

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0199 of 30 August 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection system Hilti HIT-MM Plus
Product family to which the construction product belongs	Bonded anchor for use in non-cracked concrete
Manufacturer	Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Werke
This European Technical Assessment contains	16 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601
This version replaces	ETA-17/0199 issued on 3 April 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0199 English translation prepared by DIBt

Page 2 of 16 | 30 August 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 30 August 2019

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-MM Plus is a bonded anchor for use in concrete consisting of a foil pack with injection system Hilti HIT-MM Plus and a steel element according to Annex A. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C1
Characteristic resistance for static and quasi-static shear load	See Annex C2
Displacements for static and quasi-static loads	See Annex C3
Characteristic resistance for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 16 | 30 August 2019

European Technical Assessment ETA-17/0199

ETA-17/0199 English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

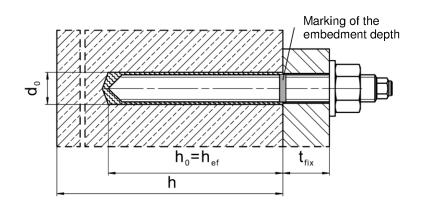
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 30. August 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-17/0199 of 30 August 2019


English translation prepared by DIBt

Installed condition

Figure A1:

Threaded rod, HAS-U-... and HIT-V-...

Injection system Hilti HIT-MM Plus

Product description Installed condition Annex A1

Product description: Injection mortar and steel elements Injection mortar Hilti HIT-MM Plus: hybrid system with aggregate 330 ml and 500 ml	
Marking: HILTI HIT Production number and production line Expiry date mm/yyyy	
Product name: "Hilti HIT-MM Plus"	
Static mixer Hilti HIT-RE-M	
The second se	
Steel elements	
Image: Constant of the example of	ull be stored.
Injection system Hilti HIT-MM Plus	
Product description Injection mortar / Static mixer / Steel elements	Annex A2

Designation	Material		
Metal parts made of zinc coated steel			
HAS-U-5.8 (HDG), HIT-V-5.8(F), Threaded rod	$ \begin{array}{l} \mbox{Strength class 5.8, } f_{uk} = 500 \ \mbox{N/mm}^2, f_{yk} = 400 \ \mbox{N/mm}^2, \\ \mbox{Elongation at fracture (l_0=5d) > 8\% \ ductile.} \\ \mbox{Electroplated zinc coated} \geq 5 \ \mbox{\mum}, \ \mbox{(F) or (HDG) hot dip galvanized} \geq 45 \ \mbox{\mum}. \end{array} $		
HAS-U-8.8 (HDG), HIT-V-8.8(F), Threaded rod	$ \begin{array}{l} \mbox{Strength class 8.8, } f_{uk} = 800 \ \mbox{N/mm}^2, f_{yk} = 640 \ \mbox{N/mm}^2, \\ \mbox{Elongation at fracture (I_0=5d) > 12\% \ ductile.} \\ \mbox{Electroplated zinc coated} \geq 5 \ \mbox{\mum}, \ \mbox{(F) or (HDG) hot dip galvanized} \geq 45 \ \mbox{\mum}. \end{array} $		
Washer	Electroplated zinc coated \geq 5 µm, (F) hot dip galvanized \geq 45 µm.		
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \geq 5 µm, (F) hot dip galvanized \geq 45 µm.		
Metal parts made o	of stainless steel		
corrosion resistan	ce classes III according EN 1993-1-4:2006+A1:2015-06		
HAS-U A4, HIT-V-R	Strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$, Elongation at fracture ($l_0=5d$) > 8% ductile.		
Threaded rod	$ \begin{array}{l} \mbox{Strength class 70, } f_{uk} = 700 \ \mbox{N/mm}^2, \ f_{yk} = 450 \ \mbox{N/mm}^2; \\ \mbox{Elongation at fracture (} l_0 = 5d) > 8\% \ \mbox{ductile.} \\ \mbox{Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014} \end{array} $		
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014		
Nut	For ≤ M24: strength class 70, f _{uk} = 700 N/mm², f _{yk} = 450 N/mm², Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014		
•	of high corrosion resistant steel ce classes V according EN 1993-1-4:2006+A1:2015-06		
HAS-U HCR, HIT-V-HCR			
Threaded rod	$f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, Elongation at fracture ($I_0=5d$) > 8% ductile. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		
Nut	Strenght class of nut adapted to strength class of threaded rod, High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014		

