 | M 16 | M 20 | M24 | M 27 | M 30 |
| Cr                                                        | oss section area                                                                                         | A <sub>s</sub>                 | [mm²] | 36,6    | 58      | 84,3 | 157  | 245  | 353 | 459  | 561  |
| Cł                                                        | naracteristic tension resistance, Steel failu                                                            | re 1)                          | •     | •       |         |      |      |      |     |      |      |
|                                                           | eel, Property class 4.6 and 4.8                                                                          | N <sub>Rk,s</sub>              | [kN]  | 15 (13) | 23 (21) | 34   | 63   | 98   | 141 | 184  | 224  |
| St                                                        | eel, Property class 5.6 and 5.8                                                                          | N <sub>Rk,s</sub>              | [kN]  | 18 (17) | 29 (27) | 42   | 78   | 122  | 176 | 230  | 280  |
| St                                                        | eel, Property class 8.8                                                                                  | N <sub>Rk,s</sub>              | [kN]  | 29 (27) | 46 (43) | 67   | 125  | 196  | 282 | 368  | 449  |
| St                                                        | ainless steel A2, A4 and HCR, class 50                                                                   | N <sub>Rk,s</sub>              | [kN]  | 18      | 29      | 42   | 79   | 123  | 177 | 230  | 281  |
| St                                                        | ainless steel A2, A4 and HCR, class 70                                                                   | N <sub>Rk,s</sub>              | [kN]  | 26      | 41      | 59   | 110  | 171  | 247 | -    | -    |
|                                                           | ainless steel A4 and HCR, class 80                                                                       | N <sub>Rk,s</sub>              | [kN]  | 29      | 46      | 67   | 126  | 196  | 282 | -    | -    |
| Cł                                                        | naracteristic tension resistance, Partial fac                                                            | tor <sup>2)</sup>              |       |         |         |      |      |      |     |      |      |
| Steel, Property class 4.6 and 5.6 $\gamma_{Ms,N}$ [-] 2,0 |                                                                                                          |                                |       |         |         |      |      |      |     |      |      |
| St                                                        | eel, Property class 4.8, 5.8 and 8.8                                                                     | γMs,N                          | [-]   |         |         |      | 1,5  | 5    |     |      |      |
| St                                                        | ainless steel A2, A4 and HCR, class 50                                                                   | γMs,N                          | [-]   |         |         |      | 2,8  | 6    |     |      |      |
| St                                                        | ainless steel A2, A4 and HCR, class 70                                                                   | γ <sub>Ms,N</sub>              | [-]   |         |         |      | 1,8  | 7    |     |      |      |
| Stainless steel A4 and HCR, class 80   YMs,N   [-]   1,6  |                                                                                                          |                                |       |         |         |      |      |      |     |      |      |
| Cł                                                        | naracteristic shear resistance, Steel failure                                                            |                                |       |         |         |      |      |      |     |      |      |
| _                                                         | Steel, Property class 4.6 and 4.8                                                                        | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 9 (8)   | 14 (13) | 20   | 38   | 59   | 85  | 110  | 135  |
| arm                                                       | Steel, Property class 5.6 and 5.8                                                                        | V <sup>0</sup> Rk,s            | [kN]  | 9 (8)   | 15 (13) | 21   | 39   | 61   | 88  | 115  | 140  |
| lever                                                     | Steel, Property class 8.8                                                                                | V <sup>0</sup> Rk,s            | [kN]  | 15 (13) | 23 (21) | 34   | 63   | 98   | 141 | 184  | 224  |
|                                                           | Stainless steel A2, A4 and HCR, class 50                                                                 | V <sup>0</sup> Rk,s            | [kN]  | 9       | 15      | 21   | 39   | 61   | 88  | 115  | 140  |
| Without                                                   | Stainless steel A2, A4 and HCR, class 70                                                                 | V <sup>0</sup> Rk,s            | [kN]  | 13      | 20      | 30   | 55   | 86   | 124 | -    | -    |
| >                                                         | Stainless steel A4 and HCR, class 80                                                                     | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 15      | 23      | 34   | 63   | 98   | 141 | -    | -    |
|                                                           | Steel, Property class 4.6 and 4.8                                                                        | M <sup>0</sup> Rk,s            | [Nm]  | 15 (13) | 30 (27) | 52   | 133  | 260  | 449 | 666  | 900  |
| arm                                                       | Steel, Property class 5.6 and 5.8                                                                        | M <sup>0</sup> Rk,s            | [Nm]  | 19 (16) | 37 (33) | 65   | 166  | 324  | 560 | 833  | 1123 |
|                                                           | Steel, Property class 8.8                                                                                | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]  | 30 (26) | 60 (53) | 105  | 266  | 519  | 896 | 1333 | 1797 |
| Vith lever                                                | Stainless steel A2, A4 and HCR, class 50                                                                 | M <sup>0</sup> Rk.s            | [Nm]  | 19      | 37      | 66   | 167  | 325  | 561 | 832  | 1125 |
| ×                                                         | Stainless steel A2, A4 and HCR, class 70                                                                 | M <sup>0</sup> Rk,s            | [Nm]  | 26      | 52      | 92   | 232  | 454  | 784 | -    | -    |
|                                                           | Stainless steel A4 and HCR, class 80                                                                     | M <sup>0</sup> Rk,s            | [Nm]  | 30      | 59      | 105  | 266  | 519  | 896 | -    | -    |
| CI                                                        | naracteristic shear resistance, Partial facto                                                            | r <sup>2)</sup>                |       |         |         |      |      |      |     |      |      |
| _                                                         | eel, Property class 4.6 and 5.6                                                                          | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 1,6  | 7    |     |      |      |
| St                                                        | eel, Property class 4.8, 5.8 and 8.8                                                                     | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 1,2  | 5    |     |      |      |
| St                                                        | ainless steel A2, A4 and HCR, class 50                                                                   | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 2,3  | 8    |     |      |      |
| St                                                        | ainless steel A2, A4 and HCR, class 70                                                                   | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 1,5  | 6    |     |      |      |
| St                                                        | ainless steel A4 and HCR, class 80                                                                       | γ <sub>Ms,V</sub>              | [-]   |         |         |      | 1,3  | 3    |     |      |      |

<sup>1)</sup> Values are only valid for the given stress area A<sub>s</sub>. Values in brackets are valid for undersized threaded rods with smaller stress area A<sub>s</sub> for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
2) in absence of national regulation

| Mungo Injection system MIT-Hybrid Plus for concrete                                                         |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods | Annex C 1 |

