

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0127 vom 13. März 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

Verbunddübel zur Verankerung im Beton

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 3

31 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-17/0127 vom 20. Februar 2017

Europäische Technische Bewertung ETA-17/0127

Seite 2 von 31 | 13. März 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0127

Seite 3 von 31 | 13. März 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel WIT-UH 300 / WIT-VH 300 und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen Ø8 bis Ø32 mm oder einer Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung	Siehe Anhang
(statische und quasi-statische Einwirkungen)	C 1, C 2, C 4, C 6
Charakteristischer Widerstand unter Querbeanspruchung	Siehe Anhang
(statische und quasi-statische Einwirkungen)	C 1, C 3, C 5, C 7
Verschiebungen	Siehe Anhang
(statische und quasi-statische Einwirkungen)	C 8 bis C 10
Charakteristischer Widerstand für seismische	Siehe Anhang
Leitungskategorie C1	C 11 bis C 14
Charakteristischer Widerstand und Verschiebungen für	Siehe Anhang
seismische Leitungskategorie C2	C 11, C 12, C 15, C 16

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-17/0127

Seite 4 von 31 | 13. März 2019

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

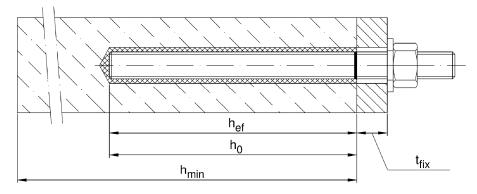
Folgendes System ist anzuwenden: 1

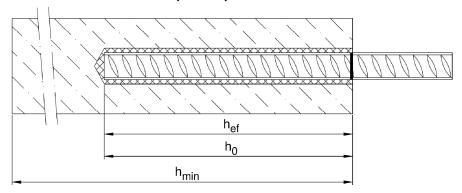
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

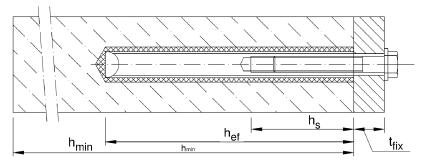
Ausgestellt in Berlin am 13. März 2019 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt:


Einbauzustand Ankerstange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

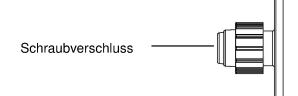
Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindestange IG-M6 bis IG-M20

 t_{fix} = Dicke des Anbauteils

h_{ef} = Wirksame Verankerungstiefe

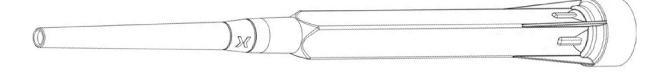
 $h_0 = Bohrlochtiefe$


 h_{min} = Mindestbauteildicke

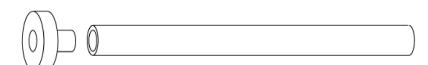
Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Produktbeschreibung Einbauzustand	Anhang A 1


Kartusche: WIT-UH 300 / WIT-VH 300 / WIT-VM 300

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml Kartusche (Typ: Koaxial)


Aufdruck: WIT-UH 300 / WIT-VH 300 / WIT-VM 300, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

235 ml, 345 ml bis 360 ml und 825 ml Kartusche (Typ: "side-by-side")

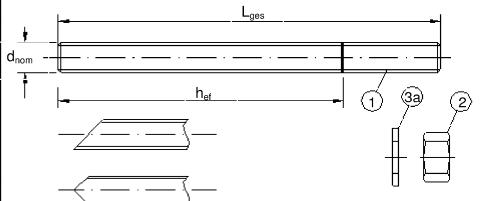


Aufdruck: WIT-UH 300 / WIT-VH 300 / WIT-VM 300, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

Statikmischer WIT-UH

Verfüllstutzen und Mischerverlängerung

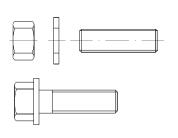
Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

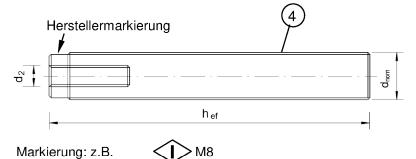

Produktbeschreibung

Injektionssystem

Anhang A 2

Ankerstange M8, M10, M12, M16, M20, M24, M27, M30 mit Unterlegscheibe und Sechskantmutter



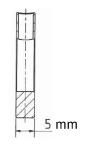

Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Innengewindeankerstange IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Gewindestange oder Schraube


Kennzeichnung Innengewinde
Werkszeichen


M8 Gewindegröße (Innengewinde)


A4 zusätzliche Kennung für nichtrostenden Stahl

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Verfüllscheibe und Mischerreduzierstück zum Verfüllen des Ringspalts zwischen Anker und Anbauteil