Injection system Hilti HIT-MM Plus

Product description Materials Annex A3

Sp	ecifications of intended use
And	chorages subject to:
•	Static and quasi static loading: M8 to M16
Bas	se material:
•	Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
•	Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
•	Cracked and uncracked concrete.
Ter	nperature in the base material:
•	at installation
	-5 °C to +40 °C
•	in-service
	Temperature range I: -40 °C to +40 °C (max. long term temperature +24 °C and max. short term temperature +40 °C)
	Temperature range II: -40 °C to +80 °C (max. long term temperature +50 °C and max. short term temperature +80 °C)

Table B1: Specifications of intended use

Anchorages subject to:	HIT-MM Plus with …
Elements	Threaded rod, HAS-U, HIT-V
Hammer drilling mode	\checkmark
Static and quasi static loading in uncracked concrete	M8 to M16

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4:2006+A1:2015-06 correspoding to corrosion resistance classes Table A1 Annex A3 (stainless steels).

Injection system Hilti HIT-MM Plus

Intended Use Specifications Annex B1

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055

Installation:

- Use category: dry or wet concrete (not in flooded holes)
- Drilling technique:
 - Hammer drilling
- Installation direction D3: downward and horizontal and upward (e.g. overhead) installation admissible for all elements.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-MM Plus

Intended Use Specifications Annex B2

Deutsches Institut für Bautechnik

Threaded rod, HAS-U and HI	T-V		M8	M10	M12	M16
Diameter of element	d	[mm]	8	10	12	16
Nominal diameter of drill bit	do	[mm]	10	12	14	18
Effective embedment depth and drill hole depth	$h_{\text{ef}} = h_0$	[mm]	60 to 96	60 to 120	70 to 144	80 to 192
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm	1	h _{ef} + 2∙do
Maximum torque moment	T _{max}	[Nm]	10	20	40	80
Minimum spacing	Smin	[mm]	40	50	60	80
Minimum edge distance	Cmin	[mm]	40	45	45	50
			₿, - -		cation letter: e	
	 				cation letter: e	er and len e.g. 8L
	<u> </u>			Markii 5.8 - I 5.8F - 8.8 - I 8.8F - R - I	ng: = HIT-V- = HIT-V- = HIT-V-	5.8 Mx 5.8F Mx 8.8 Mx 8.8F Mx R Mx
	 			Markii 5.8 - I 5.8F - 8.8 - I 8.8F - R - I	ng: = HIT-V- = HIT-V- = HIT-V- = HIT-V- = HIT-V-	5.8 Mx 5.8F Mx 8.8 Mx 8.8F Mx R Mx

Injection system Hilti HIT-MM Plus

Intended Use

Installation parameters of threaded rod, HAS-U-... and HIT-V-...

Annex B3

Electronic copy of the ETA by DIBt: ETA-17/0199

	perature in the base Maximum working time material T t _{work}		Minimum curing time t _{cure}	
-5°C	to	0°C	10 min	12 h
> 0°C	to	5°C	10 min	5 h
> 5°C	to	10°C	8 min	2,5 h
> 10°C	to	20°C	5 min	1,5 h
> 20°C	to	30°C	3 min	45 min
> 30°C	to	40°C	2 min	30 min

¹⁾ The curing time data are valid for dry base material only.

In wet base material the curing times must be doubled.