English translation prepared by DIBt



| Table                | e C2: Ch                               | arac              | teristic value            | es of tension       | on loads เ                            | ınder        | stati | c and           | l qua             | si-sta            | tic ac  | ction |     |
|----------------------|----------------------------------------|-------------------|---------------------------|---------------------|---------------------------------------|--------------|-------|-----------------|-------------------|-------------------|---------|-------|-----|
| Ancho                | r size thread                          | led ro            | d                         |                     |                                       | M 8          | M 10  | M 12            | M 16              | M 20              | M24     | M27   | M30 |
| Steel fa             | ailure                                 |                   |                           |                     |                                       |              |       |                 |                   | •                 |         |       |     |
| Charac               | teristic tensio                        | n resi            | stance                    | N <sub>Rk,s</sub>   | [kN]                                  |              |       | $A_s \cdot f_l$ | ık (or s          | ee Tab            | le C1)  |       |     |
| Partial f            | factor                                 |                   |                           | γ <sub>Ms,N</sub>   | [-]                                   | see Table C1 |       |                 |                   |                   |         |       |     |
| Combi                | ned pull-out                           | and o             | concrete failure          | -,                  |                                       |              |       |                 |                   |                   |         |       |     |
| Charac               | teristic bond                          | resista           | ance in non-cracl         | ked concrete C      | 20/25                                 |              |       |                 |                   |                   |         |       |     |
| iture                | ण्डू I: 80°C/50°C Dry                  |                   | Dry, wet                  | τ <sub>Rk,ucr</sub> | [N/mm²]                               | 17           | 17    | 16              | 15                | 14                | 13      | 13    | 13  |
| Temperature<br>range | II: 120°C/72                           | 2°C               | concrete and flooded bore | <sup>τ</sup> Rk,ucr | [N/mm²]                               | 15           | 14    | 14              | 13                | 12                | 12      | 11    | 11  |
|                      | III: 160°C/1                           |                   | hole                      | <sup>τ</sup> Rk,ucr | [N/mm²]                               | 12           | 11    | 11              | 10                | 9,5               | 9,0     | 9,0   | 9,0 |
| Charac               | teristic bond                          | resista           | ance in cracked o         | concrete C20/2      | 25                                    |              |       |                 |                   |                   |         |       |     |
| ature                | I: 80°C/50°0                           | 2                 | Dry, wet                  | <sup>τ</sup> Rk,cr  | [N/mm²]                               | 7,0          | 7,5   | 8,0             | 9,0               | 8,5               | 7,0     | 7,0   | 7,0 |
| Temperature<br>range | II: 120°C/72                           | 2°C               | concrete and flooded bore | τ <sub>Rk,cr</sub>  | [N/mm²]                               | 6,0          | 6,5   | 7,0             | 7,5               | 7,0               | 6,0     | 6,0   | 6,0 |
| Ten                  | III: 160°C/1                           | 00°C              | hole                      | τ <sub>Rk,cr</sub>  | [N/mm²]                               | 5,5          | 5,5   | 6,0             | 6,5               | 6,0               | 5,5     | 5,5   | 5,5 |
|                      |                                        |                   |                           | C25/30              |                                       |              |       |                 |                   | 02                |         |       |     |
|                      |                                        |                   | C30/37                    |                     |                                       |              |       |                 | 04                |                   |         |       |     |
| 1                    | Increasing factors for concrete        |                   | crete                     | C35/45              | · · · · · · · · · · · · · · · · · · · |              |       |                 |                   |                   |         |       |     |
| Ψc                   |                                        |                   |                           | C40/50              |                                       | 1,08         |       |                 |                   |                   |         |       |     |
|                      |                                        |                   |                           | C45/55              |                                       |              |       |                 |                   |                   |         |       |     |
| Concre               | ete cone fail                          | Iro               |                           | C50/60              | 50/60 1,10                            |              |       |                 |                   |                   |         |       |     |
|                      | acked concre                           |                   |                           | k                   | Г1                                    |              |       |                 | 1.                | 1,0               |         |       |     |
|                      |                                        | ie                |                           | k <sub>ucr,N</sub>  | [-]                                   |              |       |                 |                   |                   |         |       |     |
|                      | d concrete                             |                   |                           | k <sub>cr,N</sub>   | [-]                                   |              |       |                 |                   | ,7                |         |       |     |
| Edge di              |                                        |                   |                           | c <sub>cr,N</sub>   | [mm]                                  |              |       |                 |                   | h <sub>ef</sub>   |         |       |     |
| Axial di             |                                        |                   |                           | s <sub>cr,N</sub>   | [mm]                                  |              |       |                 | 2 0               | cr,N              |         |       |     |
| Splittin             | ng                                     | I                 |                           |                     |                                       |              |       |                 | 4.0               |                   |         |       |     |
|                      |                                        | n/n <sub>ef</sub> | ≥ 2,0                     |                     |                                       |              |       |                 | 1,0               | h <sub>ef</sub>   |         |       |     |
| Edge di              | istance                                | 2,0 >             | $h/h_{ef} > 1,3$          | C <sub>cr,sp</sub>  | [mm]                                  |              |       | 2 · I           | $n_{ef} \bigg( 2$ | $5 - \frac{h}{h}$ | n<br>ef |       |     |
|                      |                                        | h/h <sub>ef</sub> | ≤ 1,3                     |                     |                                       |              |       |                 | 2,4               | h <sub>ef</sub>   |         |       |     |
| Axial di             | Axial distance S <sub>cr,sp</sub> [mm] |                   |                           |                     |                                       |              |       |                 |                   | cr,sp             |         |       |     |
|                      | ation factor                           |                   |                           | ,-  -               | ,                                     | 1            |       |                 |                   | - ,- <b> -</b>    |         |       |     |
|                      |                                        |                   | MAC                       |                     |                                       |              |       | 1,2             |                   |                   | ١       | NPA   |     |
| for dry a            | and wet cond                           | rete              | CAC                       | ] <sub>2/2</sub> .  | r 1                                   | 1,0          |       |                 |                   |                   |         |       |     |
|                      |                                        |                   | HDB                       | $\gamma_{inst}$     | [-]                                   |              |       |                 | 1                 | ,2                |         |       |     |
| for floor            | ded bore hole                          | 9                 | CAC                       |                     |                                       |              |       |                 | 1                 | ,4                |         |       |     |

| Mungo Injection system MIT-Hybrid Plus for concrete                                      |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 2 |



| Anchor size threaded rod                                                                                                    |                     |       | M 8                                                                      | M 10 | M 12    | M 16                              | M 20    | M24     | M 27 | M 30   |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------------------------------------------------------------|------|---------|-----------------------------------|---------|---------|------|--------|--|
| Steel failure without lever arm                                                                                             |                     | •     |                                                                          | •    |         |                                   | •       | •       |      |        |  |
| Characteristic shear resistance<br>Steel, strength class 4.6 and 4.8                                                        | V <sup>0</sup> Rk,s | [kN]  | 0,6 • A <sub>s</sub> • f <sub>uk</sub> (or see Table C1)                 |      |         |                                   |         |         |      |        |  |
| Characteristic shear resistance<br>Steel, strength class 5.6, 5.8 and 8.8<br>Stainless Steel A2, A4 and HCR, all<br>classes | V <sup>0</sup> Rk,s | [kN]  | 0,5 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1)                 |      |         |                                   |         |         |      |        |  |
| Partial factor                                                                                                              | γMs,V               | [-]   | see Table C1                                                             |      |         |                                   |         |         |      |        |  |
| Ductility factor                                                                                                            | k <sub>7</sub>      | [-]   | 1,0                                                                      |      |         |                                   |         |         |      |        |  |
| Steel failure with lever arm                                                                                                |                     |       |                                                                          |      |         |                                   |         |         |      |        |  |
| Characteristic bending moment                                                                                               | M <sup>0</sup> Rk,s | [Nm]  |                                                                          |      | 1,2 • \ | W <sub>el</sub> • f <sub>uk</sub> | (or see | Table C | C1)  |        |  |
| Elastic section modulus                                                                                                     | W <sub>el</sub>     | [mm³] | 31                                                                       | 62   | 109     | 277                               | 541     | 935     | 1387 | 1874   |  |
| Partial factor                                                                                                              | γMs,V               | [-]   |                                                                          |      |         | see                               | Table C | 1       |      | •      |  |
| Concrete pry-out failure                                                                                                    |                     |       |                                                                          |      |         |                                   |         |         |      |        |  |
| Factor                                                                                                                      | k <sub>8</sub>      | [-]   |                                                                          |      |         |                                   | 2,0     |         |      |        |  |
| Installation factor                                                                                                         | γinst               | [-]   |                                                                          |      |         |                                   | 1,0     |         |      |        |  |
| Concrete edge failure                                                                                                       |                     |       |                                                                          |      |         |                                   |         |         |      |        |  |
| Effective length of fastener                                                                                                | I <sub>f</sub>      | [mm]  | min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300n |      |         |                                   |         |         |      | 300mm) |  |
| Outside diameter of fastener                                                                                                | d <sub>nom</sub>    | [mm]  | 8                                                                        | 10   | 12      | 16                                | 20      | 24      | 27   | 30     |  |
| Installation factor                                                                                                         | γ <sub>inst</sub>   | [-]   | 1,0                                                                      |      |         |                                   |         |         |      |        |  |

| Mungo Injection system MIT-Hybrid Plus for concrete                                    |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 3 |