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

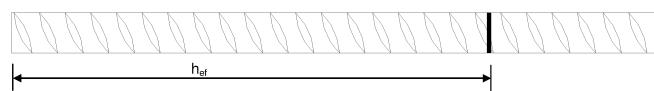
Produktbeschreibung

Ankerstange, Innengewindeankerstange und Verfüllscheibe

Anhang A 3

Ta	belle A1: Werkstoffe					
	Benennung	Werkstoff				
- -	feuerverzinkt ≥ 40 μm gem	nl gemäß EN 10087:199 JÄß EN ISO 4042:1999 JÄß EN ISO 1461:2009 JÄß EN ISO 17668:2016	oder und E	,		
		Festigkeitsklasse		Charakteristische Stahlspannung	Charakteristische Streckgrenze	Bruchdehnung
				$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%
1	Ankerstange	gemäß		$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%
				$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
				51	$f_{yk} = 640 \text{ N/mm}^2$	$A_5 \ge 12\%^{3}$
_		gemäß	4		der Klasse 4.6 ode	
2	Sechskantmutter	EN ISO 898-2:2012	5 8	für Ankerstangen	der Klasse 5.6 ode	r 5.8
		Stahl, galvanisch verz				
3а	Unterlegscheibe	(z.B.: EN ISO 887:200 EN ISO 7094:2000)				oder
3b	Verfüllscheibe	Stahl, galvanisch verz	zinkt,			
		Festigkeitsklasse			Charakteristische	Bruchdehnung
				Stahlspannung	Streckgrenze	_
4	Innengewindeankerstange	gemäß		f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
	-	gemäß EN ISO 898-1:2013	8.8	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%
Nich Nich	Innengewindeankerstange Itrostender Stahl A2 (Werkstoff 1 Itrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571	8.8 / 1.45 / 1.43	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 567 oder 1.4541, ge 362 oder 1.4578, ge	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1::	A ₅ > 8% A ₅ > 8% 2014)
Nich Nich	ntrostender Stahl A2 (Werkstoff 1 ntrostender Stahl A4 (Werkstoff 1	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571	8.8 / 1.45 / 1.43	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1::	A ₅ > 8% A ₅ > 8% 2014) Bruchdehnung
Nich Nich	ntrostender Stahl A2 (Werkstoff 1 ntrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse	8.8 / 1.45 / 1.43	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 567 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088 Charakteristische	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische	A ₅ > 8% A ₅ > 8% 2014)
lich lich loc	ntrostender Stahl A2 (Werkstoff 1 ntrostender Stahl A4 (Werkstoff 1	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß	8.8 / 1.45 / 1.45 .4565	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 567 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088 Charakteristische Stahlspannung	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 12\%$ $A_5 \ge 12\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1 ntrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse	8.8 / 1.45 / 1.45 .4565	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088 Charakteristische Stahlspannung f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ 2014) Bruchdehnung $A_5 \ge 12\%$ 3
Nich Nich Hoc	htrostender Stahl A2 (Werkstoff 1 htrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V Ankerstange ¹⁾⁴⁾	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009	8.8 / 1.45 / 1.45 .4565 50 70	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 567 \text{ oder } 1.4541, \text{ ga} \\ 362 \text{ oder } 1.4578, \text{ ga} \\ \text{, gemäß EN } 10088 \\ \text{Charakteristische} \\ \text{Stahlspannung} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{fur Ankerstangen} \end{split}$	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ der Klasse 50	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1 ntrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß	8.8 7 / 1.45 7 / 1.45 .4565 50 70 80 50 70	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 667 \text{ oder } 1.4541, \text{ ge} \\ 662 \text{ oder } 1.4578, \text{ ge} \\ \text{, gemäß EN } 10088 \\ \text{Charakteristische} \\ \text{Stahlspannung} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{fur } \text{Ankerstangen} \\ \text{für Ankerstangen} \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² der Klasse 50 der Klasse 70	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 12\%$ $A_5 \ge 12\%$
Nich Nich Hoc	htrostender Stahl A2 (Werkstoff 1 htrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V Ankerstange ¹⁾⁴⁾	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009	8.8 7 / 1.45 7 / 1.45 .4565 50 70 80 50 70 80	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 667 \text{ oder } 1.4541, \text{ ge} \\ 662 \text{ oder } 1.4578, \text{ ge} \\ \text{, gemäß EN } 10088 \\ \text{Charakteristische} \\ \text{Stahlspannung} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{fur Ankerstangen } \text{ Gur Ankerstangen} \\ \text{für Ankerstangen} $	$\begin{split} &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &emäß \text{ EN } 10088-1:: \\ &f_{yk} = 210 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \\ &emsum \\ &e$	$A_5 > 8\%$ $A_5 > 8\%$ $2014)$ $2014)$ Bruchdehnung $A_5 \ge 12\%$ $3)$ $A_5 \ge 12\%$ $3)$ $A_5 \ge 12\%$
Nich Nich Hoc	htrostender Stahl A2 (Werkstoff 1 htrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V Ankerstange ¹⁾⁴⁾	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß	8.8 7 / 1.45 7 / 1.45 .4565 50 70 80 50 70 80 7 / 1.45 29 odd	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, gg 362 oder 1.4578, gg , gemäß EN 10088 Charakteristische Stahlspannung f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Ankerstangen	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² der Klasse 50 der Klasse 70 der Klasse 80 7 oder 1.4541, EN 62 oder 1.4578, EN 8-1: 2014	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) 3 0 3 0 3 0 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Nich Nich Hoc	trostender Stahl A2 (Werkstoff 1 trostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V Ankerstange ¹⁾⁴⁾ Sechskantmutter ¹⁾⁴⁾	gemäß EN ISO 898-1:2013 .4301 / 1.4303 / 1.4307 .4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20	8.8 7 / 1.45 7 / 1.45 .4565 50 70 80 70 80 7 / 1.43 29 ode 06, El	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, ge 662 oder 1.4578, ge 7, gemäß EN 10088 Charakteristische Stahlspannung f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Ankerstangen	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² der Klasse 50 der Klasse 70 der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 88-1: 2014 EN ISO 7093:2000	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 12\%$
Nich Nich Hoc 1 2 3a	trostender Stahl A2 (Werkstoff 1 htrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V Ankerstange ¹⁾⁴⁾ Sechskantmutter ¹⁾⁴⁾ Unterlegscheibe Verfüllscheibe	gemäß EN ISO 898-1:2013 4301 / 1.4303 / 1.4307 4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20) EN ISO 7094:2000)	8.8 7 / 1.45 7 / 1.45 .4565 50 70 80 70 80 7 / 1.43 29 ode 06, El	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $667 \text{ oder } 1.4541, \text{ ge}$ $362 \text{ oder } 1.4578, \text{ ge}$ $, \text{ gemäß EN } 10088$ Charakteristische Stahlspannung $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $für Ankerstangen et anke$	$\begin{split} &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &emäß \text{ EN } 10088\text{-}1\text{::} \\ &f_{zeck} = 210 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \\ &em \text{ Ger Klasse } 50 \\ &em \text{ der Klasse } 50 \\ &em \text{ der Klasse } 70 \\ &em \text{ der Klasse } 80 \\ &em \text{ S7 } \text{ oder } 1.4541, \text{ EN } \\ &em \text{ S2 } \text{ oder } 1.4578, \text{ EN } \\ &em \text{ S2 } \text{ oder } 1.4578, \text{ EN } \\ &em \text{ S3 } \text{ S41} \\ &em \text{ CN } \text{ CN } \text{ CN } \text{ S2 } \text{ CN } \\ &em \text{ CN } $	$A_5 > 8\%$ $A_5 > 8\%$ 2014) Bruchdehnung $A_5 \ge 12\%$ 10088-1:2014 10088-1:2014 oder Bruchdehnung
Nich Nich Hoc	atrostender Stahl A2 (Werkstoff 1 ltrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (Verkstoff 1 hkor	gemäß EN ISO 898-1:2013 4301 / 1.4303 / 1.4307 4401 / 1.4404 / 1.4571 Verkstoff 1.4529 oder 1 Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000) Nichtrostender Stahl	8.8 7 / 1.45 7 / 1.45 .4565 50 70 80 70 80 7 / 1.43 29 ode 06, El	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $567 \text{ oder } 1.4541, \text{ ge}$ $362 \text{ oder } 1.4578, \text{ ge}$ $362 \text{ oder } 1.4571 \text{ oder } 1.4561, \text{ oder } 1.4561, \text{ er } 1.4561, er$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) 4 5 5 5 5 5 5 5 5 5 5