Table B4: Parameters of cleaning and setting tools

Elements	Drill ar	Installation	
Threaded rod, HAS-U, HIT-V	Hammer drilling	Brush	Piston plug

size	d₀ [mm]	HIT-RB	HIT-SZ
M8	10	10	-
M10	12	12	12
M12	14	14	14
M16	18	18	18

Cleaning alternatives

Manual Cleaning (MC): Hilti hand pump for blowing out drill holes with diameters d₀ ≤ 18 mm and drill hole depths h₀ ≤ 10·d Compressed air cleaning (CAC): Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Injection system Hilti HIT-MM Plus

Intended Use Minimum working and curing time Cleaning and setting tools Annex B4

Installation		
Hole drilling		
Hammer drilling		
5.233350000 0	Drill hole to the required embedment depth with a hammer drill se mode using an appropriately sized carbide drill bit.	et in rotation-hammer
Drill hole cleaning	Just before setting an anchor, the drill hole must be free of dust a Inadequate hole cleaning = poor load values.	und debris.
Manual Cleaning (MC)) Non-cracked concrete only for drill hole diameters $d_0 \le 18$ mm and drill hole depths $h_0 \le 10 \cdot c$	
+ 4x	The Hilti manual pump may be used for blowing out drill holes up $d_0 \le 18$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$. Blow out at least 4 times from the back of the drill hole until return noticeable dust	
← 4x →	Brush 4 times with the specified brush (see Table B4) by inserting HIT-RB to the back of the hole (if needed with extension) in a twis removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be replaced with t diameter.	sting motion and ole (brush $\emptyset \ge drill$
- 4x	Blow out again with manual pump at least 4 times until return air noticeable dust.	stream is free of
Compressed air clean	ing (CAC) for all drill hole diameters d_0 and all drill hole depths h_0	
◆2x ◆	Blow 2 times from the back of the hole (if needed with nozzle extellength with oil-free compressed air (min. 6 bar at 6 m ³ /h) until retuon of noticeable dust.	
◆ 2x →	Brush 2 times with the specified brush (see Table B4) by inserting HIT-RB to the back of the hole (if needed with extension) in a twis removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be replaced with t diameter.	sting motion and ole (brush $\emptyset \ge drill$
	Blow again with compressed air 2 times until return air stream is	free of noticeable dust.
njection system Hilti	HIT-MM Plus	
ntended Use Installation instructions		Annex B5

Injection preparation		
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack mani modify the mixing nozzle. Observe the instruction for use of the dispenser. Check foil pack holder for proper function. Do not use damaged f Insert foil pack into foil pack holder and put holder into HIT-disper	oil packs / holders.
000		
Inject adhesive from tl	he back of the drill hole without forming air voids.	
	Inject the adhesive starting at the back of the hole, slowly withdra each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the the anchor and the concrete is completely filled with adhesive alo length.	annular gap between
	After injection is completed, depressurize the dispenser by press This will prevent further adhesive discharge from the mixer.	ing the release trigger.
	Overhead installation and/or installation with embedment depth h For overhead installation the injection is only possible with the aid piston plugs. Assemble HIT-RE-M mixer, extension(s) and appro- plug HIT-SZ (see Table B4). Insert piston plug to back of the hole During injection the piston plug will be naturally extruded out of the adhesive pressure	d of extensions and priately sized piston and inject adhesive.
Setting the element		
A C Luck	Before use, verify that the element is dry and free of oil and other Mark and set element to the required embedment depth until wor elapsed. The working time t _{work} is given in Table B3	
	For overhead installation use piston plugs and fix embedded part (HIT-OHW).	s with e.g. wedges
C Tmax	Loading the anchor: After required curing time t_{cure} (see Table B3 loaded. The applied installation torque shall not exceed the values T_{max} g	, ,
njection system Hilti	HIT-MM Plus	
ntended Use		Annex B6