English translation prepared by DIBt



|                                                                                                   |                   | istic values              | or tell                    | 31011 106            |                     | •      |                        |                 |         |         |  |
|---------------------------------------------------------------------------------------------------|-------------------|---------------------------|----------------------------|----------------------|---------------------|--------|------------------------|-----------------|---------|---------|--|
| Anchor size internal th                                                                           | readeo            | d anchor rods             |                            |                      | IG-M 6              | IG-M 8 | IG-M 10                | IG-M 12         | IG-M 16 | IG-M 20 |  |
| Steel failure <sup>1)</sup>                                                                       |                   | F 0                       | N_                         | FL-N II              | 10                  | 17     | 00                     | 40              | 70      | 100     |  |
| Characteristic tension re<br>Steel, strength class                                                | sistand           |                           | N <sub>Rk,s</sub>          | [kN]                 | 10                  | 17     | 29                     | 42              | 76      | 123     |  |
|                                                                                                   |                   |                           | N <sub>Rk,s</sub>          | [kN]                 | 16                  | 27     | 46                     | 67              | 121     | 196     |  |
| Partial factor, strength cl                                                                       |                   | γMs,N                     | [-]                        |                      | <u> </u>            | 1      | ,5<br>I                |                 | 1       |         |  |
| Characteristic tension resistance, Stainless<br>Steel A4 and HCR, Strength class 70 <sup>2)</sup> |                   |                           | N <sub>Rk,s</sub>          | [kN]                 | 14                  | 26     | 41                     | 59              | 110     | 124     |  |
| Partial factor                                                                                    |                   |                           | γ <sub>Ms,N</sub>          | [-]                  |                     |        | 1,87                   |                 |         | 2,86    |  |
| Combined pull-out and                                                                             |                   |                           |                            |                      |                     |        |                        |                 |         |         |  |
| Characteristic bond resis                                                                         | stance            | in non-cracked            | concrete                   | C20/25               |                     | ı      | 1                      | Γ               |         | ı       |  |
| 1: 80°C/50°C                                                                                      |                   | Dry, wet                  | τ <sub>Rk,ucr</sub>        | [N/mm <sup>2</sup> ] | 17                  | 16     | 15                     | 14              | 13      | 13      |  |
| III: 120°C/72°C  III: 160°C/100°C                                                                 |                   | concrete and flooded bore | <sup>τ</sup> Rk,ucr        | [N/mm²]              | 14                  | 14     | 13                     | 12              | 12      | 11      |  |
|                                                                                                   |                   | hole                      | τ <sub>Rk,ucr</sub>        | [N/mm <sup>2</sup> ] | 11                  | 11     | 10                     | 9,5             | 9,0     | 9,0     |  |
| Characteristic bond resis                                                                         | stance            | in cracked cond           | crete C20                  | )/25                 | Г                   | ı      |                        | <b>.</b>        | T       |         |  |
| 1: 80°C/50°C                                                                                      |                   | Dry, wet                  | τ <sub>Rk,cr</sub>         | [N/mm²]              | 7,5                 | 8,0    | 9,0                    | 8,5             | 7,0     | 7,0     |  |
| III: 120°C/50°C  III: 120°C/72°C  III: 160°C/100°C                                                |                   | concrete and flooded bore | τ <sub>Rk,cr</sub>         | [N/mm²]              | 6,5                 | 7,0    | 7,5                    | 7,0             | 6,0     | 6,0     |  |
| 년 III: 160°C/100°C                                                                                |                   | hole                      | τ <sub>Rk,cr</sub>         | [N/mm²]              | 5,5                 | 6,0    | 6,5                    | 6,0             | 5,5     | 5,5     |  |
|                                                                                                   |                   |                           |                            | 25/30                |                     |        |                        | 02              |         |         |  |
|                                                                                                   |                   |                           |                            | 30/37                |                     |        |                        | 04              |         |         |  |
| Increasing factors for co                                                                         | ncrete            |                           | C35/45 1,07                |                      |                     |        |                        |                 |         |         |  |
| $\Psi_{C}$                                                                                        |                   |                           | C40/50 1,08<br>C45/55 1,09 |                      |                     |        |                        |                 |         |         |  |
|                                                                                                   |                   |                           |                            | 50/60                |                     |        |                        | 10              |         |         |  |
| Concrete cone failure                                                                             |                   |                           |                            |                      |                     |        | .,                     |                 |         |         |  |
| Non-cracked concrete                                                                              |                   |                           | k <sub>ucr,N</sub>         | [-]                  |                     |        | 11                     | 1,0             |         |         |  |
| Cracked concrete                                                                                  |                   |                           | k <sub>cr,N</sub>          | [-]                  |                     |        | 7                      | ,7              |         |         |  |
| Edge distance                                                                                     |                   |                           | c <sub>cr,N</sub>          | [mm]                 |                     |        | 1,5                    | h <sub>ef</sub> |         |         |  |
| Axial distance                                                                                    |                   |                           | s <sub>cr,N</sub>          | [mm]                 |                     |        | 2 c                    | cr,N            |         |         |  |
| Splitting failure                                                                                 |                   |                           |                            | '                    | 1.                  |        |                        |                 |         |         |  |
|                                                                                                   | h/h <sub>ef</sub> | ≥ 2,0                     |                            |                      |                     |        | 1,0                    | h <sub>ef</sub> |         |         |  |
| Edge distance                                                                                     |                   | h/h <sub>ef</sub> > 1,3   | c <sub>cr,sp</sub>         | [mm]                 |                     |        | 2 · h <sub>ef</sub> (2 |                 |         |         |  |
| h/h <sub>ef</sub> ≤ 1,3                                                                           |                   |                           |                            |                      | 2,4 h <sub>ef</sub> |        |                        |                 |         |         |  |
| Axial distance                                                                                    |                   |                           | s <sub>cr,sp</sub>         | [mm]                 |                     |        | 2 c                    | cr,sp           |         |         |  |
| Installation factor                                                                               |                   | I                         |                            |                      |                     |        |                        | Г               |         |         |  |
|                                                                                                   |                   | MAC                       | 4                          |                      |                     | 1,2    |                        | NPA             |         |         |  |
| for dry and wet concrete                                                                          |                   | CAC                       | γ <sub>inst</sub>          | [-]                  |                     |        |                        | ,0              |         |         |  |
| for flooded bore hole                                                                             |                   | HDB<br>CAC                | 1                          |                      | 1,2                 |        |                        |                 |         |         |  |
|                                                                                                   |                   | 1                         |                            | oppropri-t           | 1,4                 |        |                        |                 |         |         |  |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IG-M20 strength class 50 is valid

| Mungo Injection system MIT-Hybrid Plus for concrete                                      |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 4 |

English translation prepared by DIBt



| Anchor size for internal thread                                                                    | ed anch | or rods                        |      | IG-M 6    | IG-M 8 | IG-M 10                  | IG-M 12            | IG-M 16 | IG-M 20                     |  |  |
|----------------------------------------------------------------------------------------------------|---------|--------------------------------|------|-----------|--------|--------------------------|--------------------|---------|-----------------------------|--|--|
| Steel failure without lever arm <sup>1</sup>                                                       | )       |                                |      |           |        |                          |                    |         |                             |  |  |
| Characteristic shear resistance,                                                                   | 5.8     | V <sup>0</sup> <sub>Rk,s</sub> | [kN] | 5         | 9      | 15                       | 21                 | 38      | 61                          |  |  |
| Steel, strength class                                                                              | 8.8     | V <sup>0</sup> <sub>Rk,s</sub> | [kN] | 8         | 14     | 23                       | 34                 | 60      | 98                          |  |  |
| Partial factor, strength class 5.8 a                                                               | and 8.8 | γ <sub>Ms,V</sub>              | [-]  | 1,25      |        |                          |                    |         |                             |  |  |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup> |         | V <sup>0</sup> Rk,s            | [kN] | 7         | 13     | 20                       | 30                 | 55      | 40                          |  |  |
| Partial factor                                                                                     |         | γ <sub>Ms,V</sub>              | [-]  |           |        | 1,56                     |                    |         | 2,38                        |  |  |
| Ductility factor                                                                                   |         | k <sub>7</sub>                 | [-]  | 1,0       |        |                          |                    |         |                             |  |  |
| Steel failure with lever arm 1)                                                                    |         |                                |      |           |        |                          |                    |         |                             |  |  |
| Characteristic bending moment,<br>Steel, strength class                                            | 5.8     | M <sup>0</sup> Rk,s            | [Nm] | 8         | 19     | 37                       | 66                 | 167     | 325                         |  |  |
|                                                                                                    | 8.8     | M <sup>0</sup> Rk,s            | [Nm] | 12        | 30     | 60                       | 105                | 267     | 519                         |  |  |
| Partial factor, strength class 5.8 a                                                               | and 8.8 | γ <sub>Ms,V</sub>              | [-]  |           |        |                          | 1,25               |         |                             |  |  |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>   |         | M <sup>0</sup> Rk,s            | [Nm] | 11        | 26     | 52                       | 92                 | 233     | 456                         |  |  |
| Partial factor                                                                                     |         | γ <sub>Ms,V</sub>              | [-]  | 1,56 2,38 |        |                          |                    |         | 2,38                        |  |  |
| Concrete pry-out failure                                                                           |         |                                |      |           |        |                          |                    |         |                             |  |  |
| Factor                                                                                             |         | k <sub>8</sub>                 | [-]  |           |        |                          | 2,0                |         |                             |  |  |
| Installation factor                                                                                |         | γ <sub>inst</sub>              | [-]  |           |        |                          | 1,0                |         |                             |  |  |
| Concrete edge failure                                                                              |         | •                              | •    |           |        |                          |                    |         |                             |  |  |
| Effective length of fastener                                                                       |         |                                | [mm] |           | min(   | h <sub>ef</sub> ; 12 • 0 | d <sub>nom</sub> ) |         | min(h <sub>ef</sub> ; 300mm |  |  |
| Outside diameter of fastener                                                                       |         | d <sub>nom</sub>               | [mm] | 10        | 12     | 16                       | 20                 | 24      | 30                          |  |  |
| Installation factor                                                                                |         | γ <sub>inst</sub>              | [-]  | 1,0       |        |                          |                    |         |                             |  |  |
|                                                                                                    |         |                                | 1    |           |        |                          |                    |         |                             |  |  |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

| Mungo Injection system MIT-Hybrid Plus for concrete                                    |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 5 |