¹⁾ Festigkeitsklasse 70 für Ankerstangen bis M24 und Innengewindeankerstange bis IG-M16,


Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Produktbeschreibung Werkstoffe Ankerstangen und Innengewindehülsen	Anhang A 4

²⁾ für IG-M20 nur Festigkeitsklasse 50

 $^{^{3)}}$ A₅ > 8% Bruchdehnung wenn <u>keine</u> Anforderungen der seismischen Leistungskategorie C2 bestehen $^{4)}$ Festigkeitsklasse 80 nur für nichtrostenden Stahl A4

Betonstahl \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe

Tei	Benennung	Werkstoff							
Bet	Betonstahl								
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$							

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

Produktbeschreibung

Anhang A 5

Werkstoffe Betonstahl

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.
- Seismische Einwirkung für Anforderungsstufe C1: M8 bis M30 (außer feuerverzinkte Gewindestangen), Betonstahl Ø8 bis Ø32.
- Seismische Einwirkung für Anforderungsstufe C2: M12 bis M24 (außer feuerverzinkte Gewindestangen)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013.
- Ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.
- Gerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.

Temperaturbereich:

- I: -40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)
- II: 40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C)
- III: 40 °C bis +160 °C (max. Langzeit-Temperatur +100 °C und max. Kurzzeit-Temperatur +160 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinktem Stahl, nichtrostendem Stahl A2 bzw. A4 oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl A4 oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055

Einbau:

- · Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) oder Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- · Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

Verwendungszweck
Spezifikationen

Anhang B 1

Tabelle B1: Montagekennwerte für Gewindestangen											
Dübelgröße				M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Durchmesser Gewind	destange	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	sser	d ₀	[mm]	10	12	14	18	22	28	30	35
Effektive Verankerun	antinfo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellektive verankerun	gstiele	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorste	eckmontage d _f	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Bauteil ¹⁾	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment		T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Mindestbauteildicke		h _{min}	[mm]	h _{ef} + 30	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$						
Minimaler Achsabstand S _{min} [n		[mm]	40	50	60	75	95	115	125	140	
Minimaler Randabsta	nd	c _{min}	[mm]	35	40	45	50	60	65	75	80

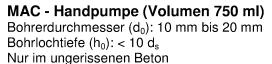
¹⁾ für Anwendungen unter Seismischer Einwirkung darf das Durchgangsloch im Anbauteil maximal d₁ + 1mm betragen oder alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil mit Mörtel kraftschlüssig zu verfüllen.
²⁾ Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B2: Montagekennwerte für Betonstahl

Größe Betonstahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	12	14	16	18	20	25	32	32	35	40
Effektive	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h _{min}	[mm]		0 mm ≥ mm	$h_{ef} + 2d_0$							
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

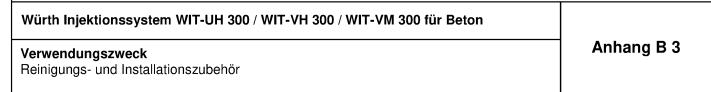
Tabelle B3: Montagekennwerte für Innengewindehülsen

Größe Innengewindehülse			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Innendurchmesser der Hülse	d ₂	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse 1)	d = d _{nom}	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d ₀	[mm]	12	14	18	22	28	35
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Ellektive veralikerungstiele	h _{ef,max}	[mm]	200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]	•.	30 mm O mm	h _{ef} + 2d ₀			
Minimaler Achsabstand	s _{min}	[mm]	50	60	75	95	115	140
Minimaler Randabstand	c _{min}	[mm]	40	45	50	60	65	80


¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

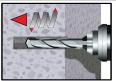
Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Verwendungszweck Montagekennwerte	Anhang B 2

Tabelle B4: Parameter für Reinigungs- und Setzzubehör Innen-Installationsrichtung und $d_{b,min}$ $\boldsymbol{d_{b}}$ Gewinde-Verfüll-Betonstahl gewindemin. Anwendung von Bohrer - Ø stangen stutzen Bürsten - Ø hülse HD, HDB, CD Bürsten - Ø Verfüllstutzen WIT-[mm] [mm] [mm] [mm] WIT-[mm] [mm] M8 10 RB10 11,5 10,5 M10 8 IG-M6 12 RB12 12,5 13,5 Kein Verfüllstutzen notwendig IG-M8 M12 10 14 RB14 14,5 15,5 12 16 RB16 17,5 16,5 VS18 M16 14 IG-M10 18 RB18 20,0 18,5 16 20 RB20 22,0 20,5 VS20 M20 IG-M12 22 RB22 24,0 22,5 VS22 20 25 RB25 27,0 25,5 VS25 $h_{ef} >$ $h_{ef} >$ M24 IG-M16 28 RB28 30,0 VS28 28,5 all 250 mm 250 mm M27 30 RB30 31.8 30.5 VS30 24 / 25 32 RB32 34,0 32,5 **VS32** M30 28 IG-M20 35 **VS35** RB35 37,0 35,5 32 40 RB40 43,5 VS40 40,5


CAC - Empfohlene Druckluftpistole (min 6 bar)

Bohrerdurchmesser (d₀): alle Durchmesser

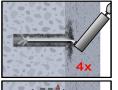
HDB - Hohlbohrersystem


Bohrerdurchmesser (d₀): alle Durchmesser Das Hohlbohrersystem besteht aus dem Würth Saugbohrer, MKT Saugbohrer oder Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 230 hPa und einer Durchflussmenge von Minimum 61 l/s.