Threaded rod, HAS-U and HIT-V	M8	M10	M12	M16		
Installation safety factor	γinst	[-]	1,0			
Steel failure		•				
Characteristic steel resistance	N _{Rk,s}	[kN]	$A_{s} \cdot f_{uk}$			
Partial factor grade 5.8	γ Ms,N $^{1)}$	[-]	1,5			
Partial factor grade 8.8	$\gamma_{ m Ms,N}$ $^{1)}$	[-]] 1,5			
Partial factor HAS-U A4, HIT-V-R	γ Ms,N $^{1)}$	[-]			1,86	
Partial factor HAS-U HCR, HIT-V-HCR	$\gamma_{ m Ms,N}$ $^{1)}$	[-]	1,5			
Combined pullout and concrete cone	failure					
Characteristic bond resistance in uncrac	ked conc	rete C20/25				
Temperature range I: 40 °C/24 °C	$ au_{Rk,ucr}$	[N/mm²]	7,5			
Temperature range II: 80 °C/50 °C	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	5,5			
Influence factors ψ on bond resistance	e τ _{Rk}	L. L				
	Ψc	C30/37	1,04			
Cracked and uncracked concrete: Factor for concrete strength		C40/50	1,07			
		C50/60	1,09			
Concrete cone failure						
Factor for uncracked concrete	k _{ucr,N}	[-]	11,0			
Edge distance	C cr,N	[mm]	1,5 · h _{ef}			
Spacing	S _{cr,N}	[mm]	3,0 · h _{ef}			
Splitting failure						
	h / h _{ef} ≥ 2,0		1,0	· h _{ef}	h/h _{ef}	
Edge distance c _{cr.sp} [mm] for	2,0 > h / h _{ef} > 1,3		4,6 h _{ef}	- 1,8 h	1,3	7
	h / h _{ef} ≤ 1,3		2,26 hef			2,26 h _{ef} c
Spacing	Scr,sp	[mm]		2	Ccr,sp	

¹⁾ In absence of national regulations.

Injection system Hilti HIT-MM Plus

Performances

Essential characteristics under tension load in concrete

Annex C1

Threaded rod, HAS-U and HIT-V	M8	M10	M12	M16			
Steel failure without lever arm							
Characteristic steel resistance	$V_{Rk,s}$	[kN]	0,5 · A _s · f _{uk}				
Partial factor grade 5.8	$\gamma_{Ms,V}$ 1)	[-]	1,25				
Partial factor grade 8.8	$\gamma_{Ms,V}$ 1)	[-]	1,25				
Partial factor HAS-U A4, HIT-V-R	$\gamma_{Ms,V}$ 1)	[-]	1,56				
Partial factor HAS-U HCR, HIT-V-HCR	γMs,v ¹⁾	[-]	1,25				
Ductility factor	k 7	[-]	1,0				
Steel failure with lever arm							
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]		1,2 ·	W _{el} ∙ f _{uk}		
Ductility factor	k 7	[-]	1,0				
Concrete pry-out failure							
Pry-out factor	k ₈	[-]	-] 2,0				
Concrete edge failure							
Effective length of fastener	lf	[mm]] min (h _{ef} ; 12·d _{nom})				

8

[mm]

10

12

16

 d_{nom}

Outside diameter of fastener ¹⁾ In absence of national regulations.

Injection system Hilti HIT-MM Plus

Performances Essential characteristics under shear load in concrete

Annex C2

Table C3: Displacement under tension load									
Threaded rod, HAS-U and HIT-V			M8	M10	M12	M16			
Non-cracked concrete									
Displacement	δησ	[mm/(N/mm²)]	0,07	0,07	0,07	0,08			
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08			

Table C4: Displacement under shear load

Threaded rod, H	AS-U and	НІТ-V	M8	M10	M12	M16
Displacement	δνο	[mm/(kN)]	0,06	0,06	0,05	0,04
Displacement	δv∞	[mm/(kN)]	0,09	0,08	0,08	0,06

Injection system Hilti HIT-MM Plus

Performances

Displacements with threaded rod, HAS-U-... and HIT-V-...

Annex C3