|                      | size reinfo   | rcing               | bar                     |                     |                      | Ø8   | Ø 10 | Ø 12 | Ø 14  | Ø 16             | Ø 20                   | Ø 24                            | Ø 25 | Ø 28 | Ø 3 |  |
|----------------------|---------------|---------------------|-------------------------|---------------------|----------------------|------|------|------|-------|------------------|------------------------|---------------------------------|------|------|-----|--|
| Steel fa             | ilure         |                     |                         |                     |                      |      |      | •    |       |                  |                        | •                               | •    |      | •   |  |
| Charact              | eristic tensi | on resi             | stance                  | N <sub>Rk,s</sub>   | [kN]                 |      |      |      |       | A <sub>s</sub> • | f <sub>uk</sub> 1)     |                                 |      |      |     |  |
| Cross s              | ection area   |                     |                         | A <sub>s</sub>      | [mm²]                | 50   | 79   | 113  | 154   | 201              | 314                    | 452                             | 491  | 616  | 804 |  |
| Partial f            | actor         |                     |                         | γ <sub>Ms,N</sub>   | [-]                  |      |      |      |       | 1,               | <b>4</b> <sup>2)</sup> |                                 |      |      |     |  |
|                      |               |                     | concrete fail           |                     | ·                    |      |      |      |       |                  |                        |                                 |      |      |     |  |
| Charact              | eristic bond  | l resista           | ance in non-d           | cracked cor         | crete C20/2          | 25   | I    | 1    |       | I                | T                      | ı                               |      |      |     |  |
| )                    | I: 80°C/50°   |                     | Dry, wet concrete       | <sup>τ</sup> Rk,ucr | [N/mm <sup>2</sup> ] | 14   | 14   | 14   | 14    | 13               | 13                     | 13                              | 13   | 13   | 13  |  |
| mperati<br>range     | II: 120°C/72  |                     | and<br>flooded          | <sup>τ</sup> Rk,ucr | [N/mm²]              | 13   | 12   | 12   | 12    | 12               | 11                     | 11                              | 11   | 11   | 11  |  |
| •                    | III: 160°C/1  |                     | bore hole               | τ <sub>Rk,ucr</sub> | [N/mm²]              | 9,5  | 9,5  | 9,5  | 9,0   | 9,0              | 9,0                    | 9,0                             | 9,0  | 8,5  | 8,  |  |
|                      |               |                     | ance in crack           | (ed concret)        |                      | 1    | I    |      |       |                  |                        | Ι                               |      | T    |     |  |
| ature<br>e           | I: 80°C/50°   | C                   | Dry, wet concrete       | <sup>τ</sup> Rk,cr  | [N/mm²]              | 5,5  | 5,5  | 6,0  | 6,5   | 6,5              | 6,5                    | 6,5                             | 7,0  | 7,0  | 7,0 |  |
| Temperature<br>range | II: 120°C/72  | 2°C                 | and<br>flooded          | <sup>τ</sup> Rk,cr  | [N/mm <sup>2</sup> ] | 4,5  | 5,0  | 5,0  | 5,5   | 5,5              | 5,5                    | 5,5                             | 6,0  | 6,0  | 6,0 |  |
| Tel                  | III: 160°C/1  | 00°C                | bore hole               | <sup>τ</sup> Rk,cr  | [N/mm <sup>2</sup> ] |      |      |      |       |                  |                        | 5,0                             | 5,0  | 5,0  |     |  |
|                      |               |                     |                         |                     | 25/30                | 1,02 |      |      |       |                  |                        |                                 |      |      |     |  |
|                      |               |                     |                         |                     | 30/37                |      |      |      |       |                  | 04                     |                                 |      |      |     |  |
|                      | ing factors f | or cond             | crete                   |                     | 85/45                |      |      |      |       |                  | 07                     |                                 |      |      |     |  |
| γ <sub>c</sub>       |               |                     |                         |                     | 0/50<br>5/55         |      |      |      |       |                  | 80                     |                                 |      |      |     |  |
|                      |               |                     |                         |                     | 60/60                |      |      |      |       |                  | 09<br>10               |                                 |      |      |     |  |
| Concre               | te cone fail  | lure                |                         | 00                  | 030/00               |      |      |      |       |                  | 10                     |                                 |      |      |     |  |
|                      | cked concr    |                     |                         | k <sub>ucr,N</sub>  | [-]                  |      |      |      |       | 1                | 1,0                    |                                 |      |      |     |  |
| Cracked              | d concrete    |                     |                         | k <sub>cr,N</sub>   | [-]                  |      |      |      |       | 7                | 7,7                    |                                 |      |      |     |  |
| Edge di              | stance        |                     |                         | c <sub>cr,N</sub>   | [mm]                 |      |      |      |       | 1,5              | h <sub>ef</sub>        |                                 |      |      |     |  |
| Axial dis            | stance        |                     |                         | s <sub>cr,N</sub>   | [mm]                 |      |      |      |       | 2 0              | cr,N                   |                                 |      |      |     |  |
| Splitting            | g             |                     |                         |                     |                      |      |      |      |       |                  |                        |                                 |      |      |     |  |
|                      |               | h/h <sub>ef</sub>   | ≥ 2,0                   |                     |                      |      |      |      |       | 1,0              | ) h <sub>ef</sub>      |                                 |      |      |     |  |
| Edge di              | stance        | 2,0 >               | h/h <sub>ef</sub> > 1,3 | c <sub>cr,sp</sub>  | [mm]                 |      |      |      | 2 · h | ef (2            | ,5 – <del>T</del>      | $\left(\frac{h}{r_{ef}}\right)$ |      |      |     |  |
|                      |               | h/h <sub>ef</sub> : | ≤ 1,3                   |                     |                      |      |      |      |       | 2,4              | h <sub>ef</sub>        |                                 |      |      |     |  |
| Axial dis            | stance        |                     |                         | s <sub>cr,sp</sub>  | [mm]                 |      |      |      |       | 2 c              | cr,sp                  |                                 |      |      |     |  |
| nstalla              | tion factor   |                     |                         |                     |                      |      |      |      |       |                  |                        |                                 |      |      |     |  |
|                      |               |                     | MAC                     | _                   |                      |      |      | 1,2  |       |                  |                        |                                 | NPA  |      |     |  |
| or dry a             | and wet con   | crete               | CAC                     | $\gamma_{inst}$     | [-]                  |      |      |      |       |                  | <u>,0</u>              |                                 |      |      |     |  |
| or flood             | ded bore ho   | ما                  | HDB<br>CAC              | -                   |                      |      |      |      |       |                  | ,2<br>,4               |                                 |      |      |     |  |
| 01 11000             |               |                     | e specificatio          |                     |                      |      |      |      |       | ı                | , <del>+</del>         |                                 |      |      |     |  |

**Performances** 

Characteristic values of tension loads under static and quasi-static action

Annex C 6

| Table C7: Characteristic        | values of                      | shear I  | oads              | und  | er st              | atic                 | and                | qua               | si-sta             | atic ac | tion                  |      |
|---------------------------------|--------------------------------|----------|-------------------|------|--------------------|----------------------|--------------------|-------------------|--------------------|---------|-----------------------|------|
| Anchor size reinforcing bar     |                                |          | Ø8                | Ø 10 | Ø 12               | Ø 14                 | Ø 16               | Ø 20              | Ø 24               | Ø 25    | Ø 28                  | Ø 32 |
| Steel failure without lever arm |                                |          |                   |      |                    | •                    |                    |                   |                    |         | •                     |      |
| Characteristic shear resistance | V <sup>0</sup> Rk,s            | [kN]     |                   |      |                    |                      | 0,50               | ·As               | f <sub>uk</sub> 1) |         |                       |      |
| Cross section area              | A <sub>s</sub>                 | [mm²]    | 50                | 79   | 113                | 154                  | 201                | 314               | 452                | 491     | 616                   | 804  |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]      | 1,5 <sup>2)</sup> |      |                    |                      |                    |                   |                    |         |                       |      |
| Ductility factor                | k <sub>7</sub>                 | [-]      |                   |      |                    |                      |                    | 1,0               |                    |         |                       |      |
| Steel failure with lever arm    |                                | •        |                   |      |                    |                      |                    |                   |                    |         |                       |      |
| Characteristic bending moment   | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]     |                   |      |                    |                      | 1.2                | w <sub>el</sub> · | f <sub>uk</sub> 1) |         |                       |      |
| Elastic section modulus         | W <sub>el</sub>                | [mm³]    | 50                | 98   | 170                | 269                  | 402                | 785               | 896                | 1534    | 2155                  | 3217 |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]      |                   |      |                    | •                    |                    | 1,5 <sup>2)</sup> |                    |         |                       |      |
| Concrete pry-out failure        |                                | •        | •                 |      |                    |                      |                    |                   |                    |         |                       |      |
| Factor                          | k <sub>8</sub>                 | [-]      |                   |      |                    |                      |                    | 2,0               |                    |         |                       |      |
| Installation factor             | γ <sub>inst</sub>              | [-]      |                   |      |                    |                      |                    | 1,0               |                    |         |                       |      |
| Concrete edge failure           | 1                              | <b>'</b> |                   |      |                    |                      |                    |                   |                    |         |                       |      |
| Effective length of fastener    | I <sub>f</sub>                 | [mm]     |                   |      | min(h <sub>e</sub> | <sub>ef</sub> ; 12 · | · d <sub>nom</sub> | )                 |                    | min(    | h <sub>ef</sub> ; 300 | mm)  |
| Outside diameter of fastener    | d <sub>nom</sub>               | [mm]     | 8                 | 10   | 12                 | 14                   | 16                 | 20                | 24                 | 25      | 28                    | 32   |
| Installation factor             | γ <sub>inst</sub>              | [-]      |                   |      |                    |                      |                    | 1,0               |                    |         | •                     |      |

 $<sup>\</sup>stackrel{1)}{\text{s}}$   $f_{uk}$  shall be taken from the specifications of reinforcing bars  $\stackrel{2)}{\text{in}}$  in absence of national regulation

| Mungo Injection system MIT-Hybrid Plus for concrete                                    |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 7 |

| Table C8: Displa        | acements                   | under tensior     | ı load¹    | ) (threa | aded r | od)   |       |       |       |       |
|-------------------------|----------------------------|-------------------|------------|----------|--------|-------|-------|-------|-------|-------|
| Anchor size threaded ro | od                         |                   | M 8        | M 10     | M 12   | M 16  | M 20  | M24   | M 27  | M 30  |
| Non-cracked concrete (  | C20/25 under               | static and quasi- | -static ad | ction    |        |       |       |       |       |       |
| Temperature range I:    | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,031      | 0,032    | 0,034  | 0,037 | 0,039 | 0,042 | 0,044 | 0,046 |
| 80°C/50°C               | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,040      | 0,042    | 0,044  | 0,047 | 0,051 | 0,054 | 0,057 | 0,060 |
| Temperature range II:   | [mm/(N/mm²)]               | 0,032             | 0,034      | 0,035    | 0,038  | 0,041 | 0,044 | 0,046 | 0,048 |       |
| 120°C/72°C              | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,042      | 0,044    | 0,045  | 0,049 | 0,053 | 0,056 | 0,059 | 0,062 |
| Temperature range III:  | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,121      | 0,126    | 0,131  | 0,142 | 0,153 | 0,163 | 0,171 | 0,179 |
| 160°C/100°C             | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,124      | 0,129    | 0,135  | 0,146 | 0,157 | 0,168 | 0,176 | 0,184 |
| Cracked concrete C20/2  | 25 under stat              | ic and quasi-stat | ic action  |          |        |       |       |       |       |       |
| Temperature range I:    | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,081      | 0,083    | 0,085  | 0,090 | 0,095 | 0,099 | 0,103 | 0,106 |
| 80°C/50°C               | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,104      | 0,107    | 0,110  | 0,116 | 0,122 | 0,128 | 0,133 | 0,137 |
| Temperature range II:   | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,084      | 0,086    | 0,088  | 0,093 | 0,098 | 0,103 | 0,107 | 0,110 |
| 120°C/72°C              | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,108      | 0,111    | 0,114  | 0,121 | 0,127 | 0,133 | 0,138 | 0,143 |
| Temperature range III:  | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,312      | 0,321    | 0,330  | 0,349 | 0,367 | 0,385 | 0,399 | 0,412 |
| 160°C/100°C             | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,321      | 0,330    | 0,340  | 0,358 | 0,377 | 0,396 | 0,410 | 0,424 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor } \cdot \tau;$ 