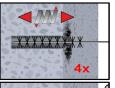
Setzanweisung

Bohrloch erstellen

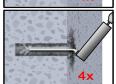
Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.



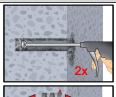
1b. Hohlbohrersystem (HDB) (siehe Anhang B 3)


Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens (Alle Konditionen). Weiter mit Schritt 3. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

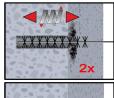
Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.


MAC: Reinigung in trockenen und feuchten für Durchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ (nur ungerissener Beton!)

2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 3) ausblasen.



2b. Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 4x mit Drehbewegungen ausbürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.



2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 3) ausblasen.

CAC: Reinigung in trockenen, feuchten und wassergefüllten Bohrlöchern für alle Durchmesser in gerissenem und ungerissenem Beton

2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

2b. Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 2x mit Drehbewegungen ausbürsten. Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.

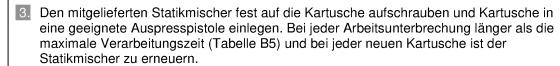
2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

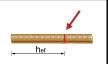
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

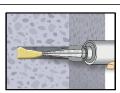
Verwendungszweck

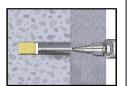
Setzanweisung

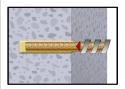

Anhang B 4


715679.19 8.06.01-50/19

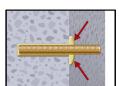
Setzanweisung (Fortsetzung)



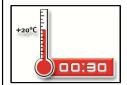

4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.


5. Den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.

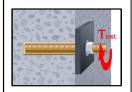
6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B5) sind zu beachten.



- 7. Verfüllstutzen und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:
 - Horizontalmontage (horizontal Richtung) und Bodenmontage (vertikal Richtung nach unten): Bohrer-Ø d₀ ≥ 18 mm und Setztiefe h_{ef} > 250mm
 - Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm



8. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.


Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

9. Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch Anbauteil, komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).

10. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B5).

11. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Tabelle B1 oder B3) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden. Bei der Vorsteckmontage kann optional der Ringspalt zwischen Ankerstange und Anbauteil nachträglich mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 5

715679 19 8 06 01-50/19

Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten

Beton ¹	Beton Temperatur		Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton		
- 5 °C	bis	- 1 °C	50 min	5 h	10 h		
0 °C	bis	+ 4 °C	25 min	3,5 h	7 h		
+ 5 °C	bis	+ 9 °C	15 min	2 h	4 h		
+ 10 °C	bis	+ 14 °C	10 min	1 h	2 h		
+ 15 °C	bis	+ 19 °C	6 min	40 min	80 min		
+ 20 °C	bis	+ 29 °C	3 min	30 min	60 min		
+ 30 °C	bis	+ 40 °C	2 min	30 min	60 min		
Kartusch	entem	peratur	+5°C bis +40°C				

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Verwendungszweck Aushärtezeit	Anhang B 6

1,33

				86.0		NA 46	88.46	14.00	1407	34.0-	
	röße	Ι_Δ	r 07	M 8	M 10		M 16		M24	M 27	M 30
	pannungsquerschnitt	As	[mm²]	36,6	58	84,3	157	245	353	459	561
	narakteristische Zugtragfähigkeit, Stahlversagei				ı					1	
	ahl, Festigkeitsklasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	· '	34	63	98	141	184	224
St	ahl, Festigkeitsklasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	ahl, Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
Ni	chtrostender Stahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Cł	narakteristische Zugtragfähigkeit, Teilsicherheit		rt ²⁾					·			
St	ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,N}	[-]				2,0				
St	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,N}	[-]				1,5				
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 50	γ _{Ms,N}	[-]	2,86							
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,N}	[-]				1,87	,			
Ni	chtrostender Stahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]				1,6				
Cł	narakteristische Quertragfähigkeit, Stahlversage	n 1)		•							
	Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Hebelarm	Stahl, Festigkeitsklasse 5.6 und 5.8	V° _{Rk.s}	[kN]	9 (8)	15 (13)	21	39	61	88	115	140
pel	Stahl, Festigkeitsklasse 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ĭ,	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Ohne	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	V ⁰ Rk.s	[kN]	13	20	30	55	86	124	-	-
	Nichtrostender Stahl A4 und HCR, Klasse 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	-	-
	Stahl, Festigkeitsklasse 4.6 und 4.8	$ M^{\circ}_{Rk,s} $	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
rm	Stahl, Festigkeitsklasse 5.6 und 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
본	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Mit	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Nichtrostender Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-
Cł	narakteristische Quertragfähigkeit, Teilsicherhe			1	ı						
	ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,V}	[-]				1,67	,			
St				1,25							
	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,25	j			
St	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8 chtrostender Stahl A2, A4 und HCR, Klasse 50	$\gamma_{Ms,V}$ $\gamma_{Ms,V}$	[-] [-]				1,25 2,38				

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.
2) Sofern andere nationalen Regelungen fehlen

 $\gamma_{\text{Ms,V}}$

Nichtrostender Stahl A4 und HCR, Klasse 80

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquerzugtragfähigkeit von Gewindestangen	Anhang C 1