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$ 

# Table C9: Displacements under shear load<sup>2)</sup> (threaded rod)

| Anchor size threade                                                          | ed rod                        | М 8     | M 10 | M 12 | M 16 | M 20 | M24  | M 27 | M 30 |      |  |
|------------------------------------------------------------------------------|-------------------------------|---------|------|------|------|------|------|------|------|------|--|
| Non-cracked and cracked concrete C20/25 under static and quasi-static action |                               |         |      |      |      |      |      |      |      |      |  |
| All temperature                                                              | $\delta_{V0}$ -factor         | [mm/kN] | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |  |
| ranges                                                                       | $\delta_{V_{\infty}}$ -factor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |  |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$ 

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-factor} + V;$ 

| Mungo Injection system MIT-Hybrid Plus for concrete                             |           |
|---------------------------------------------------------------------------------|-----------|
| Performances Displacements under static and quasi-static action (threaded rods) | Annex C 8 |



| Table C10: Displa         | cements u                  | nder tension      | load <sup>1)</sup> (Ir | nternal t | hreaded | rod)    |         |         |
|---------------------------|----------------------------|-------------------|------------------------|-----------|---------|---------|---------|---------|
| Anchor size Internal thre | eaded rod                  |                   | IG-M 6                 | IG-M 8    | IG-M 10 | IG-M 12 | IG-M 16 | IG-M 20 |
| Non-cracked concrete C    | 20/25 under s              | tatic and quasi-s | tatic actio            | n         | •       |         |         |         |
| Temperature range I:      | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,032                  | 0,034     | 0,037   | 0,039   | 0,042   | 0,046   |
| 80°C/50°C                 | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,042                  | 0,044     | 0,047   | 0,051   | 0,054   | 0,060   |
| Temperature range II:     | δ <sub>N0</sub> -factor    | [mm/(N/mm²)]      | 0,034                  | 0,035     | 0,038   | 0,041   | 0,044   | 0,048   |
| 120°C/72°C                | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,044                  | 0,045     | 0,049   | 0,053   | 0,056   | 0,062   |
| Temperature range III:    | δ <sub>N0</sub> -factor    | [mm/(N/mm²)]      | 0,126                  | 0,131     | 0,142   | 0,153   | 0,163   | 0,179   |
| 160°C/100°C               | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,129                  | 0,135     | 0,146   | 0,157   | 0,168   | 0,184   |
| Cracked concrete C20/2    | 5 under static             | and quasi-static  | action                 |           |         |         |         |         |
| Temperature range I:      | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,083                  | 0,085     | 0,090   | 0,095   | 0,099   | 0,106   |
| 80°C/50°C                 | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,170                  | 0,110     | 0,116   | 0,122   | 0,128   | 0,137   |
| Temperature range II:     | δ <sub>N0</sub> -factor    | [mm/(N/mm²)]      | 0,086                  | 0,088     | 0,093   | 0,098   | 0,103   | 0,110   |
| 120°C/72°C                | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,111                  | 0,114     | 0,121   | 0,127   | 0,133   | 0,143   |
| Temperature range III:    | $\delta_{N0}$ -factor      | [mm/(N/mm²)]      | 0,321                  | 0,330     | 0,349   | 0,367   | 0,385   | 0,412   |
| 160°C/100°C               | $\delta_{N\infty}$ -factor | [mm/(N/mm²)]      | 0,330                  | 0,340     | 0,358   | 0,377   | 0,396   | 0,424   |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor  $\cdot \tau$ ;  $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor  $\tau$ ; τ: action bond stress for tension

# Table C11: Displacements under shear load<sup>2)</sup> (Internal threaded rod)

| Anchor size Inter                                                            | nal threaded rod              |         | IG-M 6 | IG-M 8 | IG-M 10 | IG-M 12 | IG-M 16 | IG-M 20 |  |  |  |
|------------------------------------------------------------------------------|-------------------------------|---------|--------|--------|---------|---------|---------|---------|--|--|--|
| Non-cracked and cracked concrete C20/25 under static and quasi-static action |                               |         |        |        |         |         |         |         |  |  |  |
| All temperature                                                              | δ <sub>V0</sub> -factor       | [mm/kN] | 0,07   | 0,06   | 0,06    | 0,05    | 0,04    | 0,04    |  |  |  |
| ranges                                                                       | $\delta_{V_{\infty}}$ -factor | [mm/kN] | 0,10   | 0,09   | 0,08    | 0,08    | 0,06    | 0,06    |  |  |  |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$

V: action shear load

electronic copy of the eta by dibt: eta-17/0128

| Mungo Injection system MIT-Hybrid Plus for concrete                                            |           |
|------------------------------------------------------------------------------------------------|-----------|
| Performances Displacements under static and quasi-static action (Internal threaded anchor rod) | Annex C 9 |



| Table C12:                                                                                                 | Table C12: Displacements under tension load <sup>1)</sup> (rebar) |                           |          |          |       |       |       |       |       |       |       |       |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Anchor size reinfo                                                                                         | orcing bar                                                        |                           | Ø8       | Ø 10     | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 24  | Ø 25  | Ø 28  | Ø 32  |
| Non-cracked concrete C20/25 under static and quasi-static action                                           |                                                                   |                           |          |          |       |       |       |       |       |       |       |       |
| Temperature $\delta_{N0}$ -factor [mm/(N/mm²)] 0,031 0,032 0,034 0,035 0,037 0,039 0,042 0,043 0,045 0,048 |                                                                   |                           |          |          |       |       |       |       |       |       |       |       |
| range I:<br>80°C/50°C                                                                                      | $\delta_{N\infty}$ -factor                                        | [mm/(N/mm²)]              | 0,040    | 0,042    | 0,044 | 0,045 | 0,047 | 0,051 | 0,054 | 0,055 | 0,058 | 0,063 |
| Temperature                                                                                                | $\delta_{N0}$ -factor                                             | [mm/(N/mm²)]              | 0,032    | 0,034    | 0,035 | 0,036 | 0,038 | 0,041 | 0,044 | 0,045 | 0,047 | 0,050 |
| range II:<br>120°C/72°C                                                                                    | $\delta_{N\infty}$ -factor                                        | [mm/(N/mm²)]              | 0,042    | 0,044    | 0,045 | 0,047 | 0,049 | 0,053 | 0,056 | 0,057 | 0,060 | 0,065 |
| Temperature                                                                                                | $\delta_{\text{N0}}$ -factor                                      | [mm/(N/mm²)]              | 0,121    | 0,126    | 0,131 | 0,137 | 0,142 | 0,153 | 0,163 | 0,164 | 0,172 | 0,186 |
| range III:<br>160°C/100°C                                                                                  | $\delta_{N\infty}$ -factor                                        | [mm/(N/mm²)]              | 0,124    | 0,129    | 0,135 | 0,141 | 0,146 | 0,157 | 0,168 | 0,169 | 0,177 | 0,192 |
| Cracked concrete                                                                                           | C20/25 und                                                        | er static and qu          | asi-stat | ic actic | n     |       |       |       |       |       |       |       |
| Temperature                                                                                                | $\delta_{N0}$ -factor                                             | [mm/(N/mm²)]              | 0,081    | 0,083    | 0,085 | 0,087 | 0,090 | 0,095 | 0,099 | 0,099 | 0,103 | 0,108 |
| range I:<br>80°C/50°C                                                                                      | $\delta_{N\infty}$ -factor                                        | [mm/(N/mm²)]              | 0,104    | 0,107    | 0,110 | 0,113 | 0,116 | 0,122 | 0,128 | 0,128 | 0,133 | 0,141 |
| Temperature                                                                                                | $\delta_{N0}$ -factor                                             | [mm/(N/mm²)]              | 0,084    | 0,086    | 0,088 | 0,090 | 0,093 | 0,098 | 0,103 | 0,103 | 0,107 | 0,113 |
| range II:<br>120°C/72°C                                                                                    | $\delta_{N\infty}$ -factor                                        | [mm/(N/mm²)]              | 0,108    | 0,111    | 0,114 | 0,118 | 0,121 | 0,127 | 0,133 | 0,133 | 0,138 | 0,148 |
| Temperature                                                                                                | $\delta_{\text{N0}}$ -factor                                      | [mm/(N/mm²)]              | 0,312    | 0,321    | 0,330 | 0,340 | 0,349 | 0,367 | 0,385 | 0,385 | 0,399 | 0,425 |
| range III:<br>160°C/100°C                                                                                  | $\delta_{N\infty}$ -factor                                        | [mm/(N/mm <sup>2</sup> )] | 0,321    | 0,330    | 0,340 | 0,349 | 0,358 | 0,377 | 0,396 | 0,396 | 0,410 | 0,449 |