8.06.01-50/19 Z15679.19

Dübelgröße Gewii	ndes	stangen	1			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Stahlversagen				T.											
Charakteristische Z	<u> </u>	agfähigl	keit	N _{Rk,s}	[kN]			A _s • f _{uk}				•			
Teilsicherheitsbeiw				γMs,N	[-]				siehe Ta	belle C1					
Kombiniertes Vers															
Charakteristische V				ım ungeriss						1					
II: 160°C/100°C		trockener und feuchter Beton,		^τ Rk,ucr	[N/mm²]	17	17	16	15	14	13	13	13		
원 및 II: 120°C/72°C	;		ssergefülltes	^τ Rk,ucr	[N/mm ²]	15	14	14	13	12	12	11	11		
		Bohrloc		^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0		
Charakteristische V	/erbı	undtragf	ähigkeit	im gerissen	en Beton C	20/25	1						1		
ಸ್ಟ್ : 80°C/50°C		trocken feuchte	er und r Beton,	τ _{Rk,cr}	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0		
180°C/50°C 180°C/72°C 180°C/72°C 180°C/72°C 180°C/100°C/		sowie wasser	gefülltes	τ _{Rk,cr}	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0		
ட் III: 160°C/100	°C	Bohrloc	:h	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5		
•				C25/30				1,0	02						
				C30/37	1,04										
Erhöhungsfaktor fü	r Be	ton		C35/45		1,07									
Ψc				C40/50						08					
				C45/55						09					
Betonausbruch				C50/60		1,10									
ungerissener Beton				k _{ucr,N}	[-]	11,0									
gerissener Beton				k _{cr,N}	[-]	7,7									
Randabstand				C _{cr,N}	[mm]	1,5 h _{ef}									
Achsabstand				s _{cr,N}	[mm]	2 c _{cr,N}									
Spalten				-Cr,IN	[]					UI,IN					
<u> </u>	h/h	ef ≥ 2,0				1,0 h _{ef}									
Randabstand		> h/h _{ef}	> 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$ $2.4 h_{ef}$									
	h/h	_{ef} ≤ 1,3													
Achsabstand	1	Ci ·		s _{cr,sp}	[mm]				cr,sp						
Montagebeiwert				,- -						,-					
<u> </u>			MAC				1	,2			N	 ΡΑ			
für trockenen und f	euch	nten	CAC					,	1.	0					
Beton			HDB	γ_{inst}	[-]				1,						
für wassergefülltes	Bob	rloch	CAC												
iai waasa garantas			on c												
Würth Injektions Leistungen Charakteristische V										4	Anha	ang C	2		

Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
	Stahlversagen ohne Hebelarm								IVI Z1	W 30			
	1												
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	0,6 • A _s • f _{uk} (oder siehe Tabelle C1)										
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 5.6, 5.8 und 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ^o _{Rk,s}	[kN]	[kN] 0,5 • A _s • f _{uk} (oder siehe Tabelle C1)										
Teilsicherheitsbeiwert	[-]	siehe Tabelle C1											
Duktilitätsfaktor	[-]	1,0											
Stahlversagen mit Hebelarm													
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 • W _{el}	f _{uk} (od	er siehe	Tabelle	: C1)				
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874			
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	71					
Betonausbruch auf der lastabgewandt	en Seite												
Faktor	k ₈	[-]				2	2,0						
Montagebeiwert	γinst	[-]					1,0						
Betonkantenbruch													
Effektive Dübellänge	I _f	[mm]	m] min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300										
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Montagebeiwert	γ _{inst}	[-]					1,0		•				

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 3

Statis	scher Bel		rte aei	^r Zugtra	gfähigk	eit unte	er statis	cher ur	nd quas	i-		
Dübelgröße Innengewi	ndehülsen				IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Stahlversagen ¹⁾			l NI	FL-N 17	40		1 00	40	70	400		
Charakteristische Zugtra Stahl, Festigkeitsklasse	gfähigkeit,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
	0	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Teilsicherheitsbeiwert 5. Charakteristische Zugtra			γMs,N	[-]			<u> </u>	,5 				
Nichtrostender Stahl A4	und HCR, K	lasse 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124		
Teilsicherheitsbeiwert			γMs,N									
Kombiniertes Versager												
Charakteristische Verbui			erissenei	n Beton Ca	20/25	Г						
ਸੁੱ ਦ <u>I: 80°C/50°C</u>		ener und ter Beton,	^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13		
E S0°C/50°C III: 120°C/72°C III: 160°C/100°C	sowie		^τ Rk,ucr	[N/mm²]	14	14	13	12	12	11		
ш: 160°С/100°С	Wasse	ergefülltes och	τ _{Rk,ucr}	[N/mm²]	11	11	10	9,5	9,0	9,0		
Charakteristische Verbui	ndtragfähigk	eit im geris	senen E	Beton C20/	25							
ந்_ I: 80°C/50°C		ener und	τ _{Rk,cr}	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0		
II: 120°C/72°C	sowie		τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0		
Temberatur Breight Hill: 120°C/72°C III: 120°C/100°C III: 160°C/100°C III: 160°C/1	III: 160°C/100°C wassergefüll Bohrloch		τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5		
<u>'</u>	<u> </u>						1,	02				
			C	30/37	1,04							
Erhöhungsfaktor für Beto	on		C	35/45	1,07							
ψ_{c}				10/50	1,08 1,09							
				15/55								
Betonausbruch			C	50/60			1,	10				
ungerissener Beton			k _{ucr,N}	[-]			11	1,0				
gerissener Beton			k _{cr,N}	[-]				,7				
Randabstand			c _{cr,N}	[mm]				h _{ef}				
Achsabstand			s _{cr,N}	[mm]				cr,N				
Spalten			CI,IN	[]				CI,IN				
	n/h _{ef} ≥ 2,0						1,0	h _{ef}				
Randabstand 2	$2.0 > h/h_{ef} >$	1,3	c _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \right)$	$\frac{h}{h_{ef}}$				
r		1				2,4	h _{ef}					
Achsabstand			s _{cr,sp}	[mm]			2 c	cr,sp				
Montagebeiwert					1							
		MAC				1,2			NPA			
für trockenen und feucht	en Beton	CAC	Vinct	[-]				,0				
		HDB	γinst	[-]	Ι,Δ							
für wassergefülltes Bohr		CAC		<u> </u>	<u> </u>			,4				

der Innengewindehülsen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindestange und die zugehörigen Befestigungsmittel.