<sup>1)</sup> Calculation of the displacement

τ: action bond stress for tension

$$\begin{split} &\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} &\cdot \tau; \\ &\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-factor} &\cdot \tau; \end{split}$$

Displacements under shear load<sup>2)</sup> (rebar) Table C13:

| Anchor size rein                                         | Anchor size reinforcing bar |         |      |      | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
|----------------------------------------------------------|-----------------------------|---------|------|------|------|------|------|------|------|------|------|------|
| For concrete C20/25 under static and quasi-static action |                             |         |      |      |      |      |      |      |      |      |      |      |
| All temperature                                          | $\delta_{V0}$ -factor       | [mm/kN] | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 | 0,03 |
| ranges                                                   | $\delta_{V\infty}$ -factor  | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 | 0,04 | 0,04 |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$
V: action shear load

| Mungo Injection system MIT-Hybrid Plus for concrete        |            |
|------------------------------------------------------------|------------|
| Performances                                               | Annex C 10 |
| Displacements under static and quasi-static action (rebar) |            |
|                                                            |            |



1,4

| Tabl                                   |                                                                                  |                     | eristic value<br>ance catego |                         |                      | unde                    | r seis   | mic a   | ction  |                 |         |     |     |
|----------------------------------------|----------------------------------------------------------------------------------|---------------------|------------------------------|-------------------------|----------------------|-------------------------|----------|---------|--------|-----------------|---------|-----|-----|
| Ancho                                  | r size thread                                                                    | led rod             |                              |                         |                      | М 8                     | M 10     | M 12    | M 16   | M 20            | M24     | M27 | M30 |
| Steel f                                |                                                                                  |                     |                              | _                       |                      |                         | •        |         |        |                 |         |     |     |
| Charad<br>(Seism                       | cteristic tensionic C1)                                                          | on resist           | ance                         | N <sub>Rk,s,eq,C1</sub> | [kN]                 | 1,0 • N <sub>Rk,s</sub> |          |         |        |                 |         |     |     |
| (Seism<br>Steel, s<br>Stainle          | cteristic tension<br>nic C2)<br>strength class<br>sss Steel A4 a<br>th class ≥70 | s 8.8               | ·                            | N <sub>Rk,s,eq,C2</sub> | [kN]                 | N                       | PA       |         | 1,0 •  | $N_{Rk,s}$      |         | NF  | PA  |
| Partial factor                         |                                                                                  |                     |                              | γ <sub>Ms,N</sub>       | [-]                  |                         |          |         | see Ta | ble C1          |         |     |     |
| Combined pull-out and concrete failure |                                                                                  |                     |                              |                         |                      |                         |          |         |        |                 |         |     |     |
| Charac                                 | cteristic bond                                                                   | resistan            | ce in cracked a              | nd non-cracke           | d concrete (         | C20/25                  | <u> </u> |         |        |                 |         |     |     |
| ⊕ I: 80°C/50°C                         |                                                                                  |                     |                              | <sup>τ</sup> Rk,eq,C1   | [N/mm <sup>2</sup> ] | 7,0                     | 7,5      | 8,0     | 9,0    | 8,5             | 7,0     | 7,0 | 7,0 |
| rang                                   | 1. 60 0/50 0                                                                     |                     | Dry, wet concrete and        | <sup>τ</sup> Rk,eq,C2   | [N/mm²]              | N                       | PA       | 3,6     | 3,5    | 3,3             | 2,3     | NF  | PA  |
| nre                                    | II. 10000/70                                                                     | D0C                 |                              | <sup>τ</sup> Rk,eq,C1   | [N/mm <sup>2</sup> ] | 6,0                     | 6,5      | 7,0     | 7,5    | 7,0             | 6,0     | 6,0 | 6,0 |
| Temperature range                      | II: 120°C/72                                                                     | 2.0                 | flooded bore<br>hole         | τ <sub>Rk,eq,C2</sub>   | [N/mm <sup>2</sup> ] | N                       | PA       | 3,1     | 3,0    | 2,8             | 2,0     | NF  | PA  |
| emp                                    | III: 160°C/100°C                                                                 |                     | TIOIC                        | <sup>τ</sup> Rk,eq,C1   | [N/mm²]              | 5,5                     | 5,5      | 6,0     | 6,5    | 6,0             | 5,5     | 5,5 | 5,5 |
| <u> </u>                               | III. 100 O/ I                                                                    | 00 0                |                              | τ <sub>Rk,eq,C2</sub>   | [N/mm²]              | NPA                     |          | 2,5 2,7 |        | 2,5             | 1,8     | NF  | PA  |
| Increas                                | sing factors fo                                                                  | or concre           | ete ψ <sub>C</sub>           | C25/30 to               | C50/60               | 1,0                     |          |         |        |                 |         |     |     |
| Concr                                  | ete cone fail                                                                    | ure                 |                              |                         |                      |                         |          |         |        |                 |         |     |     |
| Non-cr                                 | acked concre                                                                     | ete                 |                              | k <sub>ucr,N</sub>      | [-]                  |                         |          |         | 11     | ,0              |         |     |     |
| Cracke                                 | ed concrete                                                                      |                     |                              | k <sub>cr,N</sub>       | [-]                  |                         |          |         |        | ,7              |         |     |     |
| Edge o                                 | distance                                                                         |                     |                              | c <sub>cr,N</sub>       | [mm]                 |                         |          |         | 1,5    | h <sub>ef</sub> |         |     |     |
| Axial d                                | istance                                                                          |                     |                              | s <sub>cr,N</sub>       | [mm]                 |                         |          |         | 2 c    | cr,N            |         |     |     |
| Splittii                               | ng                                                                               |                     |                              |                         |                      |                         |          |         |        |                 |         |     |     |
|                                        |                                                                                  | h/h <sub>ef</sub> ≥ | 2,0                          |                         |                      |                         |          |         | 1,0    | h <sub>ef</sub> |         |     |     |
| Edge o                                 | listance                                                                         | 2,0 > h             | /h <sub>ef</sub> > 1,3       | C <sub>cr,sp</sub>      | [mm]                 |                         |          | 2 · h   | ef (2, | $5-\frac{1}{h}$ | h<br>ef |     |     |
|                                        |                                                                                  | h/h <sub>ef</sub> ≤ | 1,3                          | 1                       |                      |                         |          |         | 2,4    | h <sub>ef</sub> |         |     |     |
| Axial d                                | xial distance                                                                    |                     |                              | s <sub>cr,sp</sub>      | [mm]                 | _                       |          |         |        |                 |         |     |     |
| Install                                | nstallation factor                                                               |                     |                              | , , ,                   |                      |                         |          |         |        |                 |         |     |     |
| for dry                                | r dry and wet concrete                                                           |                     |                              |                         |                      | 1,0                     |          |         |        |                 |         |     |     |
| for dry and wet concrete HDB           |                                                                                  |                     | γinst                        | [-]                     | 1,2                  |                         |          |         |        |                 |         |     |     |

| Mungo Injection system MIT-Hybrid Plus for concrete                                                   |            |
|-------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1+C2) | Annex C 11 |

CAC

Z34904.19 8.06.01-172/19

for flooded bore hole



| Anchor size threaded rod                                                                                                           |                                      |      | М 8                                   | M 10 | M 12                  | M 16                 | M 20    | M24      | M 27                  | М 30   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|---------------------------------------|------|-----------------------|----------------------|---------|----------|-----------------------|--------|--|--|
| Steel failure without lever arm                                                                                                    |                                      |      |                                       |      |                       |                      |         | l        |                       |        |  |  |
| Characteristic shear resistance (Seismic C1)                                                                                       | V <sub>Rk,s,eq,C1</sub>              | [kN] | 0,70 • V <sup>0</sup> <sub>Rk,s</sub> |      |                       |                      |         |          |                       |        |  |  |
| Characteristic shear resistance<br>(Seismic C2),<br>Steel, strength class 8.8<br>Stainless Steel A4 and HCR,<br>Strength class ≥70 | [kN]                                 | N    | PA                                    |      | 0,70 •                | V <sup>0</sup> Rk,s  |         | NI       | PA                    |        |  |  |
| Partial factor                                                                                                                     | $\gamma_{Ms,V}$                      | [-]  |                                       |      |                       | see                  | Table C | C1       |                       |        |  |  |
| Ductility factor                                                                                                                   | k <sub>7</sub>                       | [-]  |                                       |      |                       |                      | 1,0     |          |                       |        |  |  |
| Steel failure with lever arm                                                                                                       |                                      |      |                                       |      |                       |                      |         |          |                       |        |  |  |
|                                                                                                                                    | M <sup>0</sup> Rk,s,eq,C1            | [Nm] |                                       |      | No Pe                 | rforman              | ce Asse | essed (N | IPA)                  |        |  |  |
| Characteristic bending moment                                                                                                      | M <sup>0</sup> <sub>Rk,s,eq,C2</sub> | [Nm] |                                       |      | No Pe                 | rforman              | ce Asse | essed (N | IPA)                  |        |  |  |
| Concrete pry-out failure                                                                                                           |                                      |      |                                       |      |                       |                      |         |          |                       |        |  |  |
| Factor                                                                                                                             | k <sub>8</sub>                       | [-]  |                                       |      |                       |                      | 2,0     |          |                       |        |  |  |
| Installation factor                                                                                                                | γinst                                | [-]  |                                       |      |                       |                      | 1,0     |          |                       |        |  |  |
| Concrete edge failure                                                                                                              | ·                                    |      |                                       |      |                       |                      |         |          |                       |        |  |  |
| Effective length of fastener                                                                                                       | If                                   | [mm] |                                       | n    | nin(h <sub>ef</sub> ; | 12 • d <sub>no</sub> | m)      |          | min(h <sub>ef</sub> ; | 300mm) |  |  |
| Outside diameter of fastener                                                                                                       | d <sub>nom</sub>                     | [mm] | 8                                     | 10   | 12                    | 16                   | 20      | 24       | 27                    | 30     |  |  |
| Installation factor                                                                                                                | γinst                                | [-]  |                                       |      |                       |                      | 1,0     |          |                       |        |  |  |
| Factor for annular gap $\alpha_{\rm gap}$ [-] $0.5 (1.0)^{1)}$                                                                     |                                      |      |                                       |      |                       |                      |         |          |                       |        |  |  |