2) für IG-M20 Festigkeitsklasse 50 gültig

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 4

Tabelle C5: Charakte quasi-sta					ugtragf	ähigkeit	unter st	atische	r und				
Dübelgröße Innengewindehi	ülsen			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20				
Stahlversagen ohne Hebelai	rm ¹⁾							1					
Charakteristische	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61				
Quertragfähigkeit, Stahl, Festigkeitsklasse	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98				
Teilsicherheitsbeiwert 5.8 und	8.8	γ _{Ms,V}	[-]				1,25						
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und H Festigkeitsklasse 70 ²⁾	HCR,	V ⁰ Rk,s	[kN]	7	13	20	30	55	40				
Teilsicherheitsbeiwert		γMs,V	[-]			1,56			2,38				
Duktilitätsfaktor		k ₇	[-]	1,0									
Stahlversagen mit Hebelarm ¹⁾													
Charakteristisches	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325				
Biegemoment, Stahl, Festigkeitsklasse	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519				
Teilsicherheitsbeiwert 5.8 und	8.8	γ _{Ms,V}	[-]	1,25									
Charakteristisches Biegemom nicht-rostender Stahl A4 und F Festigkeitsklasse 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456				
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]	1,56 2,38									
Betonausbruch auf der lasta	abgew	andten S	Seite										
Faktor		k ₈	[-]				2,0						
Montagebeiwert		γ _{inst}	[-]				1,0						
Betonkantenbruch													
Effektive Dübellänge		I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 3									
Außendurchmesser des Dübe	ls	d _{nom}	[mm]	10	12	16	20	24	30				
Montagebeiwert		γ̃inst	[-]				1,0						

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindehülsen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindestange und die zugehörigen Befestigungsmittel. ²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 5

1,4

Tab	elle C6: Chara statis	akterist scher B			der Zug	tragi	ähig	keit ı	unter	stat	ische	er un	d qua	asi-	
Dübe	größe Betonstahl]				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
	versagen							1							
Chara	kteristische Zugtra	gfähigkeit		N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{(1)}$									
Stahls	pannungsquersch	nitt		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsio	herheitsbeiwert			γMs,N	[-]	1,4 ²⁾									
Komk	iniertes Versager	n durch H	erauszie			sbruc	:h								
	kteristische Verbu														
ttur- h	I: 80°C/50°C	trockene feuchter		τ _{Rk,ucr}	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
III: 160°C/100°C		sowie	,	τ _{Rk,ucr}	[N/mm²]	13	12	12	12	12	11	11	11	11	11
Ter			τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5	
Chara	kteristische Verbur	ndtragfähi	gkeit im	gerissene	en Beton C	20/25	5								
ttur- h	I: 80°C/50°C trockener und feuchter Beton			τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperatur- bereich	II: 120°C/72°C	sowie wasserge	·	τ _{Rk,cr}	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ten	III: 160°C/100°C	Bohrloch		τ _{Rk,cr}	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
					5/30						02				
				C3	1,04										
	ungsfaktor für Beto	on			5/45 0/50	1,07 1,08									
ψ_{c}					5/55	1,08									
					0/60	1,10									
Betor	ausbruch				0/00					٠,					
unger	issener Beton			k _{ucr,N}	[-]					11	,0				
geriss	ener Beton			k _{cr,N}	[-]					7	,7				
	abstand			c _{cr,N}	[mm]						h _{ef}				
	ıbstand			s _{cr,N}	[mm]						cr,N				
Spalt				01,14	[]						01,11				
	-	h/h _{ef} ≥ 2,	0							1,0	h _{ef}				
Randa	abstand	2,0 > h/h	_{ef} > 1,3	c _{cr,sp}	[mm]				2 · h	$_{ef}\left(2,\right.$	5 – T	$\left(\frac{h}{r_{ef}}\right)$			
		h/h _{ef} ≤ 1,	3]						2,4	h _{ef}				
Achsa	bstand	•		s _{cr,sp}	[mm]					2 c	cr,sp				
Monta	agebeiwert														
			MAC					1,2					NPA		
für tro	ckenen und feucht	en Beton	CAC	γ_{inst}	[-]						,0				
		HDB			''					1	,2				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ Sofern andere nationalen Regelungen fehlen

CAC

für wassergefülltes Bohrloch

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 6

Tabelle C7: Charakteri quasi-stati				erzug	ıtragf	ähigk	eit u	nter s	statis	cher	und	
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]	$0.50 \cdot A_s \cdot f_{uk}^{2}$									
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	[-]					1,	5 ²⁾					
Duktilitätsfaktor	[-]	1,0										
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ⁰ Rk,s	[Nm]				-	1.2 • W	el • fuk)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Betonausbruch auf der lastabge	ewandten Seit	te										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	γ _{inst}	[-]	1,0									
Betonkantenbruch												
Effektive Dübellänge	If	[mm]	min(h _{ef} ; $12 \cdot d_{nom}$) min(h _{ef} ; 300 mm)								Omm)	
Außendurchmesser des Dübels	[mm]	8 10 12 14 16 20 24 25 28 32										
Montagebeiwert	γ_{inst}	[-]					1	,0				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ Sofern andere nationalen Regelungen fehlen

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 7

Tabelle C8: Vers	chiebung u	nter Zugbean	spruc	hung ¹⁾	(Gewi	ndesta	ange)			
Dübelgröße Gewindes	stange		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung										
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Gerissener Beton C20	/25 unter statis	cher, quasi-stati	scher B	elastunç	9					
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0} \text{-Faktor} \cdot \tau; \hspace{1cm} \tau \text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor} \cdot \tau;$

Tabelle C9: Verschiebung unter Querbeanspruchung²⁾ (Gewindestange)

Dübelgröße Gewinde	stange	M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
Gerissener und ungerissener Beton C20/25 unter statischer, quasi-statischer Belastung										
Alle Temperaturbereiche	δ _{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Berechnung der Verschiebung

 $v_0 = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor} \cdot V;$

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)

Anhang C 8

Tabelle C10: Vers	schiebung u	nter Zugbean	spruchu	ng ¹⁾ (Inr	nengewir	ndehülse)	
Dübelgröße Innengewi	ndehülse		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Ungerissener Beton Ca	20/25 unter sta	tischer und quasi	-statische	r Belastun	g			
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Gerissener Beton C20/	25 unter statis	cher, quasi-statis	cher Belas	stung				
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

Berechnung der Verschiebung $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau; \hspace{1cm} \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C11: Verschiebung unter Querbeanspruchung²⁾ (Innengewindehülse)

Dübelgröße Innengev	windehülse		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Gerissener und ungerissener Beton C20/25 unter statischer, quasi-statischer Belastung										
Alle	δ_{V0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04		
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06		

 $^{^{2)}}$ Berechnung der Verschiebung $\delta_{V0} = \delta_{V0}\text{-Faktor}\cdot V; \qquad \qquad V\text{: einwirkende Querlast} \\ \delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V;$

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindehülse)	Anhang C 9

Tabelle C12: V	Tabelle C12: Verschiebung unter Zugbeanspruchung ¹⁾ (Betonstahl)											
Dübelgröße Betons	tahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung												
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
I: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
II: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Gerissener Beton C	20/25 unter	statischer, qua	asi-stat	ischer l	Belastu	ng						
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
II: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

Berechnung der Verschiebung $\delta_{N0} = \delta_{N0}\text{-Faktor} \cdot \tau; \qquad \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor τ ;

Tabelle C13: Verschiebung unter Querbeanspruchung²⁾ (Betonstahl)

Dübelgröße Betons	tahl	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Gerissener und ungerissener Beton C20/25 unter statischer, quasi-statischer Belastung												
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

 $^{^{2)}}$ Berechnung der Verschiebung $\begin{array}{lll} \delta_{V0} = \delta_{V0}\text{-Faktor}\cdot V; & \text{V: einwirkende Querlast} \\ \delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V; & \end{array}$

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 10

8.06.01-50/19 Z15679.19

				90	gorie C1+	<u> </u>		_							
	elgröße Gew	inde	stangen)			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
	lversagen		· · · ·		Ι	1 1									
(Leis	rakteristische stungskatego	ie Č1)		N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}				
Charakteristische Zugtragfähigkeit (Leistungskategorie C2) Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70					N _{Rk,s,eq,C2}	[kN]	N	PA	1,0 • N _{Rk,s}				NPA		
Teils	sicherheitsbei	wert			γ _{Ms,N}	[-]			S	siehe Ta	belle C	1			
Kom	nbiniertes Ve	rsag	en durc	h Heraus	sziehen und	Betonaust	oruch								
Cha	rakteristische	Verb	undtragt	ähigkeit	im gerissene	n und unge	rissene	n Betor	C20/25	5					
	I: 80°C/50°C				^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
ur-		'	trocken		τ _{Rk,eq,C2}	[N/mm²]	N	PA	3,6	3,5	3,3	2,3	NF	PA	
erat eich	THE TOO'C/72°C THE TOO'C/72°C THI: 160°C/100°C		feuchte sowie	r Beton,	^τ Rk,eq,C1	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
mp ber			wassergefülltes		^τ Rk,eq,C2	[N/mm²]	NPA		3,1	3,0	2,8	2,0	N	PA	
Te			Bohrloo	ch	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
	III. 100 C/10	00			^τ Rk,eq,C2	[N/mm²]	N	PA	2,5	2,7	2,5	1,8	NPA		
Erhö	hungsfaktor t	ür Be	eton ψ _C		C25/30 bis (C50/60	1,0								
Beto	nausbruch														
unge	erissener Beto	on			k _{ucr,N}	[-]				11	,0				
geris	sener Beton				k _{cr,N}	[-]					,7				
Ran	dabstand				c _{cr,N}	[mm]					h _{ef}				
Achs	sabstand				s _{cr,N}	[mm]				2 c	cr,N				
Spa	lten				T T										
		h/h _e	_f ≥ 2,0								h _{ef}				
Ran	dabstand		> h/h _{ef} >	1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$								
	h/h _{ef} ≤ 1,3									2,4	h _{ef}				
Achsabstand					s _{cr,sp}	[mm]	2 c _{cr,sp}								
Mon	tagebeiwert					•					•				
für tr	ockenen und	feuc	hten	CAC						1	,0				
Beto				HDB	γ _{inst}	[-]	1,2								
für wassergefülltes Bohrloch CAC				1						,4					

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1+C2)	Anhang C 11

Tabelle C15:Charakteristis Erdbebenbela				_	_		ter			
Dübelgröße Gewindestangen			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit (Leistungskategorie C1)	[kN]				0,70	· V ⁰ Rk,s				
Charakteristische Quertragfähigkeit (Leistungskategorie C2) Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70	V _{Rk,s,eq,C2}	[kN]	[kN] NPA 0,70 • V ⁰ _{Rk,s}					N	PA	
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]				siehe T	abelle C	21		
Duktilitätsfaktor	k ₇	[-]					1,0			
Stahlversagen mit Hebelarm										
Charaktariatiaahaa Diagamamant	M ⁰ Rk,s,eq,C1	[Nm]			Leistu	ing nich	t bewert	et (NPA)	
Charakteristisches Biegemoment	M ⁰ Rk,s,eq,C2	[Nm]			Leistu	ing nich	t bewert	et (NPA)	
Betonausbruch auf der lastabgewa	andten Seite									
Faktor	k ₈	[-]					2,0			
Montagebeiwert	γinst	[-]					1,0			
Betonkantenbruch										
Effektive Dübellänge	If	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	n)		min(h _{ef} ;	300mm)
Außendurchmesser des Dübels	d _{nom}	[mm]	m] 8 10 12 16 20 24 27 30						30	
Montagebeiwert	γ _{inst}	[-]					1,0			
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ¹⁾							

¹⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Verfüllscheibe gemäß Anhang A 3 ist notwendig.