<sup>1)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

| Mungo Injection system MIT-Hybrid Plus for concrete                                                 |            |
|-----------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1+C2) | Annex C 12 |



| Table                                   |                                        |                     | teristic va<br>nance cat |                      |            | oads                              | und   | er se | ismi  | c act | ion                    |      |      |      |      |
|-----------------------------------------|----------------------------------------|---------------------|--------------------------|----------------------|------------|-----------------------------------|-------|-------|-------|-------|------------------------|------|------|------|------|
| Ancho                                   | r size reinfo                          | orcing I            | oar                      |                      |            | Ø8                                | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø 20                   | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
| Steel fa                                | ailure                                 |                     |                          |                      | _          |                                   |       |       |       |       |                        |      |      |      |      |
| Charac                                  | teristic tensi                         | on resi             | stance                   | N <sub>Rk,s,eq</sub> | [kN]       | $1.0 \cdot A_s \cdot f_{uk}^{1)}$ |       |       |       |       |                        |      |      |      |      |
| Cross s                                 | section area                           |                     |                          | $A_s$                | [mm²]      | 50                                | 79    | 113   | 154   | 201   | 314                    | 452  | 491  | 616  | 804  |
| Partial factor $\gamma_{Ms,N}$ [-]      |                                        |                     |                          |                      |            |                                   |       |       |       | 1,    | <b>4</b> <sup>2)</sup> |      |      |      |      |
| Combi                                   | ned pull-ou                            | t and c             | oncrete fail             | ure                  |            |                                   |       |       |       |       |                        |      |      |      |      |
| Charac                                  | teristic bond                          | l resista           | ince in crack            | ed and non-          | cracked co | ncrete                            | C20/2 | 25    |       |       |                        |      |      |      |      |
| g I: 80°C/50°C Dry, wet                 |                                        |                     |                          | <sup>τ</sup> Rk,eq   | [N/mm²]    | 5,5                               | 5,5   | 6,0   | 6,5   | 6,5   | 6,5                    | 6,5  | 7,0  | 7,0  | 7,0  |
| Dry, wet concrete and flooded bore hole |                                        |                     |                          | <sup>τ</sup> Rk,eq   | [N/mm²]    | 4,5                               | 5,0   | 5,0   | 5,5   | 5,5   | 5,5                    | 5,5  | 6,0  | 6,0  | 6,0  |
| III: 160°C/100°C                        |                                        |                     | τ <sub>Rk,eq</sub>       | [N/mm²]              | 4,0        | 4,5                               | 4,5   | 5,0   | 5,0   | 5,0   | 5,0                    | 5,0  | 5,0  | 5,0  |      |
| Increas                                 | sing factors f                         | or conc             | rete ψ <sub>C</sub>      | C25/30 to            | C50/60     |                                   |       |       |       | 1     | ,0                     |      |      | •    |      |
| Concre                                  | ete cone fail                          | lure                |                          |                      |            |                                   |       |       |       |       |                        |      |      |      |      |
| Non-cra                                 | acked concr                            | ete                 |                          | k <sub>ucr,N</sub>   | [-]        | 11,0                              |       |       |       |       |                        |      |      |      |      |
| Cracke                                  | d concrete                             |                     |                          | k <sub>cr,N</sub>    | [-]        | 7,7                               |       |       |       |       |                        |      |      |      |      |
| Edge d                                  | listance                               |                     |                          | c <sub>cr,N</sub>    | [mm]       |                                   |       |       |       | 1,5   | h <sub>ef</sub>        |      |      |      |      |
| Axial di                                | istance                                |                     |                          | s <sub>cr,N</sub>    | [mm]       |                                   |       |       |       | 2 c   | cr,N                   |      |      |      |      |
| Splittir                                | ng                                     |                     |                          | · ·                  | •          |                                   |       |       |       |       | ·                      |      |      |      |      |
|                                         |                                        | h/h <sub>ef</sub> ≥ | 2,0                      |                      |            |                                   |       |       |       | 1,0   | h <sub>ef</sub>        |      |      |      |      |
| Edge d                                  | Edge distance $2.0 > h/h_{ef} > 1.3$ c |                     |                          |                      | [mm]       |                                   |       |       | 2 · h | ef (2 | ,5 – <del>-</del>      | h of |      |      |      |
|                                         | h/h <sub>ef</sub> ≤ 1,3                |                     |                          |                      |            |                                   |       |       |       | 2,4   | h <sub>ef</sub>        |      |      |      |      |
| Axial distance S <sub>cr,sp</sub> [mn   |                                        |                     |                          |                      |            | _                                 |       |       |       |       |                        |      |      |      |      |
| Installa                                | Installation factor                    |                     |                          |                      |            |                                   |       |       |       |       |                        |      |      |      |      |
| for dry                                 | and wet con                            | γ <sub>inst</sub>   | [-]                      | 1,0<br>1,2           |            |                                   |       |       |       |       |                        |      |      |      |      |
| for floo                                | ded bore ho                            | le                  | HDB<br>CAC               | 1,11121              | LJ         |                                   |       |       |       |       | , <u> </u>             |      |      |      |      |

 $<sup>\</sup>stackrel{1)}{\rm f}_{\rm uk}$  shall be taken from the specifications of reinforcing bars  $\stackrel{2)}{\rm in}$  absence of national regulation

| Mungo Injection system MIT-Hybrid Plus for concrete                                                |            |
|----------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) | Annex C 13 |



| Table C17: Characteristic (performance        |                                                                       |       | oads                                                  | und  | er se              | eism                 | ic ac              | tion   |       |         |                       |      |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------|-------|-------------------------------------------------------|------|--------------------|----------------------|--------------------|--------|-------|---------|-----------------------|------|--|--|
| Anchor size reinforcing bar                   |                                                                       |       | Ø8                                                    | Ø 10 | Ø 12               | Ø 14                 | Ø 16               | Ø 20   | Ø 24  | Ø 25    | Ø 28                  | Ø 32 |  |  |
| Steel failure without lever arm               |                                                                       |       |                                                       | •    | •                  |                      |                    | •      |       |         |                       |      |  |  |
| Characteristic shear resistance               | V <sub>Rk,s,eq</sub>                                                  | [kN]  | 0,35 • A <sub>s</sub> • f <sub>uk</sub> <sup>1)</sup> |      |                    |                      |                    |        |       |         |                       |      |  |  |
| Cross section area                            | A <sub>s</sub>                                                        | [mm²] | 50                                                    | 79   | 113                | 154                  | 201                | 314    | 452   | 491     | 616                   | 804  |  |  |
| Partial factor $\gamma_{Ms,V}$ [-] $1,5^{2)}$ |                                                                       |       |                                                       |      |                    |                      |                    |        |       |         |                       |      |  |  |
| Ductility factor                              | k <sub>7</sub>                                                        | [-]   |                                                       |      |                    |                      |                    | 1,0    |       |         |                       |      |  |  |
| Steel failure with lever arm                  |                                                                       |       |                                                       |      |                    |                      |                    |        |       |         |                       |      |  |  |
| Characteristic bending moment                 | M <sup>0</sup> <sub>Rk,s,eq</sub>                                     | [Nm]  |                                                       |      | N                  | o Perf               | ormar              | nce As | sesse | d (NPA) | )                     |      |  |  |
| Concrete pry-out failure                      | •                                                                     |       |                                                       |      |                    |                      |                    |        |       |         |                       |      |  |  |
| Factor                                        | k <sub>8</sub>                                                        | [-]   |                                                       |      |                    |                      |                    | 2,0    |       |         |                       |      |  |  |
| Installation factor                           | γinst                                                                 | [-]   |                                                       |      |                    |                      |                    | 1,0    |       |         |                       |      |  |  |
| Concrete edge failure                         |                                                                       | •     |                                                       |      |                    |                      |                    |        |       |         |                       |      |  |  |
| Effective length of fastener                  | I <sub>f</sub>                                                        | [mm]  |                                                       | 1    | min(h <sub>e</sub> | <sub>ef</sub> ; 12 · | · d <sub>nom</sub> | 1)     |       | min(    | h <sub>ef</sub> ; 300 | mm)  |  |  |
| Outside diameter of fastener                  | d <sub>nom</sub>                                                      | [mm]  | 8                                                     | 10   | 12                 | 14                   | 16                 | 20     | 24    | 25      | 28                    | 32   |  |  |
| Installation factor                           | γinst                                                                 | [-]   |                                                       |      |                    |                      |                    | 1,0    |       |         |                       |      |  |  |
| Factor for annular gap                        | Factor for annular gap $\alpha_{\rm gap}$ [-] 0,5 (1,0) <sup>3)</sup> |       |                                                       |      |                    |                      |                    |        |       |         |                       |      |  |  |

| Mungo Injection system MIT-Hybrid Plus for concrete                                              |            |
|--------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1) | Annex C 14 |