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1+C2)	Anhang C 12

1,0 h_{ef}

2,5 -

2,4 h_{ef} 2 c_{cr,sp}

1,0

1,2

1,4

2 · h _{ef}

Tabelle C16: Charakteristische Werte der Zugtragfähigkeit unter **Erdbebenbelastung (Leistungskategorie C1)** Dübelgröße Betonstahl Ø 8 | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 24 | Ø 25 | Ø 28 | Ø 32 Stahlversagen $1.0 \cdot A_s \cdot f_{uk}^{-1}$ Charakteristische Zugtragfähigkeit N_{Rk,s,eq} [kN] Stahlspannungsquerschnitt A_s [mm²] 50 79 113 154 201 | 314 452 491 616 804 Teilsicherheitsbeiwert $1,4^{2)}$ $\gamma_{Ms,N}$ [-] Kombiniertes Versagen durch Herausziehen und Betonausbruch Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 Temperatur-bereich I: 80°C/50°C trockener und 5,5 5,5 6,5 7,0 ^τRk,eq $[N/mm^2]$ 6,0 6,5 6,5 6,5 7,0 7,0 feuchter Beton, II: 120°C/72°C sowie $[N/mm^2]$ 4,5 5,0 5,0 5,5 5,5 5,5 5,5 6,0 6,0 6,0 τ_{Rk,eq} wassergefülltes 4.5 5.0 III: 160°C/100°C Bohrloch [N/mm²] 4.0 4.5 5.0 5.0 5.0 5.0 5.0 ^τRk,eq Erhöhungsfaktor für Beton ψ_c C25/30 bis C50/60 1,0 Betonausbruch k_{ucr.N} ungerissener Beton [-] 11,0 7,7 gerissener Beton $k_{cr,N}$ [-] 1,5 h_{ef} Randabstand $c_{cr,N}$ [mm] Achsabstand 2 c_{cr.N} s_{cr,N} [mm] Spalten

[mm]

[mm]

[-]

CAC

HDB

CAC

 $h/h_{ef} \ge 2.0$

 $h/h_{ef} \le 1.3$

Randabstand

Achsabstand

Beton

Montagebeiwert

für trockenen und feuchten

für wassergefülltes Bohrloch

 $2.0 > h/h_{ef} > 1.3$

c_{cr,sp}

s_{cr,sp}

 γ_{inst}

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1)	Anhang C 13

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C17: Charakteri Erdbebenk							ceit u	nter				
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	$V_{Rk,s,eq}$	[kN]				(D,35 • A	۱ _s •f _{uk}	2)			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Duktilitätsfaktor	k ₇	[-]					1	,0				
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ⁰ _{Rk,s,eq}	[Nm]			L	eistunç	g nicht	bewert	et (NPA	۸)		
Betonausbruch auf der lastabg	ewandten Sei	te										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	γ _{inst}	[-]					1	,0				
Betonkantenbruch												
Effektive Dübellänge	If	[mm]			min(h	_{ef} ; 12 •	d _{nom})			min(ł	n _{ef} ; 300)mm)
Außendurchmesser des Dübels	d _{nom}	[mm]	m] 8 10 12 14 16 20 24 25 28 32									
Montagebeiwert	γ _{inst}	[-]	1,0									
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]					0,5 (1,0)3)				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen 2) Sofern andere nationalen Regelungen fehlen

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton Anhang C 14 Leistungen Charakteristische Werte der Querzugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1)

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Verfüllscheibe gemäß Anhang A 3 ist notwendig.

Tabelle C18:Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestange)											
Dübelgröße Gewindestange M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30											
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)											
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106	
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137	
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110	
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143	
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412	
III: 160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424	

Tabelle C19: Verschiebung unter Zugbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betons	Dübelgröße Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Gerissener und ung	Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)											
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
II: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C20:Verschiebung unter Querbeanspruchung²⁾ (Gewindestange)

Dübelgröße Gewindestange				M 10	M 12	M 16	M 20	M24	M 27	M 30
Gerissener und unge	rissener Beton C	20/25 unter Erdl	bebenbe	elastung	(Leistu	ngskate	gorie C	1)		
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{V∞} - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Tabelle C21: Verschiebung unter Querbeanspruchung²⁾ (Betonstahl)

Dübelgröße Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskatego								orie C1)			
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V; V: einwirkende Querlast

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor}\cdot V;$

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Verschiebungen unter Erdbebenbelastung (Leistungskategorie C1) (Gewindestange und Betonstahl)	Anhang C 15

Tabelle C22:Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestange)										
Dübelgröße Gewindestange M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30										
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C2)										
Alle δ _{N,eq(DLS)} -Faktor [mm/(N/mm²)] NPA 0,120 0,100 0,100 0,120 NPA										
Temperaturbereiche	$\delta_{N,eq(ULS)}$ -Faktor	[mm/(N/mm²)]	INI	- A	0,140	0,150	0,110	0,150	INF	A

¹⁾ Berechnung der Verschiebung

$$\begin{split} \delta_{N,eq(DLS)} = \delta_{N,eq(DLS)} - Faktor \cdot \tau; & \tau : einwirkende \ Verbundspannung \ unter \ Zugbelastung \\ \delta_{N} & \delta_{N,eq(ULS)} = \delta_{N,eq(ULS)} - Faktor \cdot \tau; \end{split}$$

Tabelle C23:Verschiebung unter Querbeanspruchung²⁾ (Gewindestange)

Dübelgröße Gewindestange			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Gerissener und ungerissener Beton C20/25 unter Erdbebent					(Leistu	ngskate	gorie C	2)		
Alle	$\delta_{V,eq(DLS)}$ - Faktor	[mm/kN]	NI	٦٨	0,27	0,13	0,09	0,06	NF	3 Λ
Temperaturbereiche	$\delta_{\text{V,eq(ULS)}}$ - Faktor	[mm/kN]	INI	PA	0,27	0,14	0,10	0,08	INF	A

²⁾ Berechnung der Verschiebung

 $\delta_{V,eq(DLS)} = \delta_{V,eq(DLS)} \text{-Faktor} \cdot V; \quad \text{V: einwirkende Querlast}$

 $\delta_{v,eq(ULS)} = \delta_{v,eq(ULS)} \text{-Faktor} \cdot v;$

Würth Injektionssystem WIT-UH 300 / WIT-VH 300 / WIT-VM 300 für Beton	
Leistungen Verschiebungen unter Erdbebenbelastung (Leistungskategorie C2) (Gewindestange)	Anhang C 16