<sup>1)</sup> f<sub>uk</sub> shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

English translation prepared by DIBt



| Table C18: Display      | Table C18: Displacements under tension load (threaded rod) |              |       |       |       |       |       |       |       |       |  |  |  |  |
|-------------------------|------------------------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| Anchor size threaded ro | od                                                         |              | M 8   | M 10  | M 12  | M 16  | M 20  | M24   | M 27  | M 30  |  |  |  |  |
| Cracked concrete C20/2  | mic C1 action                                              |              |       |       |       |       |       |       |       |       |  |  |  |  |
| Temperature range I:    | $\delta_{N0}$ -factor                                      | [mm/(N/mm²)] | 0,081 | 0,083 | 0,085 | 0,090 | 0,095 | 0,099 | 0,103 | 0,106 |  |  |  |  |
| 80°C/50°C               | $\delta_{N\infty}$ -factor                                 | [mm/(N/mm²)] | 0,104 | 0,107 | 0,110 | 0,116 | 0,122 | 0,128 | 0,133 | 0,137 |  |  |  |  |
| Temperature range II:   | $\delta_{N0}$ -factor                                      | [mm/(N/mm²)] | 0,084 | 0,086 | 0,088 | 0,093 | 0,098 | 0,103 | 0,107 | 0,110 |  |  |  |  |
| 120°C/72°C              | $\delta_{N\infty}$ -factor                                 | [mm/(N/mm²)] | 0,108 | 0,111 | 0,114 | 0,121 | 0,127 | 0,133 | 0,138 | 0,143 |  |  |  |  |
| Temperature range III:  | $\delta_{N0}$ -factor                                      | [mm/(N/mm²)] | 0,312 | 0,321 | 0,330 | 0,349 | 0,367 | 0,385 | 0,399 | 0,412 |  |  |  |  |
| 160°C/100°C             | $\delta_{N_{\infty}}$ -factor                              | [mm/(N/mm²)] | 0,321 | 0,330 | 0,340 | 0,358 | 0,377 | 0,396 | 0,410 | 0,424 |  |  |  |  |

## Table C19: Displacements under tension load<sup>1)</sup> (rebar)

| Anchor size reinfo        | Anchor size reinforcing bar                     |              |       | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 24  | Ø 25  | Ø 28  | Ø 32  |
|---------------------------|-------------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Cracked concrete          | Cracked concrete C20/25 under seismic C1 action |              |       |       |       |       |       |       |       |       |       |       |
| Temperature               | $\delta_{N0}$ -factor                           | [mm/(N/mm²)] | 0,081 | 0,083 | 0,085 | 0,087 | 0,090 | 0,095 | 0,099 | 0,099 | 0,103 | 0,108 |
| range I:<br>80°C/50°C     | $\delta_{N\infty}$ -factor                      | [mm/(N/mm²)] | 0,104 | 0,107 | 0,110 | 0,113 | 0,116 | 0,122 | 0,128 | 0,128 | 0,133 | 0,141 |
| Temperature               | $\delta_{N0}$ -factor                           | [mm/(N/mm²)] | 0,084 | 0,086 | 0,088 | 0,090 | 0,093 | 0,098 | 0,103 | 0,103 | 0,107 | 0,113 |
| range II:<br>120°C/72°C   | $\delta_{N\infty}$ -factor                      | [mm/(N/mm²)] | 0,108 | 0,111 | 0,114 | 0,118 | 0,121 | 0,127 | 0,133 | 0,133 | 0,138 | 0,148 |
| Temperature               | $\delta_{N0}$ -factor                           | [mm/(N/mm²)] | 0,312 | 0,321 | 0,330 | 0,340 | 0,349 | 0,367 | 0,385 | 0,385 | 0,399 | 0,425 |
| range III:<br>160°C/100°C | $\delta_{N\infty}$ -factor                      | [mm/(N/mm²)] | 0,321 | 0,330 | 0,340 | 0,349 | 0,358 | 0,377 | 0,396 | 0,396 | 0,410 | 0,449 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$ 

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor  $\cdot \tau$ ; ( $\tau$ : action bond stress for tension)

# Table C20: Displacements under shear load<sup>2)</sup> (threaded rod)

| Anchor size thread | М 8                           | M 10            | M 12     | M 16   | M 20 | M24  | M 27 | M 30 |      |      |
|--------------------|-------------------------------|-----------------|----------|--------|------|------|------|------|------|------|
| Non-cracked and c  | racked concrete C2            | 0/25 under seis | mic C1 a | action |      |      |      |      |      |      |
| All temperature    | $\delta_{V0}$ -factor         | [mm/kN]         | 0,06     | 0,06   | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges             | $\delta_{V_{\infty}}$ -factor | [mm/kN]         | 0,09     | 0,08   | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |

# Table C21: Displacement under shear load<sup>1)</sup> (rebar)

| Anchor size reinforcing bar                 |                            |         | Ø8   | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
|---------------------------------------------|----------------------------|---------|------|------|------|------|------|------|------|------|------|------|
| For concrete C20/25 under seismic C1 action |                            |         |      |      |      |      |      |      |      |      |      |      |
| All temperature                             | $\delta_{V0}$ -factor      | [mm/kN] | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 | 0,03 |
| ranges                                      | $\delta_{V\infty}$ -factor | [mm/kN] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 | 0,04 | 0,04 |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \text{V}; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \text{V}; \ (\text{V: action shear load}) \end{split}$$

| Mungo Injection system MIT-Hybrid Plus for concrete                          |            |
|------------------------------------------------------------------------------|------------|
| Performances Displacements under seismic C1 action (threaded rods and rebar) | Annex C 15 |
|                                                                              |            |

English translation prepared by DIBt



| Table C22: Displacements under tension load <sup>1)</sup> (threaded rod) |                              |              |     |      |       |       |       |       |      |      |
|--------------------------------------------------------------------------|------------------------------|--------------|-----|------|-------|-------|-------|-------|------|------|
| Anchor size threaded rod                                                 |                              |              |     | M 10 | M 12  | M 16  | M 20  | M24   | M 27 | M 30 |
| Cracked concrete C20/25 under seismic C2 action                          |                              |              |     |      |       |       |       |       |      |      |
| All temperature $\delta_{N,eq(DLS)}$ -factor [mm/(N/mm <sup>2</sup> )]   |                              |              | N   | DΛ   | 0,120 | 0,100 | 0,100 | 0,120 | NF   | 2.4  |
| ranges                                                                   | $\delta_{N,eq(ULS)}$ -factor | [mm/(N/mm²)] | NPA |      | 0,140 | 0,150 | 0,110 | 0,150 | INF  | - A  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N,eq(DLS)}} = \delta_{\text{N,eq(DLS)}} \text{-factor} \cdot \tau;$ 

 $\delta_{N,eq(ULS)} = \delta_{N,eq(ULS)} \text{-factor} \cdot \tau; \qquad \qquad (\tau: \text{ action bond stress for tension})$ 

# Table C23: Displacements under shear load<sup>2)</sup> (threaded rod)

| Anchor size threaded rod                        |                              |         |       | M 10 | M 12 | M 16 | M 20      | M24  | M 27 | M 30 |
|-------------------------------------------------|------------------------------|---------|-------|------|------|------|-----------|------|------|------|
| Cracked concrete C20/25 under seismic C2 action |                              |         |       |      |      |      |           |      |      |      |
| All temperature                                 | $\delta_{V,eq(DLS)}$ -factor | [mm/kN] | NIDA  | ٦,٨  | 0,27 | 0,13 | 0,09 0,06 | 0,06 | NPA  |      |
| ranges                                          | $\delta_{V,ep(ULS)}$ -factor | [mm/kN] | - NPA |      | 0,27 | 0,14 | 0,10      | 0,08 | INF  | -A   |

<sup>&</sup>lt;sup>2)</sup> Calculation of the displacement

 $\delta_{\text{V,eq(DLS)}} = \delta_{\text{V,eq(DLS)}}\text{-factor } \cdot \text{V};$ 

 $\delta_{V,\text{eq(ULS)}} = \delta_{V,\text{eq(ULS)}}\text{-factor} \quad V; \qquad \text{(V: action shear load)}$ 

| Mungo Injection system MIT-Hybrid Plus for concrete   |            |
|-------------------------------------------------------|------------|
| Performances                                          | Annex C 16 |
| Displacements under seismic C2 action (threaded rods) |            |
|                                                       |            |